Title: Spekkensâ $€^{\text {TM }}$ toy model in all dimensions and its relationship with stabiliser quantum mechanics
Date: Jul 04, 2017 03:30 PM
URL: http://pirsa.org/17070000
Abstract: < $\mathrm{p}>$ In this talk I am going to describe Spekkensâ $€^{\mathrm{TM}} \& \mathrm{nbsp}$;toy model, a non-contextual hidden variable model with an epistemic restriction, a\ constraint on what an observer can know about reality. The aim of the model, developed for\ continuous and discrete prime degrees of freedom, is to advocate the epistemic view of quantum\ theory, where quantum states are states of incomplete knowledge about a deeper underlying reality. In spite of its classical flavour, many aspects that were thought to belong only to quantum mechanics can be reproduced in\ the model.\ </p>
<p>I am\ going to describe our results regarding the\ formulation of\ rules for the update of states after measurement I will do it for systems of discrete prime dimensions and I will then give the idea on how to proceed in the non-prime dimensional case.\ </p>
$<p>I$ will also depict the relationship between Spekkensâ $€^{\mathrm{TM}}$ model, stabiliser quantum mechanics and Gross' theory of discrete Wigner functions (they are equivalent theories in odd dimensions) in terms of measurement update rules.</p>
$<\mathrm{p}>\mathrm{I}$ will conclude by briefly discussing a project we have been recently working on that consists of characterising sub theories of\ Spekkensâ $€^{\mathrm{TM}}$ model that are operationally equivalent to\ sub theories of QM (in particular in the case of qubits) and use them to represent the non-contextual classically simulable part\ of state-injection schemes of computation with contextuality as a resource.</p>

Spekkens' toy model in all dimensions and its relationship with stabiliser quantum mechanics

arXiv:1701.07801 (2017).

Lorenzo Catani, Dan Browne
University College London

- Motivations
- Introduction to Spekkens' toy model
- Bit case (d=2)
- General case
- Measurement update rules
- Prime dimensions
- Non-prime dimensions
- Relationship with stabiliser quantum mechanics
- Spekkens' sub-theories compatible with QM
- Conclusions
- Future directions
- What does a quantum state describe?
- What does a quantum state describe?
- Classify the inherent non-classical features.

Spekkens' Toy Model

पणवL

Spekkens toy model

Model to support the epistemic view of QT.

Quantum mechanics

Elementary system: 1 bit

Spekkens' Toy Model

Epistemic restriction

Knowledge balance principle:

When the observer has the maximum knowledge about reality, his amount of knowledge has to equal his ignorance.

The observer can at maximum answer one of the two questions.

Spekkens' Toy Model

Elementary system: 1 bit

Ontic states $=$ states of reality

Epistemic states $=$ states of (incomplete) knowledge

Spekkens＇Toy Model

Epistemic states of one bit

Spekkens' Toy Model

Transformations
Permutations of the ontic states

Spekkens' Toy Model

Epistemic states of couple of bits

Maximal knowledge states

Uncorrelated state

Perfectly correlated state

Spekkens' Toy Model

पणवL

Epistemic states of couple of bits

Maximal knowledge states

Uncorrelated state

Maximum knowledge of the individual ontic states.

Perfectly correlated state

\longleftrightarrow Maximum knowledge of
trade-off
-

No classical analogue

Epistemic states of couple of bits

Maximal knowledge states

Perfectly correlated state

Spekkens' Toy Model

Phase-space formalism

- Phase space $\Omega \equiv \mathbb{Z}_{d}^{2 n} ; \quad \mathrm{d}=$ dimension, $\mathrm{n}=$ number of systems.
- Quadrature variables X_{j}, P_{j}
- Ontic states $\lambda \in \Omega . \longrightarrow$ Vectorial representation: $\lambda=\left(x_{0}, p_{0}, \ldots, x_{n-1}, p_{n-1}\right)$.
- Observables $\Sigma=\sum_{m}\left(a_{m} X_{m}+b_{m} P_{m}\right) . \longrightarrow$ Vec. representation: $\boldsymbol{\Sigma}=\left(a_{0}, b_{0}, \ldots, a_{n-1}, b_{n-1}\right)$
- Outcomes $\sigma=\boldsymbol{\Sigma}^{T} \lambda=\sum_{j}\left(a_{j} x_{j}+b_{j} p_{j}\right)$. Inner product.

Spekkens' Toy Model

Epistemic restriction

Classical complementarity (C.C.) principle

The observer can at maximum jointly know the values of a set of variables that Poisson commute.

Poisson commute means that the symplectic inner product is zero:

$$
\left\langle\boldsymbol{\Sigma}_{\mathbf{1}}, \boldsymbol{\Sigma}_{\mathbf{2}}\right\rangle \equiv \boldsymbol{\Sigma}_{\mathbf{1}}^{T} J \boldsymbol{\Sigma}_{\mathbf{2}}=0, \text { where } J=\bigoplus_{j=1}^{n}\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]_{j} .
$$

Spekkens' Toy Model

Epistemic states

- Defined by (V, \mathbf{w}).
- $V=\operatorname{span}\left\{\Sigma_{1}, \ldots, \Sigma_{n}\right\} \subseteq \Omega$. Isotropic subspace of known variables.
- \mathbf{w} is such that $\boldsymbol{\Sigma}_{j}^{T} \mathbf{w}=\sigma_{j}$. Evaluation vector.
- The set of ontic states consistent with the epistemic state (V, \mathbf{w}) is $V^{\perp}+\mathbf{w}$.

Spekkens' Toy Model

Epistemic states

- Defined by (V, \mathbf{w}).
- $V=\operatorname{span}\left\{\Sigma_{1}, \ldots, \Sigma_{n}\right\} \subseteq \Omega$. Isotropic subspace of known variables.
- \mathbf{w} is such that $\boldsymbol{\Sigma}_{j}^{T} \mathbf{w}=\sigma_{j}$. Evaluation vector.
- The set of ontic states consistent with the epistemic state (V, \mathbf{w}) is $V^{\perp}+\mathbf{w}$.
- The associated uniform probability distribution is

$$
P_{(V, \mathbf{w})}(\lambda)=\frac{1}{d^{n}} \delta_{V^{\perp}+\mathbf{w}}(\lambda)
$$

Spekkens' Toy Model

Valid Transformations

Symplectic affine transformations: $\lambda \rightarrow S \lambda+\mathbf{a}$

Epistemic restriction preserved: $(S \lambda)^{T} J\left(S \lambda^{\prime}\right)=\lambda^{T} J \lambda^{\prime}, \forall \lambda, \lambda^{\prime} \in \Omega$.

Associated probability distribution: $\Gamma_{S, \mathbf{a}}\left(\lambda \mid \lambda^{\prime}\right)=\delta_{S \lambda^{\prime}+\mathbf{a}}(\lambda)$.

Spekkens' Toy Model

介गCL

Valid Measurements

The elements of a measurement are represented as epistemic states.

Example: One trit - measure of the observable $\Pi=X$.

Spekkens' Toy Model

Operational statistics

Probability of obtaining outcome $k \in V_{\Pi}$:

$$
P(k)=\sum_{\lambda, \lambda^{\prime} \in \Omega} P_{\left(V_{\Pi}, \mathbf{r}_{k}\right)}(k \mid \lambda) \Gamma_{(S, \mathbf{a})}\left(\lambda \mid \lambda^{\prime}\right) P_{(V, \mathbf{w})}\left(\lambda^{\prime}\right)
$$

TABLE II: Categorization of quantum phenomena.

Quasi-quantization: classical statistical theories with an epistemic restriction, R. W. Spekkens Fund. TheoryPhys,181(2016)

Result

Spekkens' model is operationally equivalent to SQM in odd dimensions.

\downarrow
 Proven through Gross' Wigner functions.

Contents

!णव

- Motivations
- Introduction to Spekkens' toy model
- Bit case (d=2)
- General case
- Measurement update rules
- Prime dimensions
- Non-prime dimensions
- Relationship with stabiliser quantum mechanics
- Spekkens' subtheories compatible with QM
- Conclusions
- Future directions

Measurement update rules - prime case

$$
\begin{aligned}
& \text { State } \\
& (V, \mathbf{W}),(\sqrt{\Pi}, \mathbf{r}) \rightarrow\left(\nabla^{\prime}, \mathbf{W}^{\prime}\right)
\end{aligned}
$$

Measurement update rules - prime case

Classical complementarity implies that we can learn only the generators of the state that commute with the measurement.

State after measurement given by the generators of the measurement and the generators of the original state that commute with them.

Measurement update rules - prime case

Adding/Removing generators

- Adding a generator Σ^{\prime} to $V=\operatorname{span}\left\{\Sigma_{1}, \Sigma_{2}, \ldots, \Sigma_{n}\right\}$:

$$
V^{\prime}=V \oplus \operatorname{span}\left\{\Sigma^{\prime}\right\} \quad \longrightarrow \quad V^{\prime \perp}=V^{\perp} \cap\left(\operatorname{span}\left\{\Sigma^{\prime}\right\}\right)^{\perp}
$$

- Removing a generator, say Σ_{n}, from $V=\operatorname{span}\left\{\Sigma_{1}, \Sigma_{2}, \ldots, \Sigma_{n}\right\}$:
$V^{\prime}=\operatorname{span}\left\{\Sigma_{1}, \ldots, \Sigma_{n-1}\right\}$

Measurement update rules - prime case

Adding/Removing generators

- Adding a generator Σ^{\prime} to $V=\operatorname{span}\left\{\Sigma_{1}, \Sigma_{2}, \ldots, \Sigma_{n}\right\}$:

$$
V^{\prime}=V \oplus \operatorname{span}\left\{\Sigma^{\prime}\right\} \quad \longrightarrow \quad V^{\prime \perp}=V^{\perp} \cap\left(\operatorname{span}\left\{\Sigma^{\prime}\right\}\right)^{\perp}
$$

- Removing a generator, say Σ_{n}, from $V=\operatorname{span}\left\{\Sigma_{1}, \Sigma_{2}, \ldots, \Sigma_{n}\right\}$:

$$
V^{\prime}=\operatorname{span}\left\{\Sigma_{1}, \ldots, \Sigma_{n-1}\right\} \quad \Longrightarrow \quad V^{\prime \perp}=V^{\perp} \oplus V_{n}
$$

Proof.
$V^{\prime \perp}$ given by all λ such that $\boldsymbol{\Sigma}_{j}^{T} \lambda=0$ for all $j<n$, but $\boldsymbol{\Sigma}_{n}^{T} \lambda \neq 0$.
Need to add $\lambda^{\prime}=c \gamma$ to V^{\perp}, where $c \in \mathbb{Z}_{d} \neq 0$ and γ such that $\Sigma_{n}^{T} \gamma=1$.
$\Sigma_{n}^{T}\left(\lambda+\lambda^{\prime}\right)=\Sigma_{n}^{T}(\lambda+c \gamma)=0+c \neq 0$.

Measurement update rules - prime case

Adding/Removing generators

- Adding a generator Σ^{\prime} to $V=\operatorname{span}\left\{\Sigma_{1}, \Sigma_{2}, \ldots, \Sigma_{n}\right\}$:

$$
V^{\prime}=V \oplus \operatorname{span}\left\{\Sigma^{\prime}\right\} \quad \longrightarrow \quad V^{\prime \perp}=V^{\perp} \cap\left(\operatorname{span}\left\{\Sigma^{\prime}\right\}\right)^{\perp}
$$

- Removing a generator, say Σ_{n}, from $V=\operatorname{span}\left\{\Sigma_{1}, \Sigma_{2}, \ldots, \Sigma_{n}\right\}$:

$$
V^{\prime}=\operatorname{span}\left\{\Sigma_{1}, \ldots, \Sigma_{n-1}\right\} \quad \Longrightarrow \quad V^{\prime \perp}=V^{\perp} \oplus V_{n}
$$

Proof.
$V^{\prime \perp}$ given by all λ such that $\boldsymbol{\Sigma}_{j}^{T} \lambda=0$ for all $j<n$, but $\boldsymbol{\Sigma}_{n}^{T} \lambda \neq 0$.
Need to add $\lambda^{\prime}=c \gamma$ to V^{\perp}, where $c \in \mathbb{Z}_{d} \neq 0$ and γ such that $\Sigma_{n}^{T} \gamma=1$.
$\Sigma_{n}^{T}\left(\lambda+\lambda^{\prime}\right)=\Sigma_{n}^{T}(\lambda+c \gamma)=0+c \neq 0$.
$V^{\prime \perp}=\bigcup_{c}\left(V^{\perp}+c \gamma\right) \equiv \bigcup_{w_{n} \in V_{n}}\left(V^{\perp}+w_{n}\right)=V^{\perp} \oplus V_{n}$.

Commuting (non-disturbing) case

$$
\text { - } V^{\prime \perp}=\left(V^{\perp}+\mathbf{w}-\mathbf{w}^{\prime}\right) \cap\left(V_{\Pi}^{\perp}+\mathbf{r}-\mathbf{w}^{\prime}\right)
$$

Measurement update rules - prime case

Commuting (non-disturbing) case

- $V^{\prime \perp}=\left(V^{\perp}+\mathbf{w}-\mathbf{w}^{\prime}\right) \cap\left(V_{\Pi}^{\perp}+\mathbf{r}-\mathbf{w}^{\prime}\right)$
- $\mathbf{w}^{\prime}=\mathbf{w}+\sum_{i} \mathbf{\Sigma}_{i}^{\prime T}(\mathbf{r}-\mathbf{w}) \gamma_{i}, \quad \boldsymbol{\Sigma}^{\prime}{ }_{i}^{T} \gamma_{i}=1$.

Proof.
Let us assume only one generator of the measurement, Σ^{\prime}, whose associated outcome is σ^{\prime}.
Say \mathbf{w} not compatible with this outcome, then $\mathbf{\Sigma}^{\prime T} \mathbf{w}=\sigma^{\prime}+x$, where $x \in \mathbb{Z}_{d}$.
We want \mathbf{w}^{\prime} such that $\boldsymbol{\Sigma}^{\prime T} \mathbf{w}^{\prime}=\sigma^{\prime}$.
$\mathbf{w}^{\prime}=\mathbf{w}-x \gamma$, where $\Sigma^{\prime T} \gamma=1$.

Measurement update rules - prime case

Commuting (non-disturbing) case

- $V^{\prime \perp}=\left(V^{\perp}+\mathbf{w}-\mathbf{w}^{\prime}\right) \cap\left(V_{\Pi}^{\perp}+\mathbf{r}-\mathbf{w}^{\prime}\right)$
- $\mathbf{w}^{\prime}=\mathbf{w}+\sum_{i} \boldsymbol{\Sigma}_{i}^{\prime T}(\mathbf{r}-\mathbf{w}) \gamma_{i}, \quad \boldsymbol{\Sigma}_{i}^{\prime T} \gamma_{i}=1$.

Proof.
Let us assume only one generator of the measurement, Σ^{\prime}, whose associated outcome is σ^{\prime}.
Say \mathbf{w} not compatible with this outcome, then $\mathbf{\Sigma}^{\prime T} \mathbf{w}=\sigma^{\prime}+x$, where $x \in \mathbb{Z}_{d}$.
We want \mathbf{w}^{\prime} such that $\boldsymbol{\Sigma}^{\prime T} \mathbf{w}^{\prime}=\sigma^{\prime}$.
$\mathbf{w}^{\prime}=\mathbf{w}-x \gamma$, where $\Sigma^{\prime T} \gamma=1$.
Therefore $\mathbf{w}^{\prime}=\mathbf{w}+\left(\sigma^{\prime}-\mathbf{\Sigma}^{\prime T} \mathbf{w}\right) \gamma=\mathbf{w}+\mathbf{\Sigma}^{\prime T}(\mathbf{r}-\mathbf{w}) \gamma$.
In prime dimensions $\gamma=k^{-1} \boldsymbol{\Sigma}^{\prime}$, where $k=\boldsymbol{\Sigma}^{\prime T} \boldsymbol{\Sigma}^{\prime}$.

Commuting (non-disturbing) case

Simple example:

Nothing known

Measurement
$\left(V_{\Pi}, \mathbf{r}\right)$

$P=0$

State after measurement $\left(V^{\prime}, \mathbf{w}^{\prime}\right)$

$\mathrm{P}=0$

Non-commuting (disturbing) case

- $V^{\prime \perp}=\left(V_{\text {commute }}^{\perp}+\mathbf{w}-\mathbf{w}^{\prime}\right) \cap\left(V_{\Pi}^{\perp}+\mathbf{r}-\mathbf{w}^{\prime}\right)$
$V_{\text {commute }}^{\perp}=V^{\perp} \oplus V_{\text {other }}$,
$V=V_{\text {commute }} \oplus V_{\text {other }}$.

Measurement update rules - prime case

Recap and issues

Prime dimensions. \quad Non disturbing case $\quad V \rightarrow V^{\prime}=V \oplus V_{\Pi}$

$$
V^{\perp} \rightarrow V^{\prime \perp}=V^{\perp} \cap V_{\Pi}^{\perp}
$$

Measurement update rules - prime case

Recap and issues

Prime dimensions. Non disturbing case

$$
\begin{aligned}
& V \rightarrow V^{\prime}=V \oplus V_{\Pi} \\
& V^{\perp} \rightarrow V^{\prime \perp}=V^{\perp} \cap V_{\Pi}^{\perp}
\end{aligned}
$$

Disturbing case

$$
\begin{aligned}
& V^{\perp} \rightarrow V^{\prime \perp}=V \text { ©ommut } \cap \square \\
& V_{\text {commute }}^{\perp}=\bigcup\left(V^{\perp}+c \gamma\right) .
\end{aligned}
$$

Updated shift vector
$\mathbf{w} \rightarrow \mathbf{w}^{\prime}=\mathbf{w}-x \gamma$
$\Sigma^{\prime T} \gamma=1$

Problematic observables

Example

位		Epistemic state
		$5{ }_{5}{ }^{\text {¢ }}$
		4
Coarse-graining observable	$3 X=0$	${ }_{2}^{3}$
		$1-1-1$
		$\bigcirc-1-1-\square$

Measurement update rules - non prime case

\#リल

Problematic observables

Coarse graining observable $=O_{c g}=a X+b P=D\left(a^{\prime} X+b^{\prime} P\right), D$ shared by a, b.
Fine graining observables $=O_{f g}=a^{\prime} X+b^{\prime} P \Longleftrightarrow \gamma$ exists.

Example

Coarse-graining observable
$3 X=0$

Fine-graining observables

Epistemic state

$X=2$

$$
d=6
$$

$$
X=4
$$

States and Measurements

Stabilizer state $=$ joint eigenstates of a set of commuting pauli operators.

Stabilizer quantum mechanics

States and Measurements

Stabilizer state $=$ joint eigenstates of a set of commuting pauli operators.
1
$\rho=\rho_{1} \cdot \rho_{2} \cdots \rho_{n}, \quad \rho_{j}=\left(\mathbb{I}_{d}+g_{j}+g_{j}^{2}+\cdots+g_{j}^{d-1}\right)$.
\downarrow
$\rho \rightarrow\left\langle g_{1}, \ldots, g_{n}\right\rangle$

Transformations

Clifford group (unitary representation of the symplectic affine group)

- Map Pauli to Pauli
- Preserve commuting relations

Stabilizer quantum mechanics

Gross' theory

- Theorem (d=Odd) : Pure state + non-negative W.f. \longleftrightarrow Stabilizer state.
- Stabilizer Wigner function $W_{\rho}(\lambda)=\operatorname{Tr}(\rho A(\lambda))=\frac{1}{d^{n}} \delta_{M^{C}+\mathbf{w}}(\lambda)$.

Equivalence of the theories

IJC

Equivalence of the theories

Wigner functions of stabilizer states = Spekkens epistemic states.

$$
P_{(V, \mathbf{w})}(\lambda)=\frac{1}{d^{n}} \delta_{V^{\perp}+\mathbf{w}}(\lambda)=W_{(M, \mathbf{w})}(\lambda)=\frac{1}{d^{n}} \delta_{M^{C}+\mathbf{w}}(\lambda)
$$

$$
\uparrow
$$

$$
M=J V
$$

Equivalence of the theories

Measurement update rules

- Non-disturbing (commuting) case

$$
\begin{array}{cc}
V^{\perp} \rightarrow V^{\prime \perp}=V^{\perp} \cap V_{\Pi}^{\perp} & \longleftrightarrow
\end{array} W_{\rho^{\prime}}(\lambda)=\frac{1}{N} W_{\rho}(\lambda) R_{\Pi}(\lambda)
$$

Equivalence of the theories - prime case

介गCL

	Non-disturbing Measurements (Localization stage) $\lfloor\rho, \Pi\rfloor=0$	Disturbing Measurements (Localization + randomization stage) $[\rho, \Pi] \neq 0$
Stabilizer Quantum Mechanics	$\begin{aligned} \rho & \rightarrow\left\langle g_{1}, \ldots, g_{N}\right\rangle \\ \Pi & \rightarrow\left\langle p_{1}, \ldots, p_{M}\right\rangle \end{aligned}$ Add generators $\rho^{\prime} \rightarrow\left\langle g_{1}, g_{2}, \ldots, g_{N}, p_{1}, p_{2}, \ldots, p_{M}\right\rangle$	$\begin{gathered} \rho \rightarrow\left\langle g_{1}, \ldots, g_{N}\right\rangle \\ \Pi \rightarrow\left\langle p_{1}, \ldots, p_{M}\right\rangle \\ \text { Add generators } \downarrow \text { Remove } \mathrm{g}_{\mathrm{N}} \\ \rho^{\prime} \rightarrow\left\langle g_{1}, g_{2}, \ldots, g_{N-1}, p_{1}, p_{2}, \ldots, p_{M}\right\rangle \end{gathered}$
Spekkens Theory	$\begin{gathered} V^{\prime}=V \oplus V_{\Pi} \\ V^{\prime \perp}=V^{\perp} \cap V_{\Pi}^{\perp} \\ \mathbf{w}^{\prime}=\mathbf{w}+\sum_{i}^{n} \mathbf{\Sigma}_{i}^{\prime T}(\mathbf{r}-\mathbf{w}) \gamma_{i} \end{gathered}$	$\begin{aligned} V^{\prime} & =V_{\text {commute }} \oplus V_{\Pi} \\ V^{\prime \perp} & =\left(V^{\perp} \oplus V_{\text {other }}\right) \cap V_{\Pi}^{\perp} \\ \mathbf{w}^{\prime} & =\mathbf{w}+\sum_{i}^{n} \mathbf{\Sigma}_{i}^{\prime T}(\mathbf{r}-\mathbf{w}) \gamma_{i} \end{aligned}$
Wigner Functions	$W_{\rho^{\prime}}(\lambda)=\frac{1}{N} W_{\rho}(\lambda) R_{\Pi}(\lambda)$	$W_{\rho^{\prime}}(\lambda)=\frac{1}{N} \sum_{\mathbf{t} \in V_{\text {other }}} W_{\rho}(\lambda-\mathbf{t}) R_{\Pi}(\lambda)$
		Lorenzo Catani

Contents

今リの

－Motivations
－Introduction to Spekkens＇toy model
－Bit case（d＝2）
－General case
－Measurement update rules
－Prime dimensions
－Non－prime dimensions
－Relationship with stabiliser quantum mechanics
－Spekkens＇subtheories compatible with QM
－Conclusions
－Future directions

Spekkens' sub-theories compatible with QM

*TCI

Spekkens' sub-theories

A set of q. states, transformations and measurements $(\mathcal{S}, \mathcal{T}, \mathcal{O})$ such that
i. \quad Close subtheory. $\forall U \in \mathcal{T}, U \rho U^{\dagger} \in \mathcal{S} \forall \rho \in \mathcal{S}$.
ii. Spekkens representability. $\exists W_{\rho}, W_{\pi}, P_{U} \geq 0$ such that,
$W_{\rho}(\lambda)=\frac{1}{N} \operatorname{Tr}(\rho A(\lambda))=\frac{1}{N} \delta_{\left(V^{\perp}+\mathbf{w}\right)}$
$W_{\Pi}\left(\mathbf{k} / \lambda^{\prime}\right)=\frac{1}{N^{\prime}} \operatorname{Tr}\left(\Pi_{\mathbf{k}} A(\lambda)\right)=\frac{1}{N^{\prime}} \delta_{\left(V_{\Pi_{k}}+\mathbf{r}\right)}(\lambda)$
$P_{U}\left(\lambda / \lambda^{\prime}\right)=\frac{1}{N^{\prime \prime}} \delta_{\lambda, S \lambda^{\prime}+\mathbf{a}} \quad$ This exists if W_{ρ} is covariant.
$p(\mathbf{k} \mid \rho, U, \Pi)=\frac{1}{N} \operatorname{Tr}\left(\Pi_{k} U \rho U^{\dagger}\right)=\frac{1}{N} \sum_{\lambda \in \Omega} W_{\Pi}(\mathbf{k} / \lambda) \sum_{\lambda^{\prime} \in \Omega} P_{U}\left(\lambda / \lambda^{\prime}\right) W_{\rho}\left(\lambda^{\prime}\right)$

Maximal SS if it is not possible to add any other ρ, Π, U without contradicting i), ii).

Conclusions and future directions

Conclusions

- Measurement update rules for Spekkens' theory, both prime and non-prime dimensional systems.
- Measurement update rules for Gross Wigner functions.
- Enforced the equivalence between Spekkens' theory and SQM in odd dimensions and depict the equivalence in terms of updating rules.
- What are the sub-theories of Spekkens' model that are compatible with QM (qubit)?
- Use Spekkens' sub-theories to represent the non-contextual cheap part of stateinjection schemes of computation.
$\left\{\prod_{k}\right\}$
Lodk $\rho \stackrel{k}{\longrightarrow} \pi_{k} \rho \Pi_{k}$
$\Pi_{0}=\mid D\langle 0|+|1\rangle\langle 1|$
Lubs $\rho \rightarrow T_{0} \rho \Pi_{0}($ projection $)$
NN $\rho \rightarrow|0\rangle\langle 0| \rho|0\rangle<0|+|D<||\rho| D<1|$
\square

