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Abstract: A non-singular cosmological bounce in the Einstein frame can only take place if the Null Energy Condition (NEC) is violated. | will
explore the constraints imposed by demanding tree level unitarity on a cosmologica background in single scalar field theories before focusing on
the explicit constraints that arise in P(X) theories. In that context, perturbative unitarity makes it impossible for the NEC violation to occur within

the region of validity of the effective field theory but | will show explicitly how unitarity may be restored by involving irrelevant operators that arise
at ahigher scale.
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century of success =7
With open questions... :.
:: ,;ilW
[ Nature of Inflaton ] ol
[ Pre Big Bang ? Alternatives to Inflation? ﬂ
r : _ Cosmological g "O:
Nature of Dark Energy Constant i
) ’ Problem cg”a |
" Nature of Dark Matter |
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etting different EFTs apart

* There has recently been an explosion of models that
can play important roles for cosmology

(eg. DBI, K-inflation, G-inflation, gauge inflation, ghost inflation,
Axion Monodromy, Chromo-Natural Inflation, f(R), Chameleon,
Symmetron, ghost condensate, Galileon, generalized galileon,
Horndeski, beyond Horndeski, beyond beyond Horndeski, Fabg,
beyond Fabg4, EST, DHOST, K-essence, DGP, cascading gravity, massive
gravity, minimal massive gravity, bi-gravity, multi-gravity, mass-varying
massive gravity, f(R) massive gravity, mass-varying massive gravity,
quasi-dilaton, extended quasi-dilaton, superfuid dark matter, Proca
dark energy, generalized Proca, beyond generalized Proca, gauge field
dark energy, Galileon genesis, extended Galileon genesis, SLED,
mimetic gravity, unimodular gravity, dipolar dark matter, ..., ..., ... )
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etting different EFTs apart

* We could simply wait for observations to tell
them apart (but they evolve with observations...)

* As low EFTs they often have very peculiar features
that can make us question their whole validity

Do these models:

|H

1. make sense in the “traditiona
strong coupling regime?

2. preserve perturbative unitarity ?

3. have any chance of ever admitting
a standard Wilsonian UV completion ?
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Jecoupling limit

Most of these theories have been developed with a cosmological
motivation in mind and are therefore fundamentally gravitational theories

However a huge insight on the consistency of the theory can be gained by
focusing on the scalar (or other) degree of freedom on a particular
cosmological background

' This is justified by taking an appropriate decoupling limit where the
gravitational degrees of freedom decouple (eg. Mp) — o0 While keeping
the scale at which the other fields interact fixed).

This approximation can then be checked a posteriori

‘C[.(/;u/-(l)] _ N " E’[*r:f]
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0o of scalar EFT’s for Cosmology
—1

» £g. DBl: Lppr ~ —V1 — X ~ 7y

X = —(0¢)* + higher derivative operators

Can be thought as coming from probe brane in extra dimension

Poincare invariance in 5d implies
global symmetry for DBI in 4d:

() — () + C + (‘;1 (-I'/I + (')()'“())

. ‘ Silverstein, Tong, PRD70, 2004
ications for inflation. dark enerov, dark matter Alishahiba Silverstei ; PRD
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nding on irrelevant Operators

l o l
Eg of DBI ﬁ])m ~ —V]1—-—X~ ‘)(_(‘)("))“ + \](f)("))] + -

+ higher derivative operators

S~ ND
The interesting phenomenology requires (09)
the irrelevant operators to be important A4

~ |

but rather by “)7 itself.

~ So we can trust a regime where 0(/5 ~ A 2

aA A 3
* Solongas JOp < A\
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»In this type of theories, the breakdown of the EFT is not measured by "(')(,-")"
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nding on irrelevant Operators

L
 Eg.of DBl Lppi ~ —V1 — X ~ 500)" + _,\]((')(_.-'))'1 + -

+ higher derivative operators

~)
0° L
()‘()2

—— Z;”}{()E(’),,('),/ £|)[;|{(,') t (S\ri‘J ~ Z"W(('J)(')/,(S\r:‘(‘),,(ir:‘

» We expect loop corrections of the form

5 O Which can be under control
[‘ _ (dZ)L ()bZ even if ) ~ ,\3
| —loop ™~ 7 + A so long as the gradients are
under control...

Caveats: sound speed can typically be very small (hierarchy of eigenvalues in Z*")
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Natural theoretical questions (concerns...)

Do these models:

IJ'I

1. make sense in the “traditiona
strong coupling regime?

2. preserve perturbative unitarity ?
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Optical theorem:

Scattering amplitude 4 = <[i]1;1] ‘ /T| i]]ili;l.]>

2hn>< = 3 Namv| >

X
P . 5 9
1 ,> (20 4+ 1) P (cosB)ag(s) l[””!(,w) apls)|©
2 Lt 7
F=0

.,'1'_-‘*.f" I“T\

-/4 < O(l) () < \m{s_}")'\ < Imay(s) < 1
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erturbative Unitarity (with small sound speed)

» Many new models of inflation (with non-trivial kinetic terms) with very low
sound speed have emerged

o~

eg. could lead to enhanced non-gaussianities f\ [, ~ C,

In itself this may be the first hint of perturbative unitarity breaking...

- . 9 . 2 . .
L = ¢ — i (dip)” + interactions

3
From Optical theorem: ‘ ./42—} 2 5 CS
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. Perturbative Unitarity (with small sound speed)

Sound speed effect on perturbative unitarity breaking...

S /clmf",.» (fr’ (0;)* )

Strong coupling energy scale == () as Ce —> ()
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. Perturbative Unitarity (with small sound speed)

Sound speed effect on perturbative unitarity breaking...

’ ) * 0y 9 5] ‘I’V)‘l' J.!-_‘I
N = / dtd”x (u c (0;0)° 4 T )
. ) AAE=T)

ax coa

) )
(. ]

: i . N
S /clhl"‘r (u‘ ():H) )

Strong coupling energy scale == () as Ce —> ()
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g. of P(¢, X) bounces

* Cosmological bounces are known to be “possible” in P(¢, X), (D)% = ¢?

f MpH = —>(p+p) = —XP'(X)
+> [ &

M€ for (p+p) <0 ie P(X) <0

P(X)
AH
/M
~—— ¢¢=0

YIS E
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g. of P(¢, X) bounces

* Cosmological bounces are known to be “possible” in P(¢, X), X (Dp)?

5 - l . i )
Mg H —.)-(,r)wl—m ~XP'(X)

)HE( for ([)+ [)) <0 e P,(X) < ()

R P'(X)
2XP"X)+P'(X)

Unitarity requires ‘_Ag) >2| 5 ('3

S

unitarity necessarily breaks down bEfOI’e the onset of
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High energy operators

In practice any EFT will have to involve some irrelevant operators
that enter at high energy

Lo L.03 1
L D —;(5)\)3 — ;,-"\/fz\') + ;\D(;) No ghost
Py
£5 = (06)* = —(06)? +
,') > D -
O+ M2 M2

No Ostrogadski ghost,

.
A X fahal o Wal ANATAT Lok Fa ¥ L ™~ AW NNN, Fa W,
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High energy operators

In practice any EFT will have to involve some irrelevant operators
that enter at high energy

L= A*P(X/A?) - ( (D‘.)H -
( / ) M= X = —(9¢)?

A : Traditional strong coupling scale
Scale at which background is strongly coupled

EFT for perturbations on top of that background
A < M can see a different strong coupling scale,

(need to remain weakly coupled to trust that background)

M : Cutoff of the low energy EFT

background has to remain below cutoff to trust low energy EFT
perturbations have to remain below redressed cutoff
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High energy operators

In practice any EFT will have to involve some irrelevant operators
that enter at high energy
f 2
?)

L=ANP(X/AY A ( 5 e
( / ) MZ v (('}(.)’]3

) P’ Y. LA
Effective Speed of sound: €y — P+ X P T A2 + O (VII)

~"
p.
c

S

k<< M
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High energy operators

'~ In practice any EFT will have to involve some irrelevant operators
that enter at high energy
2
)

£— APty + B89 L
(X/AT) + — o

) P’ - K
Effective Speed of sound: ' ; — P \J P + A2 + O ( M 1)
N T v ) )
)
e

S

Subtle trade-off between having the high energy operators

“" " H HE
4\ E ! = ALLT O cnAlling o lNnw-energ
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Modified

Dispersion relation:
(mass can be ignored)

U scale at which transition between
relativistic and non-relativistic form

assuming

B <A
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The low-energy EFT

r L, 1 WRY m? 9 L /. l 2 )
27 H)r:-’((’\r) 27 ,\/lj(r u'—“f?) '
Modified : o - l 5 792.9
Dispersion relation: [F'= Aw® — Bkh— --'\/l";(w — k%) =10
(mass can be ignored) / } \
R . 1.4
2 9 9 279 ! 2 ( 2
J 1(}‘ = Coff k)k™ = {.:l‘.“ + 5 T s Whew mot {\(J“] = AM”
L ) ”( ) i .-1..,\/1_4 1 |

Energy Cutoff (upper bound):

U.: scale at which transition between e
A(:llt,()ff < AM

relativistic and non-relativistic form
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Low vs high energy modes

Energy

[

‘..\['Illll”-
A v >
4\(|[I ~ /1“
He
Irrelevant operators
are unimportant
/“l):ll‘l{f.ll'illllltl
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e

1. scale at which transition between
relativistic and non-relativistic form

The effective strong coupling scale
derived in that regime should be larger than p,
otherwise we are in the same situation as earlier
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4

The low-energy EFT

Modified

-) -~ x_)- i
Dispersion relation: ['= Aw® — Bk™ — M2 (W™ = k%) =10
(mass can be ignored) ) )
k=k/a
) 9 =9 279 /1 |
W (AJ — (:”(A )A' - f;A“ —F- 1 \/Il _+_ .
g L3 assuming
\J
B<A
U.: scale at which transition between 11, [3 M
relativistic and non-relativistic form { \T ’
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Low vs high energy modes

Energy

"\(‘IIIHH-
He
Irrelevant operators
are unimportant
/"|mt keround
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1. scale at which transition between
relativistic and non-relativistic form

The effective strong coupling scale
derived in that regime should be larger than p,
otherwise we are in the same situation as earlier
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Energy
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Low vs high energy modes

Fora P (X) theory, one of the most important

operators turns out to be

P"(X) (i)’

(P"(X))"' > ¢y M*

o~

This bound is always violated in any ghost condensate
type of cosmological bounce £——pX + %‘\.3
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ora P(¢,X) theory, £ A") =t @A
3 f.n
The EFT for the fluctuations then looks like
o 5 B ) 9 | 9 9 - ¢ n ~my 0 2
L'_T:)I ‘\T ”-') [{)l 'r-‘\) 2”'} '1: I L ‘.\” LAC4-21n | ‘r-'. T"k [{):‘ r }

Cne ™ (/)( l ) > 1 (Vln_fu_r’ = C)( ! )

. ‘;3 For modes with W 5 [, the effective strong
Lint O — coupling scale associated with that operator is
: / / B

11/4 R9/4
4"\* ~ 1 ! B )/ 1‘\ z e ™~ ‘)11!’.2]\/[
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xplict (tuned) P(¢, X) model

L‘—“‘g"/’ P(P, X L (0®)?

- (

i i q(P)
P(d, X) = ANV (P) + p(P)X + A\‘)‘ :

V(D) = —1 (M(],.; (3N h2(d) + OR (D) L SO ho))
. — — Zg(P)— 3——"nh (P h — + 3—=Nn{P
PR M2, 2M? M2,
with R ., R R R :
p(P) —q(‘l’)(l: - 2‘\bh’(‘|’) + i | + Z%--i\;h(‘l’] + 3 A,: ON (D)
A2 P M? MG, Mg,
So that the background profile be simply ;
: A°
0, Ao, [ —h(o)
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, X)) bounce with high energy irrelevant operators

'

N  t
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, X ) bounce with high energy irrelevant operators

05k~
‘f’ 04A \\\\

/03l — Ha
/-‘ [ ‘\ Hm
RS L H
:" 01 F \‘\ A Hm

(P .,/f P S . e RPN .‘.‘_\ s f

- 1507 =100 ; 50 100 150
- -0.1% -

==== Hs00
_______________ 0.001 — Epack
5.x 1074 77T - .
~ -===m

! - - L T — P S S — N i . . P T " PR | - . T - !
-150 -100 -50 0 50 100 150

Pirsa: 17060099 Page 31/40



| ) -
claudia

Natural theoretical questions (concerns...)

Do these models:

1. make sense in the “traditional”
strong coupling regime?

2. preserve perturbative unitarity ?

3. have any chance of ever admitting
a standard Wilsonian UV completion ?
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— 2 Scattering Amplitude

For a low energy EFT described by a massive Lorentz invariant scalar field

Mandelstam variables:
s: center of mass energy?
t: momentum transfer

)
u = 4m- s — 1

linitial state) ——— |final state) S |initial state) S =1 b 'l

Scattering amplitude _A = <[ill£]1 ‘ T ‘ it i;ll>
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Optical theorem: A = (final | T'| initial)

ImA(s,0) N Physical scattering for s > 4 m?
v T 0 In the forward scattering limit, ie. t = 0
\/s( s — 4m=)

thlx ¥ /é,\' X

Analyticity (implied by causality) & locality imply:

o(s) =

2 2
>

ln? (/’ S

pio~ [C a4 (B(s)] o> 0]
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Positivity bounds for P(X)
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(06)% + — (9p)L + - -

|
eg. P(X) model [ — — X

‘

|
AT_,”;._) = v (5”) + t - u’ — lm")) X
Positivity bounds requires: ¢ > 0

No P(X) model with ¢ < () can ever have an
analytic Wilsonian UV completion
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Positivity bounds for P(X)
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C

| .
eg. P(X) model [ — _5((-)@)3 +[A_l(g)c.f))l 4.

-_—

e C 9 ) 2 2
tree T (s +t° +u’ — 4m?) ><

Positivity bounds requires: ¢ > O

No P(X) model with ¢ < () can ever have an
analytic Wilsonian UV completion
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Setting different EFTs apart

* There has recently been an explosion of models that
can play important roles for cosmology

(eg. DBI, K-inflation, G-inflation, gauge inflation, ghrostiritatiorm,
Axion Monodromy, Chromo-Natural Inflation, f(R), Chameleon,

Symmetron, ghesteondenseate, Galileon, generalized galileon,
Horndeski, beyond Horndeski, beyond beyond Horndeski, Fabg,
beyond Fabg, EST, DHOST, ¥*esserree, DGP, cascading gravity, massive
gravity, minimal massive gravity, bi-gravity, multi-gravity, mass-varying
massive gravity, f(R) massive gravity, mass-varying massive gravity,
quasi-dilaton, extended quasi-dilaton, superfurd derle matter; Proca
dark energy, generalized Proca, beyond generalized Proca, gauge field
dark energy, Galileon genesis, extended Galileon genesis, SLED,

T2 4T o8 o8 Ne A suWaWel ) 2T CEXT AN EL N F O LT O
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Setting different EFTs apart

* There has recently been an explosion of models that can
play important roles for cosmology

(eg. DBI, K-inflation, G-inflation, gauge inflation, ghestrritatiom,
Axion Monodromy, Chromo-Natural Inflation, f(R), Chameleon,
Symmetron, ghestcondensate, Galileon, generalized galileon,
Horndeski, beyond Horndeski, beyond beyond Horndeski, Fabg,
beyond Fabg, EST, DHOST, =essermee, DGP, cascading gravity, massive
gravity, minimal massive gravity, bi-gravity, multi-gravity, mass-varying
massive gravity, f(R) massive gravity, mass-varying massive gravity,
quasi-dilaton, extended quasi-dilaton, superfuid-daskmatter, Proca
dark energy, generalized Proca, beyond generalized Proca, gauge field
dark energy, Galileon genesis, extended Galileon genesis, SLED,
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sitivity bounds for massive Galileon

Potential UV analytic completion but
at low cutoff

No analytic UV completion

/) No direct obstruction to potential existence
of analytic UV completion and Vainshtein

93

No static and spherically
symmetric Vainshtein
or analytic UV completion
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ummary

(perturbative) unitarity can place strong constraints on different classes of
cosmological models

In the context of P(¢, X) cosmological bounces, unitarity is always violated
unless some high order operators that enter at or above the cutoff are
considered

Even considering these irrelevant operators, perturbative unitarity is
violated in many models (including ghost condensate)

But a window of opportunities remains open ...
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