Title: Observable Consequences of a Bounce

Date: Jun 26, 2017 10:50 AM

URL: http://pirsa.org/17060097

Abstract: I discuss potentially observable signatures of scalar and tensor decaying modes, which do not exist in inflation, and could be a probe of a

bouncing universe.

Pirsa: 17060097 Page 1/12

Pirsa: 17060097 Page 2/12

Cosmological Perturbations

- traditionally thought of as an initial value problem (IVP)
- challenges in specifying IVP at a singularity
- blinded by inflationary calculations
- bounce paradigm allows broader analysis

U. Pen

Observing a bounce

Pirsa: 17060097 Page 3/12

Perfect Bouncing

- ► Gielen&Turok 2016, 2017
- generic early universe background: radiation domination, perturbations, classical and quantum
- compute from negative to positive (complex) scale factor

Pirsa: 17060097 Page 4/12

Tensor Modes

- regular and irregular (decaying) mode
- decaying mode $h_T \propto \cos(k\eta)/k\eta$
- viewed going into a bounce, appears as a superhorizon anistropy
- c.f. Bianchi I, IX, Mixmaster
- used as BBN constraint (Rothman&Matzner 1984 etc)
- if two axes expand anisotropically between neutrino freezout (~ 1 MeV) and BBN (~ 0.1 MeV), results in anistropic ν DF, and higher He abundance (up to 0.9).
- ▶ thought to give stronger constraint than CMB (Saadeh et al 2016)

U. Pen

Observing a bounce

Pirsa: 17060097 Page 5/12

Distinguishing gravity from fluid forces

- consider crunch with perfect fluid and tensor modes only
- need to specify 2 tensor IC, 4 fluid IC
- only one of these 6 d.o.f. maps onto Bianchi
- consistent with Gielen and Turok leading and second order PT
- numerical study could show generic behaviour in crunch

U. Pen

Observing a bounce

Pirsa: 17060097 Page 6/12

Analogy: Milne Universe decaying mode

- Milne: $\Omega = 0$ hyperbolic reslicing of Minkowski
- $ds^2 = -d\tau^2 + \tau^2(\frac{d\chi^2}{1+\chi^2} + \chi^2 d\Omega)$
- ► Gauge transform from Minkowski

$$r = \tau \chi, \ t = \tau \sqrt{1 + \chi^2}$$

U. Pen

Observing a bounce

Decaying modes

- test fluid in Milne (empty) space:
- has decaying modes
- ▶ if viewed in crunch, decaying mode becomes growing mode!
- but by construction, no gravity at play.

U. Pen

Observing a bounce

Pirsa: 17060097 Page 8/12

Pirsa: 17060097 Page 9/12

Pirsa: 17060097 Page 10/12

Open questions non-linear superhorizon decaying mode evolution - numerical? backreaction? vector modes? ▶ is Bianchi solution a singular fluid perturbation?

Pirsa: 17060097 Page 11/12

U. Pen

Observing a bounce

Conclusions

- Bouncing cosmology allows a new and broader discussion of allowed linear modes
- constructive observational phenomenology
- e.g.: B modes do not necessarily constrain tensors
- doubles adiabatic mode count, adds fluid d.o.f.

4 □ > 4 □ > 4 ≥ > 4 ≥ > 1

U. Pen

Observing a bounce

Pirsa: 17060097 Page 12/12