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Abstract: <p>In this talk | am going to describe Spekkens&€™& nbsp;toy model, a non-contextual hidden variable model with an epistemic
restriction, a& nbsp;constraint on what an observer can know about reality. The aim of the model, developed for& nbsp;continuous and discrete
prime degrees of freedom, is to advocate the epistemic view of quantumé& nbsp;theory, where quantum states are states of incomplete knowledge
about a deeper underlying reality. In spite of its classical flavour, many aspects that were thought to belong only to quantum mechanics can be
reproduced in& nbsp;the model .& nbsp;</p>

<p>l am& nbsp;going to describe our results regarding the<em>& nbsp;formulation of & nbsp;rules for the update of states after measurement</em>.
| will do it for systems of discrete prime dimensions and | will then give the idea on how to proceed in the non-prime dimensiona case.& nbsp;</p>

<p>l will also depict the relationship between Spekkensd€™ model, stabiliser quantum mechanics and Gross theory of discrete Wigner functions
(they are equivalent theoriesin odd dimensions) in terms of measurement update rules.</p>

<p>l will conclude by briefly discussing a project we have been recently working on that consists of characterising sub theories

of & nbsp; Spekkens&€E™ model that are operationally equivalent to& nbsp;sub theories of QM (in particular in the case of qubits) and use them to
represent the non-contextual classically simulable part& nbsp;of state-injection schemes of computation with contextuality as a resource.</p>
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Motivations

 What does a quantum state describe?
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Motivations

 What does a quantum state describe?

» Classify the inherent non-classical features.
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Spekkens’ Toy Model

Spekkens toy model

Model to support the epistemic view of QT.

Quantum mechanics 9 Classical theory + epistemic restriction

Lorenzo Catani
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Spekkens’ Toy Model

Elementary system: 1 bit

Lorenzo Catani
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Spekkens’ Toy Model

Epistemic restriction

Knowledge balance principle:
When the observer has the maximum knowledge about reality, his amount

of knowledge has to equal his ignorance.

|

The observer can at maximum answer one of the two questions.

"Evidence for the epistemic view of guantum states: A toy theory". Phys Rev A 75 (3): 032110 (2007).
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Spekkens’ Toy Model

Elementary system: 1 bit

Ontic states = states of reality

Epistemic states = states of (incomplete) knowledge

Lorenzo Catani
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Spekkens’ Toy Model

Epistemic states of one bit

Maximal knowledge states Non-maximal knowledge states

Lorenzo Catani

irsa: 17070000 Page 10/50



Spekkens’ Toy Model

Transformations

Permutations of the ontic states

Lorenzo Catani
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Spekkens’ Toy Model

Epistemic states of couple of bits

Maximal knowledge states

Uncorrelated state Perfectly correlated state

Lorenzo Catani
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Spekkens’ Toy Model

Epistemic states of couple of bits

Maximal knowledge states

Uncorrelated state Perfectly correlated state

Maximum knowledge of < » Maximum knowledge of
the individual ontic states. trade-off their relation.

1

No classical analogue

Lorenzo Catani
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Spekkens’ Toy Model

Epistemic states of couple of bits

Maximal knowledge states

(X1,P1) Uncorrelated state Perfectly correlated state

(0,0) (0,1) (1,00 (1,1) (0,0) (0,1) (1,00 (1,1)
(X2,P2) (X2,P2)

Lorenzo Catani
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Spekkens’ Toy Model
Phase-space formalism

Phase space () = Zj”; d= dimension, n= number of systems.

Quadrature variables X, P; .

Ontic states A € §). — Vectorial representation: A = (g, Poy - -+, Ty 1, Pr—1)

Observables ¥ = > (a,, X, + by P). = Vec. representation: X = (ag, bo,...,an_1,bn_1).

TH

Outcomes @ = £"A = "(a;z; +b,p;). Inner product.
i

Lorenzo Catani
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Spekkens’ Toy Model

Epistemic restriction

Classical complementarity (C.C.) principle

The observer can at maximum jointly know the values of a set
of variables that Poisson commute.

Poisson commute means that the symplectic inner product is zero:

(X1,32) = 21{111122 = (0, where .]_él” "}

-1 0f,°
J

J=1

Quasi-quantization: classical statistical theories with an epistemic restriction, R. W. Spekkens Fund.TheoryPhys,181(2016)

Lorenzo Catani
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Spekkens’ Toy Model

Epistemic states

Defined by (V,w).

V = span{¥y,...,X,} C Q. Isotropic subspace of known variables.

w is such that £1w = o;. Evaluation vector.

The set of ontic states consistent with the epistemic state (V, w)is V" + w .

Lorenzo Catani
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Spekkens’ Toy Model

Epistemic states

Defined by (V,w).
o V=span{¥,,... .5, } € Q. Isotropic subspace of known variables.
w is such that £ w = ;. Evaluation vector.
The set of ontic states consistent with the epistemic state (V, w)is V" + w .

The associated uniform probability distribution is

I
Pvw)(A) = djm_ﬁ-%pw()\)

Lorenzo Catani
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Spekkens’ Toy Model

Valid Transformations

Symplectic affine transformations: A — S\ + a

Epistemic restriction preserved: (SA\)1J(SA) = TJN, YA N € Q.

Associated probability distribution: T'g 4 (A|A") = dsar1a(N)

Lorenzo Catani
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Spekkens’ Toy Model

Valid Measurements

The elements of a measurement are represented as epistemic states.

Example: One trit — measure of the observable 11 = X .

Lorenzo Catani
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Spekkens’ Toy Model

Operational statistics

Probability of obtaining outcome [ ¢ Vi :

P(k3_) - Z P(x‘_.-“}rk)(ki|/\_)|1(5,4,)(/\|/\’_) P(l--".w)(/\ )
AN €N

Lorenzo Catani
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Spekkens’ Toy Model

Achievements

Phenomena arising in epistricted theories | Phenomena not arising in epistricted theories
Noncommutativity [ Bell inequality violations .
Coherent superposition Noncontextuality inequality violations
Collapse Computational speed-up (if it exists)
Complementarity Certain aspects of items on the left
No-cloning
No-hroadeasting
Interference
Teleportation
Remote steering
Key distribution
Dense coding
Entanglement
Monogamy of entanglement
Choi-Jamiolkowski isomorphism
Naimark extension
Stinespring dilation
Ambiguity of mixtures
Locally immeasurable product bases
Unextendible product bases
Pre and post-selection effects
Quantum eraser

And many others...

TABLE II: Categorization of quantum phenomena.

Quasi-quantization: classical statistical theories with an epistemic restriction, R. W. Spekkens Fund.TheoryPhys,181(2016)

Lorenzo Catani
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Spekkens’ Toy Model

Result

Spekkens’ model is operationally equivalent to SQM in odd dimensions.

l

Proven through Gross’ Wigner functions.

Lorenzo Catani
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Measurement update rules — prime case

State Measurement State after measurement

Vow), (Vi) — (V. w')

Lorenzo Catani
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Measurement update rules — prime case

State Measurement State after measurement

Vow), (Vi) — (V. w')

Classical complementarity implies that we can /earn only the generators
of the state that commute with the measurement.

Il

State after measurement given by the generators of the measurement and
the generators of the original state that commute with them.

Lorenzo Catani
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Measurement update rules — prime case

Adding/Removing generators

« Adding a generator ¥’ to V' = span{¥,¥,,..., 3, )

V' =V Ps pani E’} ey V' =vin (span{3'}) |

« Removing a generator, say >, , from V' = span{

V' = span{%;

Lorenzo Catani
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Measurement update rules — prime case

Adding/Removing generators

« Adding a generator ¥’ to V' = span{¥,¥,,..., 3, )

V @ span{¥'} V'E =V (span{¥'})-

« Removing a generator, say ».,,, from V = span{¥,,%,, ...,

n?

V' = span{%;

Proof.
VIt given by all \ such that E';')\ = () forall j < n, but E;i_}\ # 0.
Need to add \' = ¢y to V', where ¢ € 7, # 0 and 7y such that EI,'} = 1.

ST+ M) =8N+ ey) =0+ c#0.

Lorenzo Catani
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Measurement update rules — prime case

Adding/Removing generators

« Adding a generator ¥’ to V' = span{¥,¥,,..., 3, )

V @ span{¥'} V'E =V (span{¥'})-

« Removing a generator, say ».,,, from V = span{¥,,%,, ...,

n?

V' = span{%;

Proof.

/4 given by all \ such that E;’)\ = () forall j < n, but E;.’,_)\ # 0.

Need to add \' = ¢y to VL where ¢ ¢ Zq # 0 and 7y such that l}’,'} = 1.
STAN+XN) =N+ ) =0+ ¢ #0.

L,...ru_ o U( ‘J_ + ey ) _ U UJ_ + 'H-’.,,___) o lJ' ® l, .

e w,, €V, Lorenzo Catani
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Measurement update rules — prime case

Commuting (non-disturbing) case

. ‘V’] = (Vi4w-—w)N(Vqi +r— W’_)‘

Lorenzo Catani
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Measurement update rules — prime case

Commuting (non-disturbing) case

V=t rw—w)N (Vi +r - w)

W’ W | ZZIT(F W)"}-'-‘," , 2’;}1’}’ — I i

Proof.

/ . . /
Let us assume only one generator of the measurement, Y. , whose associated outcome is 0.
. . . T _
Say w not compatible with this outcome, then ' w = o' + x , where © € 7 .
/ T /
We want w such that 32" w' = o .

, e fal
W' =W —I7v, where ¥y =1,

Lorenzo Catani
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Measurement update rules — prime case

Commuting (non-disturbing) case

V=t rw—w)N (Vi +r - w)

W’ W | ZZIT(F W)"}-'-‘," , 2’;}1’}’ — I i

Proof.

Let us assume only one generator of the measurement, Yj’ whose associated outcome is .
Say w not compatible with this outcome, then Z'Tw =o' +x,where v € 7, .

We wantw'such that X" w' = o’ .

w =W — 17, where ¥y =1.

Therefore W' = w + (0’ — W)y =w + E’T(r - w)Y.

. . . — T
In prime dimensions vy = k LsY where k= /"%
Lorenzo Catani
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Measurement update rules — prime case

Commuting (non-disturbing) case

Simple example:

State after
measurement

Measurement

(Vi) (V' w')

Nothing known P=0

Lorenzo Catani
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Measurement update rules — prime case

Non-commuting (disturbing) case

- V= (vi +w-w)N(Vi+r—w)

comimaule

. | r | AT 7
‘,' — ‘ D "'o[_.h..('r-;

- commutle

™

V = L:ff)'”-"fl?.'llf(’ &b 1":)!.}:('?"

Lorenzo Catani
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Measurement update rules — prime case

Recap and issues

Prime dimensions. Non disturbingcase  V — V/ =V @&V

vi s vt =—vin [YHL

Lorenzo Catani
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Measurement update rules — prime case

Recap and issues

Prime dimensions. ~ Non disturbingcase = | — VV/ — \..--l--"n

vi Lyt @ﬁ

Disturbing case Vi vt = Inl

l'...;'rl)r;r'rrr.'rrf.r' - U(\’ : t (l}}

Updated shift vector = w —+ w' = w — 2y YTy =1

Lorenzo Catani
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Measurement update rules — non prime case

Problematic observables

Example : :
Epistemic state

Coarse-graining
observable

Fine-graining
observables

Lorenzo Catani
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Measurement update rules — non prime case

Problematic observables

Coarse graining observable = O, = aX +bP = D(a’'X + b'P), D shared by a. b.

Fine graining observables = O, = @' X + /P ¢ 7 exists.

Example : .
Epistemic state

Coarse-graining
observable

Fine-graining
observables

Lorenzo Catani
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Stabilizer quantum mechanics

States and Measurements

Stabilizer state = joint eigenstates of a set of commuting pauli operators.

Lorenzo Catani
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Stabilizer quantum mechanics

States and Measurements

Stabilizer state = joint eigenstates of a set of commuting pauli operators.

!

P=pP1 P2 Pn, p; = (Iq+g; + ,(]'f Rl o _q;-l_l').

1

P — <(J1, e ees gn>

Transformations

Clifford group (unitary representation of the symplectic affine group)
* Map Pauli to Pauli

* Preserve commuting relations

Lorenzo Catani
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Stabilizer quantum mechanics

Gross’ theory

- Theorem (d=0dd) : Pure state + non-negative W.f. «== Stabilizer state.

Stabilizer Wigner function W ,(\) = Tr(pA(N)) = ll_éi,\.,p rw (A) -
(’H. ’

Hudson’s theorem for finite-dimensional quantum systems, D. Gross, J. Math. Phys. 47, 122107 (2006).

Lorenzo Catani

Pirsa: 17070000 Page 41/50



Equivalence of the theories

Equivalence of the theories

Wigner functions of stabilizer states = Spekkens epistemic states.

1 1

1

M=JV

Lorenzo Catani
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Equivalence of the theories

Measurement update rules

* Non-disturbing (commuting) case

[.,,r'_l_ BN L..PI_L o ‘_;‘F—L N ‘PI_IL

o | |
— Wy(\) = =W, (\)Ra(M)

woaw=w+k! Z E'_._:‘(r w)¥';
j (Product rule)

Lorenzo Catani
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Equivalence of the theories — prime case

Non-disturbing Measurements Disturbing Measurements

(Localization stage) (Localization + randomization stage)

lp, 11| =0 [/)!H] #0

p = {g1,...,gn) p = (g
Stabilizer Quantum 0= {p1,...,PM) - {p,..., pam)
Mechanics Add generators ‘ Add ;;wu‘mh:r‘,‘ Remove g,

pl = (91,92:- -+, 9N, P1: D2, - - - s DM} p—= g9, ., AN =TS Pl PM)
1"" = 1 '| l““ll " b l"-r'um-m.'uh' P 1"“”
Spekkens Theory Vit =Vinvg V't = (V1 @ Vogher) N Vi

T T
, T _ i -
w w4 \ E(r—-w)y wo=wt ) 2 (r — W)y

L {

- : I : i
Wigner Functions Wy (N) = 5 WM Rn(A) Gl N Ot o ()

T
N

te€Vorher

Lorenzo Catani
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Equivalence of the theories

Prime Non-prime
dimensional systems dimensional systems

D=1
o s w N (Ve f , G (4)
1§ (_1:1141“4””.,‘1 f w ) m (.1'.“ br w ] V o U I'.“: :l.unm ute T W Wf] J( ! J‘Lr; 1 lf“f

Spekkens Theory j=0

(7)

" T
o ~rrls .
w=w+S =" w w=w,=w+) X (27, —W)¥
4 i A B V4 A o
L]

tem(}

D=1
1 1 » |
T ]’) Z Z ”',,(,\ = t}’l,[!'f:[,\]
teEVi, e

Wigner Functions VoW =5 2. WelA=t)Ru(d) W (A) =

7=l

Lorenzo Catani
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Spekkens’ sub-theories compatible with QM

Basic idea

State-injection schemes (qubits/qudits):

Classically simulable
part
(Spekkens’ subtheory)

Magic
+ state(s)

Universal
quantum
computation

Page 47/50
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Spekkens’ sub-theories compatible with QM
Spekkens’ sub-theories

A set of q. states, transformations and measurements (S, 7, ©) such that

Close subtheory. Y U € T, UpU" € SVp € S.

Spekkens representability. 5 W, W, Py > 0 such that,

, L |

Wi(k/N) = ~ Tr(IlxA(N)) = N f"{‘\-'“‘-k ) (A)

Py (AN = mrﬁ NS\ +a  This exists if W, is covariant.

_ L, L o - .
p(k|p, U.T) = =1 r(ILUpUTY = = D Wu(k/A) > Pu(A/N)W,(A)

Ae) AeQR

Maximal SS if it is not possible to add any other p, 11, U without contradicting i),i).

Lorenzo Catani
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Conclusions and future directions

Conclusions

Measurement update rules for Spekkens’ theory, both prime and non-prime
dimensional systems.

Measurement update rules for Gross Wigner functions.

Enforced the equivalence between Spekkens’ theory and SQM in odd dimensions
and depict the equivalence in terms of updating rules.

What are the sub-theories of Spekkens’ model that are compatible with QM (qubit)?

Use Spekkens’ sub-theories to represent the non-contextual cheap part of state-
injection schemes of computation.

Lorenzo Catani
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