
Title: Challenges for Bouncing Cosmologies

Date: Jun 26, 2017 02:00 PM

URL: http://pirsa.org/17060096

Abstract: I will review various approaches to bouncing cosmologies and will discuss challenges which the different approaches face.

Pirsa: 17060096

Pirsa: 17060096 Page 2/89

Outline

Challenges

R. Brandenberger

Introduction

Challenges

Stability

S-Brane Bounce

String Gas

Structure

Conclusions

Introduction

Challenges for Bouncing Cosmologies

Challenges for Inflationary Cosmology

Stability of the Contracting Phase

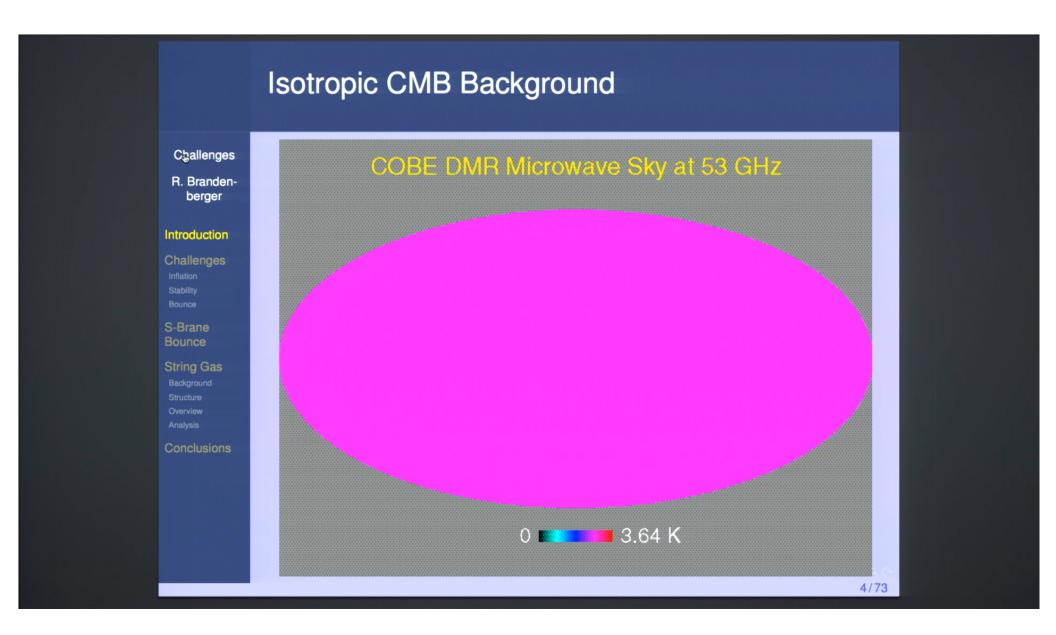
Obtaining a Bounce

3 S-Brane Bounce

4 String Gas Cosmology

Background for String Gas Cosmology

String Gas Cosmology and Structure Formation


Overview

Analysis

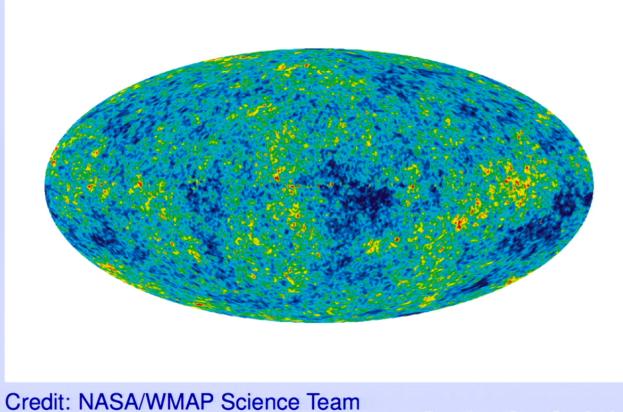
Discussion and Conclusions

2/73

Pirsa: 17060096 Page 3/89

Pirsa: 17060096 Page 4/89

Challenges


R. Brandenberger

Introduction

Challenges

S-Brane

String Gas

5/73

Page 5/89 Pirsa: 17060096

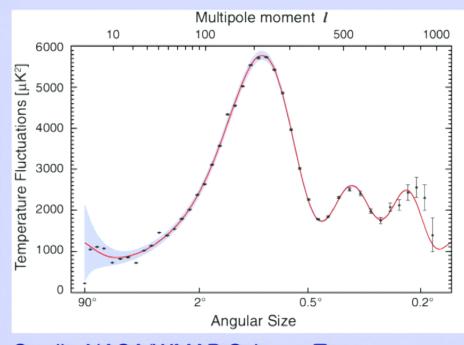
Angular Power Spectrum of CMB Anisotropies

Challenges

R. Brandenberger

Introduction

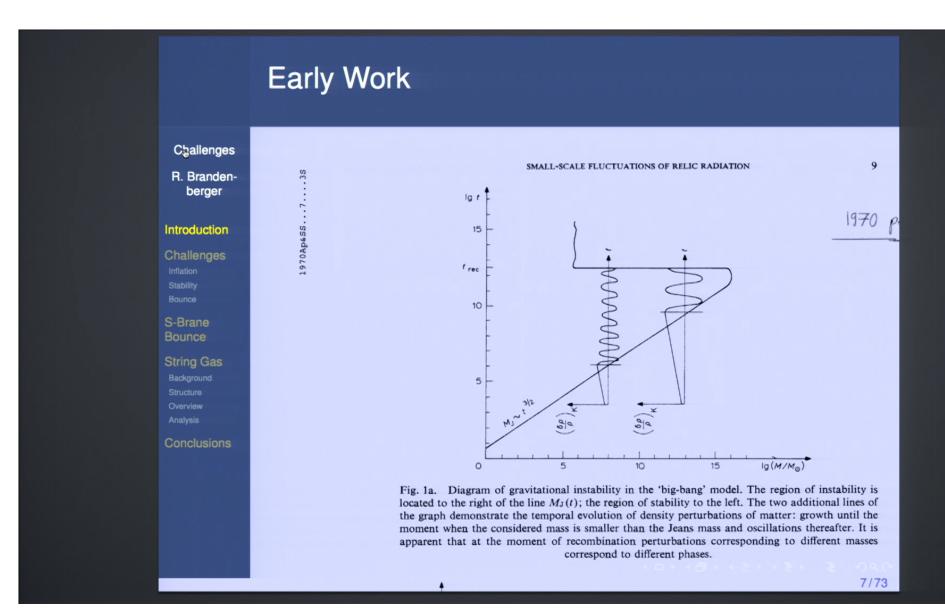
Challenges


Stability Bounce

S-Brane Bounce

String Gas

Structure


Conclusions

Credit: NASA/WMAP Science Team

6/73

Pirsa: 17060096 Page 6/89

Pirsa: 17060096 Page 7/89

Key Realization

R. Sunyaev and Y. Zel'dovich, Astrophys. and Space Science 7, 3 (1970); P. Peebles and J. Yu, Ap. J. 162, 815 (1970).

Challenges

R. Brandenberger

Introduction

Challenges

Stability

S-Brane Bounce

String Gas

Structure Overview

Conclusions

- Given a scale-invariant power spectrum of adiabatic fluctuations on "super-horizon" scales before t_{eq} , i.e. standing waves.
- → "correct" power spectrum of galaxies.
- → acoustic oscillations in CMB angular power spectrum.

8/73

Pirsa: 17060096 Page 8/89

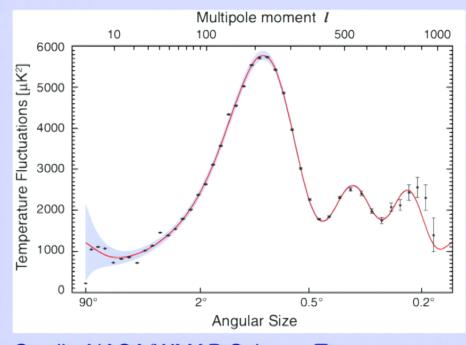
Angular Power Spectrum of CMB Anisotropies

Challenges

R. Brandenberger

Introduction

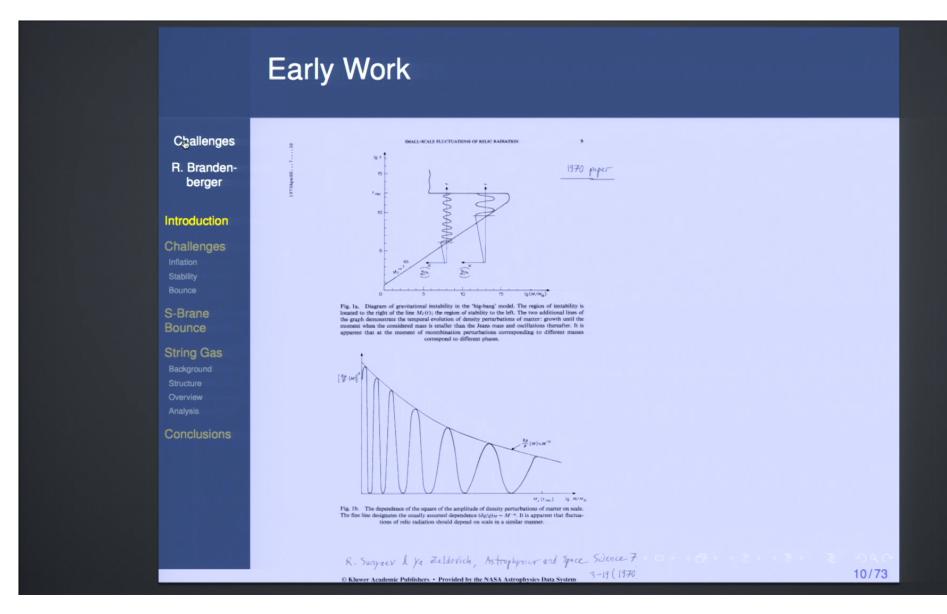
Challenges

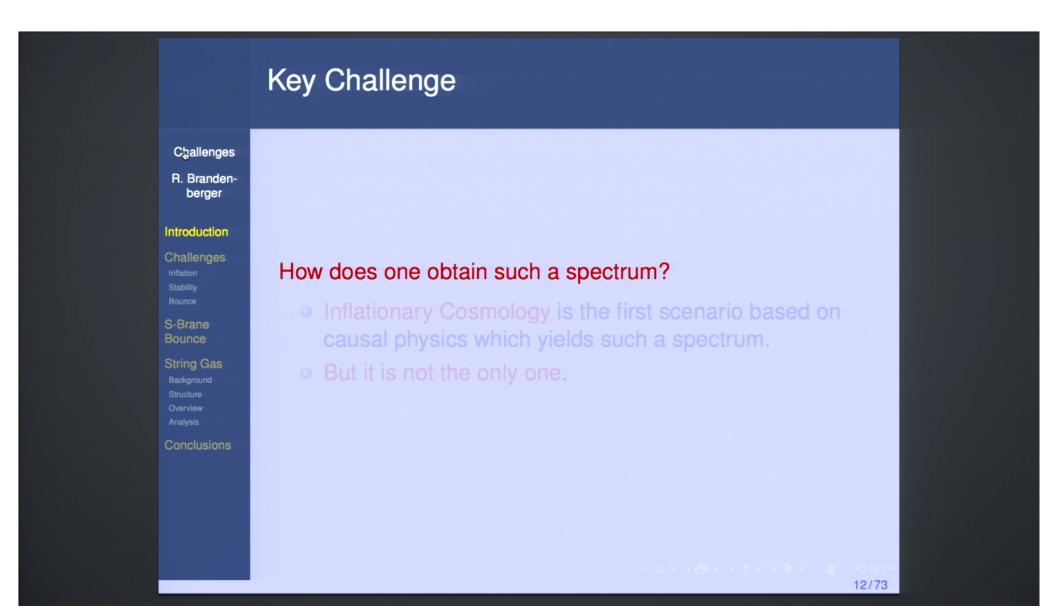

Stability

S-Brane Bounce

String Gas

Background Structure Overview


Conclusions


Credit: NASA/WMAP Science Team

9/73

Pirsa: 17060096 Page 9/89

Pirsa: 17060096 Page 10/89

Pirsa: 17060096 Page 11/89

Hubble Radius vs. Horizon

Challenges

R. Brandenberger

Introduction

Challenges

Inflation Stability Bounce

S-Brane Bounce

String Gas

Structure Overview

Conclusions

 Horizon: Forward light cone of a point on the initial Cauchy surface.

- Horizon: region of causal contact.
- Hubble radius: $I_H(t) = H^{-1}(t)$ inverse expansion rate.
- Hubble radius: local concept, relevant for dynamics of cosmological fluctuations.
- In Standard Big Bang Cosmology: Hubble radius = horizon.
- In any theory which can provide a mechanism for the origin of structure: Hubble radius ≠ horizon.

13/73

Pirsa: 17060096 Page 12/89

Challenges

R. Brandenberger

Introduction

Challenges

Stability

Bounce

S-Brane Bounce

String Gas

Structure Overview Analysis

Conclusions

 Horizon >> Hubble radius in order for the scenario to solve the "horizon problem" of Standard Big Bang Cosmology.

- Scales of cosmological interest today originate inside the Hubble radius at early times in order for a causal generation mechanism of fluctuations to be possible.
- Squeezing of fluctuations on super-Hubble scales in order to obtain the acoustic oscillations in the CMB angular power spectrum.
- Mechanism for producing a scale-invariant spectrum of curvature fluctuations on super-Hubble scales.

14/73

Pirsa: 17060096 Page 13/89

Challenges

R. Brandenberger

Introduction

Challenges

Stability Bounce

S-Brane Bounce

String Gas

Structure Overview

Conclusions

- Horizon >> Hubble radius in order for the scenario to solve the "horizon problem" of Standard Big Bang Cosmology.
- Scales of cosmological interest today originate inside the Hubble radius at early times in order for a causal generation mechanism of fluctuations to be possible.
- Squeezing of fluctuations on super-Hubble scales in order to obtain the acoustic oscillations in the CMB angular power spectrum.
- Mechanism for producing a scale-invariant spectrum of curvature fluctuations on super-Hubble scales.

14/73

Pirsa: 17060096 Page 14/89

Challenges

R. Brandenberger

Introduction

Challenges

Stability

S-Brane Bounce

String Gas

Structure Overview

Conclusions

- Horizon >> Hubble radius in order for the scenario to solve the "horizon problem" of Standard Big Bang Cosmology.
- Scales of cosmological interest today originate inside the Hubble radius at early times in order for a causal generation mechanism of fluctuations to be possible.
- Squeezing of fluctuations on super-Hubble scales in order to obtain the acoustic oscillations in the CMB angular power spectrum.
- Mechanism for producing a scale-invariant spectrum of curvature fluctuations on super-Hubble scales.

14/73

Pirsa: 17060096 Page 15/89

Challenges

R. Brandenberger

Introduction

Challenges

Stability Bounce

S-Brane Bounce

String Gas

Structure Overview

Conclusions

- Horizon >> Hubble radius in order for the scenario to solve the "horizon problem" of Standard Big Bang Cosmology.
- Scales of cosmological interest today originate inside the Hubble radius at early times in order for a causal generation mechanism of fluctuations to be possible.
- Squeezing of fluctuations on super-Hubble scales in order to obtain the acoustic oscillations in the CMB angular power spectrum.
- Mechanism for producing a scale-invariant spectrum of curvature fluctuations on super-Hubble scales.

14/73

Pirsa: 17060096 Page 16/89

Challenges

R. Brandenberger

Introduction

Challenges

Inflation Stability

S-Brane Bounce

String Gas

Structure Overview

Conclusions

- Horizon >> Hubble radius in order for the scenario to solve the "horizon problem" of Standard Big Bang Cosmology.
- Scales of cosmological interest today originate inside the Hubble radius at early times in order for a causal generation mechanism of fluctuations to be possible.
- Squeezing of fluctuations on super-Hubble scales in order to obtain the acoustic oscillations in the CMB angular power spectrum.
- Mechanism for producing a scale-invariant spectrum of curvature fluctuations on super-Hubble scales.

14/73

Pirsa: 17060096 Page 17/89

Challenges

R. Brandenberger

Introduction

Challenges

Stability

Bounce

S-Brane Bounce

String Gas

Structure Overview

Conclusions

- Horizon >> Hubble radius in order for the scenario to solve the "horizon problem" of Standard Big Bang Cosmology.
- Scales of cosmological interest today originate inside the Hubble radius at early times in order for a causal generation mechanism of fluctuations to be possible.
- Squeezing of fluctuations on super-Hubble scales in order to obtain the acoustic oscillations in the CMB angular power spectrum.
- Mechanism for producing a scale-invariant spectrum of curvature fluctuations on super-Hubble scales.

14/73

Pirsa: 17060096 Page 18/89

Challenges

R. Brandenberger

Introduction

Challenges

Stability

Bounce

S-Brane Bounce

String Gas

Structure Overview

Conclusions

- Horizon >> Hubble radius in order for the scenario to solve the "horizon problem" of Standard Big Bang Cosmology.
- Scales of cosmological interest today originate inside the Hubble radius at early times in order for a causal generation mechanism of fluctuations to be possible.
- Squeezing of fluctuations on super-Hubble scales in order to obtain the acoustic oscillations in the CMB angular power spectrum.
- Mechanism for producing a scale-invariant spectrum of curvature fluctuations on super-Hubble scales.

14/73

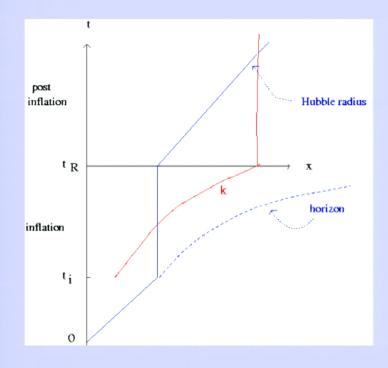
Pirsa: 17060096 Page 19/89

Challenges

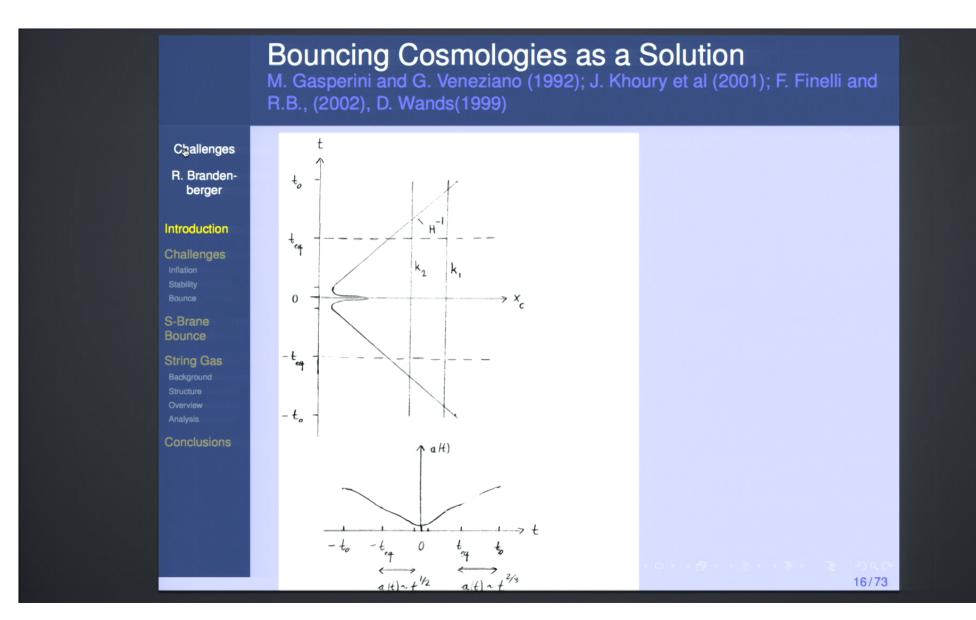
R. Brandenberger

Introduction

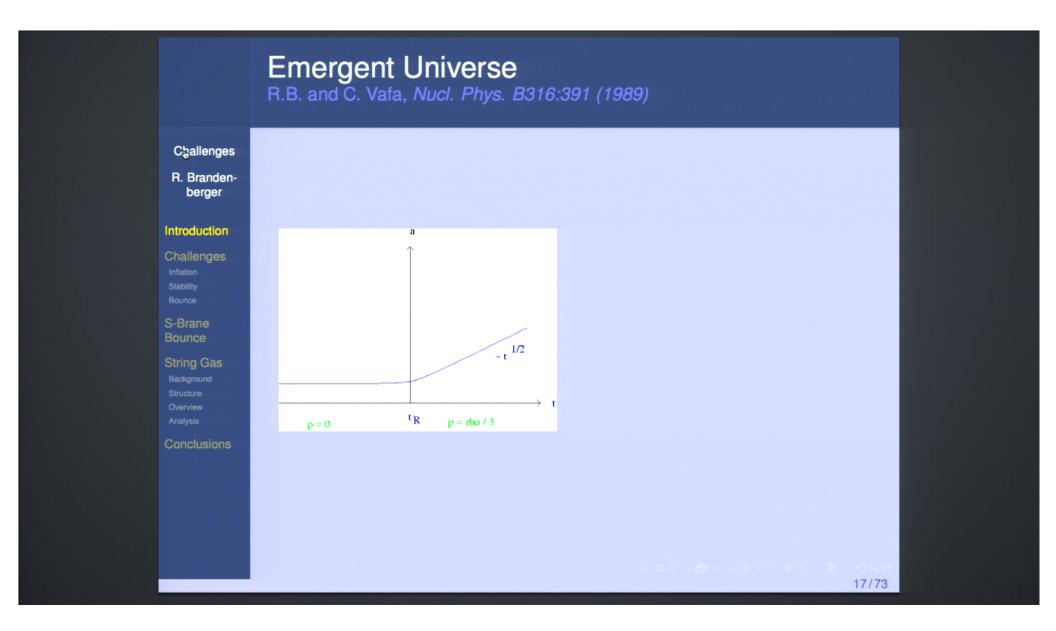
Challenges

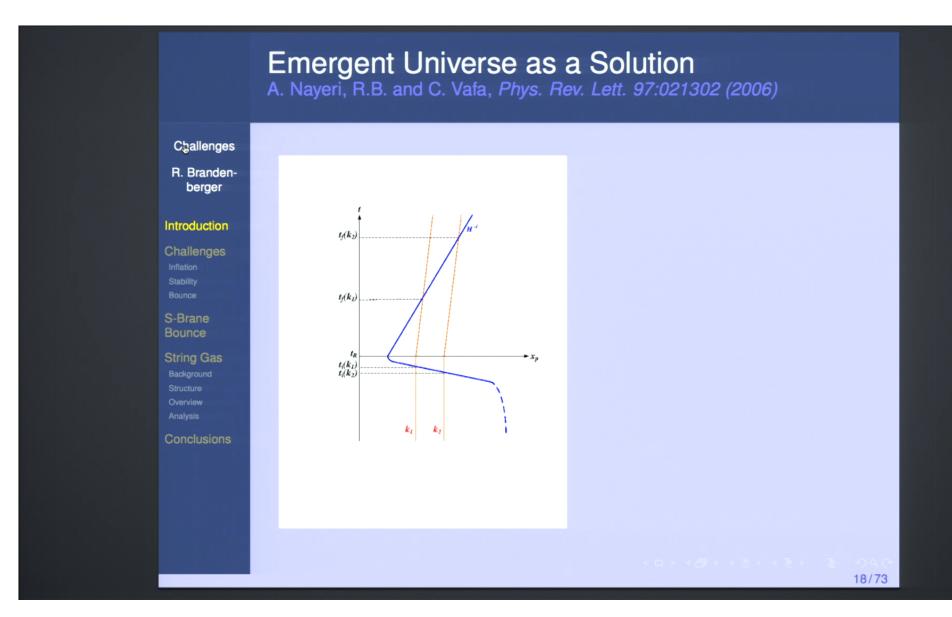

Stability

S-Brane


String Gas

Background Structure Overview Analysis


Conclusions


Pirsa: 17060096

Pirsa: 17060096 Page 21/89

Pirsa: 17060096 Page 22/89

Pirsa: 17060096 Page 23/89

Plan

Challenges

R. Brandenberger

Introduction

Challenges

Stability

S-Brane Bounce

String Gas

Background Structure

Conclusions

1 Introduction

- 2 Challenges for Bouncing Cosmologies
 - Challenges for Inflationary Cosmology
 - Stability of the Contracting Phase
 - Obtaining a Bounce
- 3 S-Brane Bounce
- 4 String Gas Cosmology
 - Background for String Gas Cosmology
 - String Gas Cosmology and Structure Formation

19/73

- Overview
- Analysis
- Discussion and Conclusions

Pirsa: 17060096

Conceptual Problems of Inflationary Cosmology

Challenges

R. Brandenberger

Introduction

Challenges

Inflation Stability

S-Brane Bounce

String Gas

Structure Overview

Conclusions

- Nature of the scalar field φ (the "inflaton")
- Conditions to obtain inflation (initial conditions, slow-roll conditions, graceful exit and reheating)
- Amplitude problem
- Trans-Planckian problem
- Singularity problem
- Cosmological constant problem
- Applicability of General Relativity

20/73

Pirsa: 17060096 Page 25/89

Origin of Inflation?

Challenges

R. Brandenberger

Introduction

Challenges

Stability

S-Brane

String Gas

Structure Overview

Conclusions

- To obtain inflationary dynamics free of initial condition fine tuning we require super-Planckian field values.
- ullet requires embedding of inflation into a quantum gravitational theory.
- But: No-go theorems on obtaining de Sitter space in string theory.

21/73

Pirsa: 17060096 Page 26/89

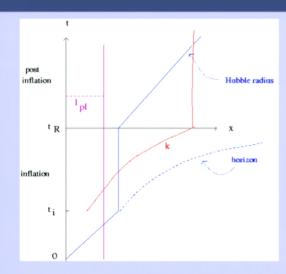
Trans-Planckian Problem

Challenges

R. Brandenberger

Introduction

Challenges


Inflation Stability

S-Brane Bounce

String Gas

Structure Overview

Conclusions

- Success of inflation: At early times scales are inside the Hubble radius → causal generation mechanism is possible.
- **Problem:** If time period of inflation is more than $70H^{-1}$, then $\lambda_p(t) < I_{pl}$ at the beginning of inflation.
- new physics MUST enter into the calculation of the fluctuations.

22/73

Pirsa: 17060096 Page 27/89

Cosmological Constant Problem

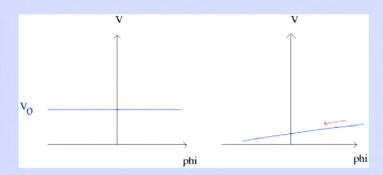
Challenges

R. Brandenberger

Introduction

Challenges

Inflation


Stability

S-Brane Bounce

String Gas

Background Structure Overview

Conclusions

- Quantum vacuum energy does not gravitate.
- Why should the almost constant $V(\varphi)$ gravitate?

$$\frac{V_0}{\Lambda_{obs}} \, \sim \, 10^{120}$$

Applicability of GR

Challenges

R. Brandenberger

Introduction

Challenges

Inflation Stability

S-Brane Bounce

String Gas

Structure Overview

Conclusions

- In all approaches to quantum gravity, the Einstein action is only the leading term in a low curvature expansion.
- Correction terms may become dominant at much lower energies than the Planck scale.
- Correction terms will dominate the dynamics at high curvatures.
- The energy scale of inflation models is typically $\eta \sim 10^{16} \text{GeV}.$
- $\rightarrow \eta$ too close to m_{pl} to trust predictions made using GR.

25/73

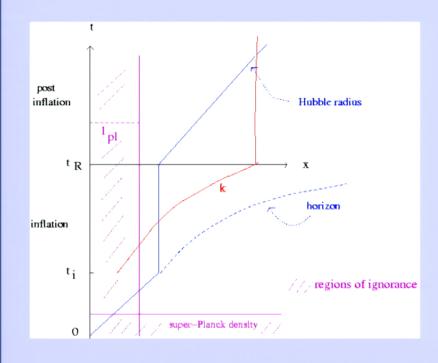
Pirsa: 17060096 Page 29/89

Challenges

R. Brandenberger

Introduction

Challenges


Inflation Stability

S-Brane Bounce

String Gas

Structure Overview Analysis

Conclusions

Pirsa: 17060096

Anisotropy Problem of the Contracting Phase

Y. Cai, R.B. and P. Peter, arXiv:1301.4703

Challenges

R. Brandenberger

Introduction

Challenges

Stability

Bounce

S-Brane Bounce

String Gas

Background

Structure

Analysis

Conclusions

Problem: The energy density in anisotropies increases faster than the energy density in matter and radiation in the contracting phase.

$$ds^2 = dt^2 - a^2(t) \sum_i e^{2\theta_i(t)} \sigma_i^2$$

$$H^2 = \frac{\rho}{3m_{pl}^2} + \frac{1}{6} \sum_i \dot{\theta}_i^2$$

$$\ddot{\theta}_i + 3H\dot{\theta}_i = 0$$

$$\rightarrow \rho_{anis} \sim a^{-6}$$

Anisotropy Problem of the Contracting Phase

Y. Cai, R.B. and P. Peter, arXiv:1301.4703

Challenges

R. Brandenberger

Introduction

Challenges

Stability

Bounce

S-Brane Bounce

String Gas

Background Structure

Analysis

Conclusions

Problem: The energy density in anisotropies increases faster than the energy density in matter and radiation in the contracting phase.

$$ds^2 = dt^2 - a^2(t) \sum_i e^{2\theta_i(t)} \sigma_i^2$$

$$H^2 = \frac{\rho}{3m_{pl}^2} + \frac{1}{6} \sum_i \dot{\theta}_i^2$$

$$\ddot{\theta}_i + 3H\dot{\theta}_i = 0$$

$$ightarrow$$
 $ho_{
m anis}$ \sim ${\it a}^{-6}$

Anisotropy Problem of the Contracting Phase

Y. Cai, R.B. and P. Peter, arXiv:1301.4703

Challenges

R. Brandenberger

Introduction

Challenges

Stability

Bounce

S-Brane Bounce

String Gas

Background

Overview

Conclusions

Problem: The energy density in anisotropies increases faster than the energy density in matter and radiation in the contracting phase.

$$ds^{2} = dt^{2} - a^{2}(t) \sum_{i} e^{2\theta_{i}(t)} \sigma_{i}^{2}$$

$$H^{2} = \frac{\rho}{3m_{pl}^{2}} + \frac{1}{6} \sum_{i} \dot{\theta}_{i}^{2}$$

$$\ddot{\theta}_i + 3H\dot{\theta}_i = 0$$

$$ightarrow$$
 $ho_{
m anis}$ \sim ${\it a}^{-6}$

Black Hole Formation in the Contracting Phase

J. Quintin and R.B., arXiv:1609.02556

Challenges

R. Brandenberger

Introduction

Challenges

Stability

Bounce

S-Brane Bounce

String Gas

Background Structure

Analysis

Conclusions

Worry: Cosmological fluctuations become nonlinear on sub-Hubble scales and form black holes.

Starting point: scalar cosmological perturbations in longitudinal gauge:

$$\mathrm{d} s^2 = a(\eta)^2 \left\{ \left[1 + 2\Phi(\eta, \mathbf{x}) \right] \mathrm{d} \eta^2 - \left[1 - 2\Phi(\eta, \mathbf{x}) \right] \delta_{ij} \mathrm{d} x^i \mathrm{d} x^j \right\} \ .$$

Equation of motion:

$$\Phi_k'' - \frac{6(1+c_s^2)}{1+3w} \frac{1}{(-\eta)} \Phi_k' + \left(c_s^2 k^2 + \frac{12(c_s^2-w)}{(1+3w)^2} \frac{1}{(-\eta)^2} \right) \Phi_k = 0.$$

Black Hole Formation (ctd.)

Challenges

R. Brandenberger

Introduction

Challenges

Stability

Bounce

S-Brane Bounce

String Gas

Background Structure

Analysis

Conclusions

Resulting fractional density contrast:

$$\delta_k \equiv rac{\delta
ho_k^{
m (gi)}}{
ho^{
m (0)}} = -rac{2}{3} \left(rac{k^2}{\mathcal{H}^2} \Phi_k + rac{3}{\mathcal{H}} \Phi_k' + 3\Phi_k
ight) \; .$$

Criterium for direct black hole formation.

$$\int_{R\leq R_s} \mathrm{d}\delta M \geq M_s \ .$$

Result: for Bunch-Davies vacuum initial conditions early in the contracting phase the first scale to form black holes is the Hubble scale.

Black Hole Formation (ctd.)

Challenges

R. Brandenberger

Introduction

Challenges

Stability

Bounce

S-Brane Bounce

String Gas

Background Structure Overview

Conclusions

The condition that black holes form becomes

$$|H| \sim c_{\rm s}^{12/5} w^{3/5} \left(\frac{M_{\rm Pl}}{H_{\rm ini}}\right)^{1/5} M_{\rm Pl}$$

- For $c_s \ll 1$ we have $H \ll M_{pl}$.
- For a radiation dominated phase at late stages of contraction no black holes form from the direct channel if $|H_{max}| < M_{pl}$.

Initial Condition Problem of the Contracting Phase

Challenges

R. Brandenberger

Introduction

Challenges

Stability

S-Brane

String Gas

Structure
Overview

Conclusions

- Q: Attractor Nature of the Background
- A: o.k. for Ekpyrotic contraction, not o.k. for matter bounce.
- Q: What initial conditions for fluctuations?
- Usual answer: vacuum but why?
- Note: For inflation the use of vacuum initial conditions for fluctuations can be justified.

31/73

Pirsa: 17060096 Page 37/89

Initial Condition Problem of the Contracting Phase

Challenges

R. Brandenberger

Introduction

Challenges

Stability

S-Brane Bounce

String Gas

Structure Overview

Conclusions

- Q: Attractor Nature of the Background
- A: o.k. for Ekpyrotic contraction, not o.k. for matter bounce.
- Q: What initial conditions for fluctuations?
- Usual answer: vacuum but why?
- Note: For inflation the use of vacuum initial conditions for fluctuations can be justified.

31/73

Pirsa: 17060096 Page 38/89

Initial Condition Problem of the Contracting Phase

Challenges

R. Brandenberger

Introduction

Challenges

Stability

S-Brane Bounce

String Gas

Structure Overview

Conclusions

- Q: Attractor Nature of the Background
- A: o.k. for Ekpyrotic contraction, not o.k. for matter bounce.
- Q: What initial conditions for fluctuations?
- Usual answer: vacuum but why?
- Note: For inflation the use of vacuum initial conditions for fluctuations can be justified.

31/73

Pirsa: 17060096 Page 39/89

Obtaining a Bounce

Challenges

R. Brandenberger

Introduction

Challenges

tability

Bounce

S-Brane Bounce

String Gas

Background

Structure

Analysis

Conclusions

- New matter which violates the Null Energy Condition.
- Challenges: Instabilities.
- Modifications of Gravity.
- Challenges: Instabilities.
- Quantum Resolution.

Pirsa: 17060096 Page 40/89

Obtaining a Bounce

Challenges

R. Brandenberger

Introduction

Challenges

Stability

Bounce

S-Brane Bounce

String Gas

Background Structure

Analysis

Conclusions

- New matter which violates the Null Energy Condition.
- Challenges: Instabilities.
- Modifications of Gravity.
- Challenges: Instabilities.
- Quantum Resolution.

Page 45 of 106

32/73

Pirsa: 17060096 Page 41/89

Some Examples

Challenges

R. Brandenberger

Challenges

Bounce

S-Brane Bounce

String Gas

Conclusions

Modified Matter

- Ghost condensate [C. Lin, L. Perreault Levasseur and R.B., arXiv:1007.2654 [hep-th]]
- Galileon matter [A. Ijjas and P. Steinhardt, 2016]

Modified Gravity

Horava-Lifshitz gravity [R.B., arXiv:0904.2835 [hep-th]]

Quantum Resolution

- Loop quantum cosmology [Lectures by Ashtekar, Bojowald, Barrau, Agullo]
- Perfect bounce [S. Gielen and N. Turok]

33/73

Pirsa: 17060096 Page 42/89

Plan

Challenges

R. Brandenberger

Introduction

Challenges

Stability

S-Brane Bounce

String Gas

Background Structure

Canalusian

Pirsa: 17060096

1 Introduction

Challenges for Bouncing Cosmologies

- Challenges for Inflationary Cosmology
- Stability of the Contracting Phase
- Obtaining a Bounce
- 3 S-Brane Bounce
- String Gas Cosmology
 - Background for String Gas Cosmology
 - String Gas Cosmology and Structure Formation

34/73

Page 43/89

- Overview
- Analysis
- Discussion and Conclusions

Temporal Duality

R.B., C. Kounnas, H. Partouche, S. Patil and N. Toumbas, arXiv:1312.2524

Challenges

R. Brandenberger

Challenges

S-Brane Bounce

String Gas

Conclusions

Starting point: Type II superstring theory in the presence of non-trivial gravito-magnetic fluxes (Euclidean background)

Temperature duality:

$$Z(T) = Z(T_c^2/T).$$

 T_c : Self-dual temperature (equals the Hagedorn temperature modulo coupling constants)

Physical temperature

$$T_p = T T \ll T_c$$

$$T_{p} = T \quad T \ll T_{c}$$
 $T_{p} = \frac{T_{c}^{2}}{T} \quad T \gg T_{c}$

S-Brane

Challenges

R. Brandenberger

Introduction

Challenges

Stability

S-Brane Bounce

String Gas

Background Structure Overview Analysis

Conclusions

• For $T \ll T_c$ and $T \gg T_c$ the dynamics of the low energy modes of string theory is given by **dilaton gravity**

- Begin in a contracting phase with T ≫ T_c and T decreasing (i.e. T_p increasing).
- When $T = T_c$ a set of string states becomes massless (enhanced symmetry states)
- These states must be included in the action for the low energy modes.
- S-Brane: term in the action present only at $T = T_c$
- S-brane has ρ < 0 and $p = |\rho| > 0 \rightarrow$ S-brane is matter violating the NEC and can mediate a transition from contraction to expansion.

36/73

→ S-Brane bounce.

Pirsa: 17060096

S-Brane

Challenges

R. Brandenberger

Introduction

Challenges

Stability Bounce

S-Brane Bounce

String Gas

Structure Overview

Conclusions

- For $T \ll T_c$ and $T \gg T_c$ the dynamics of the low energy modes of string theory is given by **dilaton gravity**
- Begin in a contracting phase with T ≫ T_c and T decreasing (i.e. T_p increasing).
- When $T = T_c$ a set of string states becomes massless (enhanced symmetry states)
- These states must be included in the action for the low energy modes.
- S-Brane: term in the action present only at $T = T_c$
- S-brane has ρ < 0 and $p = |\rho| > 0 \rightarrow$ S-brane is matter violating the NEC and can mediate a transition from contraction to expansion.
- \bullet \rightarrow S-Brane bounce.

Page 54 of 106

36/73

Pirsa: 17060096 Page 46/89

Challenges R. Brandenberger $S = \int d^4x \sqrt{-g} \Big[rac{R}{2} - abla_{\mu}\phi abla^{\mu}\phi \Big] + \int d^4x \sqrt{-g} \, n^* \sigma_r T_E^4 \ - \kappa \int d au d^3 \xi \sqrt{h} e^{\phi} \delta(au) \, .$ S-Brane Bounce String Gas 37/73

Pirsa: 17060096 Page 47/89

Evolution of Fluctuations through the Bounce

Challenges

R. Brandenberger

Introduction

Challenges

Stability
Bounce

S-Brane Bounce

String Gas

Structure Overview

Conclusions

- Consider initially scale-invariant cosmological fluctuations in the contracting phase on super-Hubble scales.
- Matching conditions across the S-brane: continuity of the induced metric and extrinsic curvature.
- Note: matching surface uniquely determined!
- Result: the spectrum of cosmological perturbations after the bounce on super-Hubble scales is scale-invariant.

38/73

Pirsa: 17060096 Page 48/89

Plan

Challenges

R. Brandenberger

Introduction

Challenges

Stability

S-Brane

String Gas

Structure

Conclusions

Introduction

- 2 Challenges for Bouncing Cosmologies
 - Challenges for Inflationary Cosmology
 - Stability of the Contracting Phase
 - Obtaining a Bounce
- 3 S-Brane Bounce
- 4 String Gas Cosmology
 - Background for String Gas Cosmology
 - String Gas Cosmology and Structure Formation
 - Overview
 - Analysis
- 5 Discussion and Conclusions

39/73

Pirsa: 17060096

Principles

R.B. and C. Vafa, Nucl. Phys. B316:391 (1989)

Challenges

R. Brandenberger

Introduction

Challenges

Stability

S-Brane Bounce

String Gas

Background

Overview

Conclusions

Idea: make use of the new symmetries and new degrees of freedom which string theory provides to construct a new theory of the very early universe.

Assumption: Matter is a gas of fundamental strings

Assumption: Space is compact, e.g. a torus.

Key points:

- New degrees of freedom: string oscillatory modes
- Leads to a maximal temperature for a gas of strings, the Hagedorn temperature
- New degrees of freedom: string winding modes
- Leads to a new symmetry: physics at large R is equivalent to physics at small R

40/73

Pirsa: 17060096 Page 50/89

Principles

R.B. and C. Vafa, Nucl. Phys. B316:391 (1989)

Challenges

R. Brandenberger

Introduction

Challenges

Stability

S-Brane Bounce

String Gas

Background

Structure
Overview

Conclusions

Idea: make use of the new symmetries and new degrees of freedom which string theory provides to construct a new theory of the very early universe.

Assumption: Matter is a gas of fundamental strings

Assumption: Space is compact, e.g. a torus.

Key points:

- New degrees of freedom: string oscillatory modes
- Leads to a maximal temperature for a gas of strings, the Hagedorn temperature
- New degrees of freedom: string winding modes
- Leads to a new symmetry: physics at large R is equivalent to physics at small R

Page 59 of 106

40/73

Pirsa: 17060096 Page 51/89

T-Duality

Challenges

R. Brandenberger

Introduction

Challenges

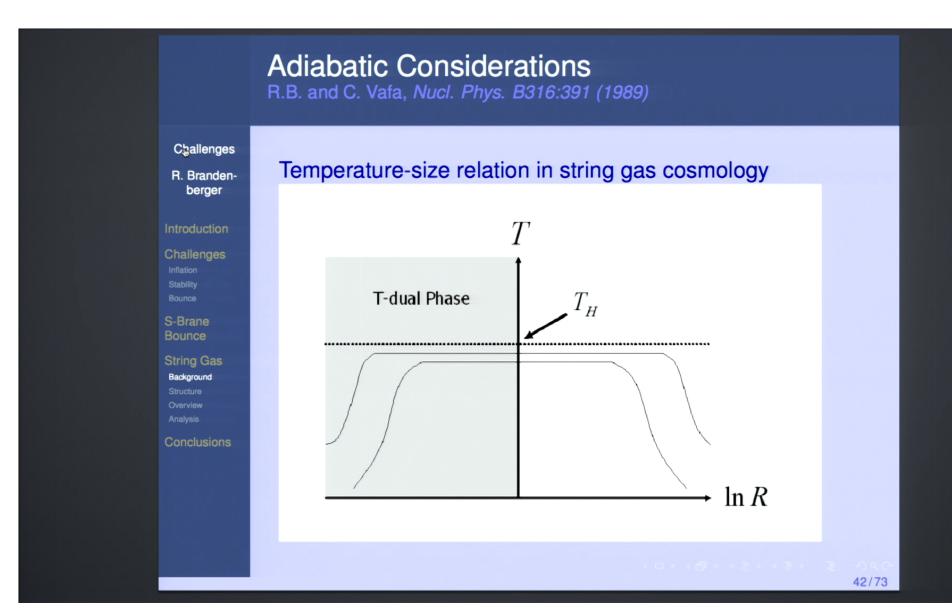
Stability

S-Brane

String Gas

Background

Overview


Canalysias

T-Duality

- Momentum modes: $E_n = n/R$
- Winding modes: $E_m = mR$
- Duality: $R \rightarrow 1/R$ $(n, m) \rightarrow (m, n)$
- Mass spectrum of string states unchanged
- Symmetry of vertex operators
- Symmetry at non-perturbative level → existence of D-branes

41/73

Pirsa: 17060096 Page 52/89

Pirsa: 17060096 Page 53/89

Challenges

R. Brandenberger

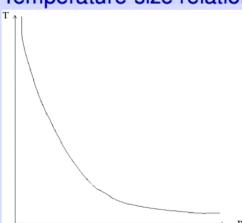
Introduction

Challenges

Stability

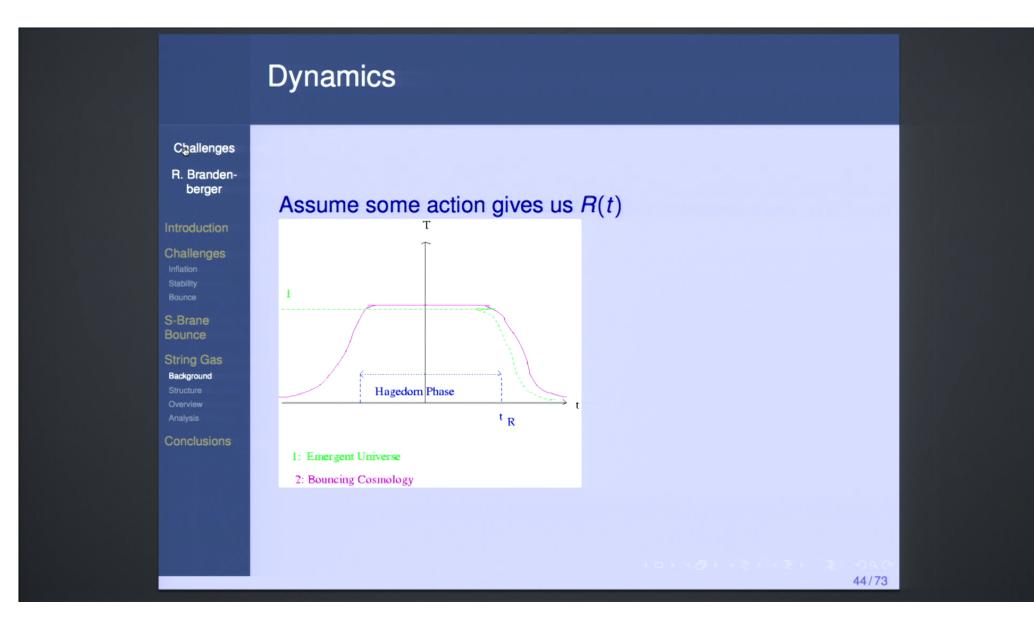
S-Brane

String Gas


Background

Structure

Analysis


Conclusions

Temperature-size relation in standard cosmology

43/73

Pirsa: 17060096 Page 54/89

Pirsa: 17060096

String Gas Bounce

Challenges

R. Brandenberger

Introduction

Challenges

Stability

S-Brane Bounce

String Gas

Background

Overview

Conclusions

Two possibilities:

- Thermal Bounce
- Emergent Scenario

In both cases, a **long Hagedorn phase** will allow thermalization of the string gas on large scales.

→ thermal initial conditions for fluctuations

Pirsa: 17060096 Page 56/89

Doubled Space in SGC

R.B., R. Costa, G. Franzmann, S. Patil and A. Weltman, in prep.

Challenges

R. Brandenberger

S-Brane Bounce

String Gas

Background

Conclusions

Candidate for dynamics in the Hagedorn phase: Double Field Theory [C. Hull and B. Zwiebach, 2009]

Idea: For each dimension of the underlying topological space there are two position operators [R.B. and C. Vafa]:

- x: dual to the momentum modes
- \tilde{x} : dual to the winding modes

We measure **physical length** in terms of the **light** degrees

$$I(R) = R \text{ for } R \gg 1$$

$$I(R) = R \text{ for } R \gg 1$$
,
 $I(R) = \frac{1}{R} \text{ for } R \ll 1$.

Doubled Space in SGC

R.B., R. Costa, G. Franzmann, S. Patil and A. Weltman, in prep.

Challenges

R. Brandenberger

Challenges

S-Brane Bounce

String Gas

Background

Conclusions

Candidate for dynamics in the Hagedorn phase: Double Field Theory [C. Hull and B. Zwiebach, 2009]

Idea: For each dimension of the underlying topological space there are two position operators [R.B. and C. Vafa]:

- x: dual to the momentum modes
- \tilde{x} : dual to the winding modes

We measure **physical length** in terms of the **light** degrees of freedom.

$$I(R) = R \text{ for } R \gg 1$$

$$I(R) = R \text{ for } R \gg 1,$$

 $I(R) = \frac{1}{R} \text{ for } R \ll 1.$

Double Field Theory Approach

Challenges

R. Brandenberger

Introduction

Challenges

Stability
Bounce

S-Brane Bounce

String Gas

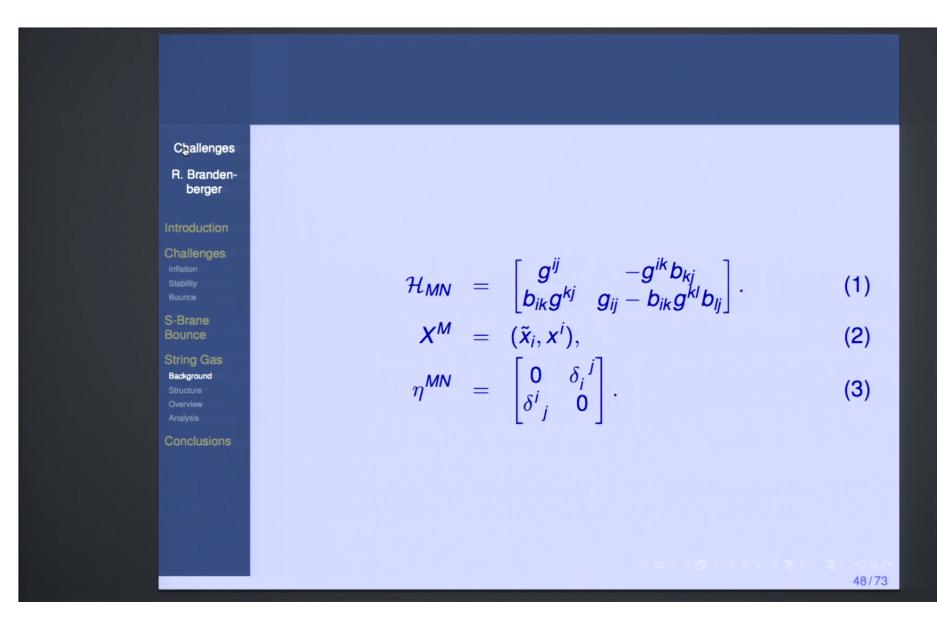
Background

Structure

~

Analysi

Conclusions


Idea Describe the low-energy degrees of freedom with an action in doubled space in which the T-duality symmetry is manifest.

$$S = \int dx d\tilde{x} e^{-2d} \mathcal{R},$$

$$\mathcal{R} = \frac{1}{8} \mathcal{H}^{MN} \partial_{M} \mathcal{H}^{KL} \partial_{N} \mathcal{H}_{KL} - \frac{1}{2} \mathcal{H}^{MN} \partial_{M} \mathcal{H}^{KL} \partial_{K} \mathcal{H}_{NL}$$

$$+ 4 \mathcal{H}^{MN} \partial_{M} \partial_{N} d - \partial_{M} \partial_{N} \mathcal{H}^{MN} - 4 \mathcal{H}^{MN} \partial_{M} d \partial_{N} d$$

$$+ 4 \partial_{M} \mathcal{H}^{MN} \partial_{N} d + \frac{1}{2} \eta^{MN} \eta^{KL} \partial_{M} \mathcal{E}^{A}_{K} \partial_{N} \mathcal{E}^{B}_{L} \mathcal{H}_{AB}.$$

Pirsa: 17060096 Page 60/89

R.B., R. Costa, G. Franzmann, S. Patil and A. Weltman, in prep.

Challenges

R. Brandenberger

Introduction

Challenges

Stability

S-Brane Bounce

String Gas

Background

Structure Overview

Conclusions

- Consider test particles in a DFT background.
- Derive geodesic equation of motion
- Consider a cosmological background with b = 0 and fixed dilaton.
- Find that the geodesics can be extended to infinite proper time in both time directions.
- → geodesic completeness.

49/73

Pirsa: 17060096 Page 61/89

R.B., R. Costa, G. Franzmann, S. Patil and A. Weltman, in prep.

Challenges

R. Brandenberger

Introduction

Challenges

Stability

S-Brane Bounce

String Gas

Background

Overview

Conclusions

- Consider test particles in a DFT background.
- Derive geodesic equation of motion
- Consider a cosmological background with b = 0 and fixed dilaton.
- Find that the geodesics can be extended to infinite proper time in both time directions.
- → geodesic completeness.

49/73

Pirsa: 17060096 Page 62/89

R.B., R. Costa, G. Franzmann, S. Patil and A. Weltman, in prep.

Challenges

R. Brandenberger

Challenges

S-Brane

String Gas

Background

Conclusions

Metric in DFT:

$$dS^2 = -dt^2 + \mathcal{H}_{MN}dX^MdX^N,$$

Specialization to a cosmological background:

$$ds^2 = -dt^2 + b^2(t)\delta_{ij}dx^idx^j + b^{-2}(t)\delta^{ij}d\tilde{x}_id\tilde{x}_j,$$

Point particle geodesics

$$\frac{d}{dS} \left(\frac{d\tilde{x}_a}{dS} \frac{1}{b^2} \right) = 0$$

$$\frac{d}{dS} \left(\frac{d\tilde{x}_a}{dS} \frac{1}{b^2} \right) = 0$$

$$\frac{d}{dS} \left(\frac{dx^a}{dS} b^2 \right) = 0.$$

R.B., R. Costa, G. Franzmann, S. Patil and A. Weltman, in prep.

Challenges

R. Brandenberger

Challenges

S-Brane Bounce

String Gas

Background

Conclusions

Proper distance going forwards in time:

$$\Delta S = \int_{t_0}^{t_2} \gamma(t)^{-1} dt + T_2,$$
 (4)

Proper distance going backwards in time:

$$\Delta S = \int_{t_1}^{t_0} \tilde{\gamma}(t) dt + T_1, \qquad (5)$$

geodesic completeness in terms of physical time:

$$t_p(t) = t \text{ for } t \gg 1$$

$$t_p(t) = t \text{ for } t \gg 1,$$

 $t_p(t) = \frac{1}{t} \text{ for } t \ll 1.$

Challenges

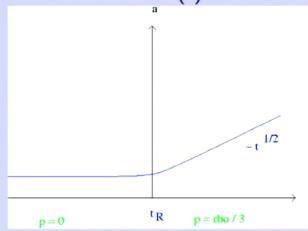
R. Brandenberger

Introduction

Challenges

Stability

S-Brane


String Gas

Background

Overview

Conclusions

We will thus consider the following background dynamics for the scale factor a(t):

52/73

Pirsa: 17060096 Page 65/89

Dimensionality of Space in SGC

Challenges

R. Brandenberger

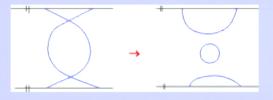
Introduction

Challenges

Inflation Stability

S-Brane Bounce

String Gas


Background

Overview

Conclusions

• Begin with all 9 spatial dimensions small, initial temperature close to $T_H \rightarrow$ winding modes about all spatial sections are excited.

 Expansion of any one spatial dimension requires the annihilation of the winding modes in that dimension.

- Decay only possible in three large spatial dimensions.
- dynamical explanation of why there are exactly three large spatial dimensions.

(see also numerical work by M. Sakellariadou

53/73

Pirsa: 17060096 Page 66/89

Moduli Stabilization in SGC

Challenges

R. Brandenberger

Introduction

Challenges

Stability

S-Brane Bounce

String Gas

Background

Structure

Analysis

Conclusions

Size Moduli [S. Watson, 2004; S. Patil and R.B., 2004, 2005]

- winding modes prevent expansion
- momentum modes prevent contraction
- ullet o $V_{eff}(R)$ has a minimum at a finite value of $R, o R_{min}$
- in heterotic string theory there are enhanced symmetry states containing both momentum and winding which are massless at R_{min}
- $\rightarrow V_{eff}(R_{min}) = 0$
- size moduli stabilized in Einstein gravity background

Shape Moduli [E. Cheung, S. Watson and R.B., 2005]

- enhanced symmetry states
- ullet \rightarrow harmonic oscillator potential for θ
- → shape moduli stabilized

54/73

Pirsa: 17060096 Page 67/89

Theory of Cosmological Perturbations: Basics

Challenges

R. Brandenberger

Introduction

Challenges

Stability Bounce

S-Brane Bounce

String Gas

Background

Structure

Analysis

Conclusions

Cosmological fluctuations connect early universe theories with observations

- Fluctuations of matter → large-scale structure
- Fluctuations of metric → CMB anisotropies
- N.B.: Matter and metric fluctuations are coupled

Key facts:

- 1. Fluctuations are small today on large scales
- → can use linear perturbation theory
- 2. Sub-Hubble scales: matter fluctuations dominate
- Super-Hubble scales: metric fluctuations dominate

Page 82 of 106

56/73

Pirsa: 17060096 Page 68/89

Quantum Theory of Linearized Fluctuations

V. Mukhanov, H. Feldman and R.B., *Phys. Rep. 215:203 (1992)*

Challenges

R. Brandenberger

Introduction

Challenges

Stability

S-Brane Bounce

String Gas

sackgrour

Structure

Analysis

Conclusions

Step 1: Metric including fluctuations

$$ds^{2} = a^{2}[(1+2\Phi)d\eta^{2} - (1-2\Phi)d\mathbf{x}^{2}]$$
$$\varphi = \varphi_{0} + \delta\varphi$$

Note: Φ and $\delta \varphi$ related by Einstein constraint equations Step 2: Expand the action for matter and gravity to second order about the cosmological background:

$$S^{(2)} = \frac{1}{2} \int d^4x ((v')^2 - v_{,i}v^{,i} + \frac{z''}{z}v^2)$$

$$v = a(\delta\varphi + \frac{z}{a}\Phi)$$

$$z = a\frac{\varphi'_0}{\mathcal{H}}$$

R. Brandenberger

Introduction

Challenges

Stability

S-Brane Bounce

String Gas

Background

Structure

Analysis

Conclusions

Step 3: Resulting equation of motion (Fourier space)

$$v_k'' + (k^2 - \frac{z''}{z})v_k = 0$$

Features:

- oscillations on sub-Hubble scales
- squeezing on super-Hubble scales $v_k \sim z$

Quantum vacuum initial conditions:

$$v_k(\eta_i) = (\sqrt{2k})^{-1}$$

R. Brandenberger

Introduction

Challenges

Stability

S-Brane

String Gas

Background

Structure

Analysis

Conclusions

Step 3: Resulting equation of motion (Fourier space)

$$v_k'' + (k^2 - \frac{z''}{z})v_k = 0$$

Features:

- oscillations on sub-Hubble scales
- squeezing on super-Hubble scales $v_k \sim z$

Quantum vacuum initial conditions:

$$v_k(\eta_i) = (\sqrt{2k})^{-1}$$

Page 85 of 106

Structure formation in inflationary cosmology

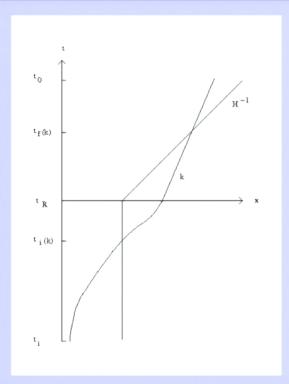
Challenges

R. Brandenberger

Introduction

Challenges

Stability

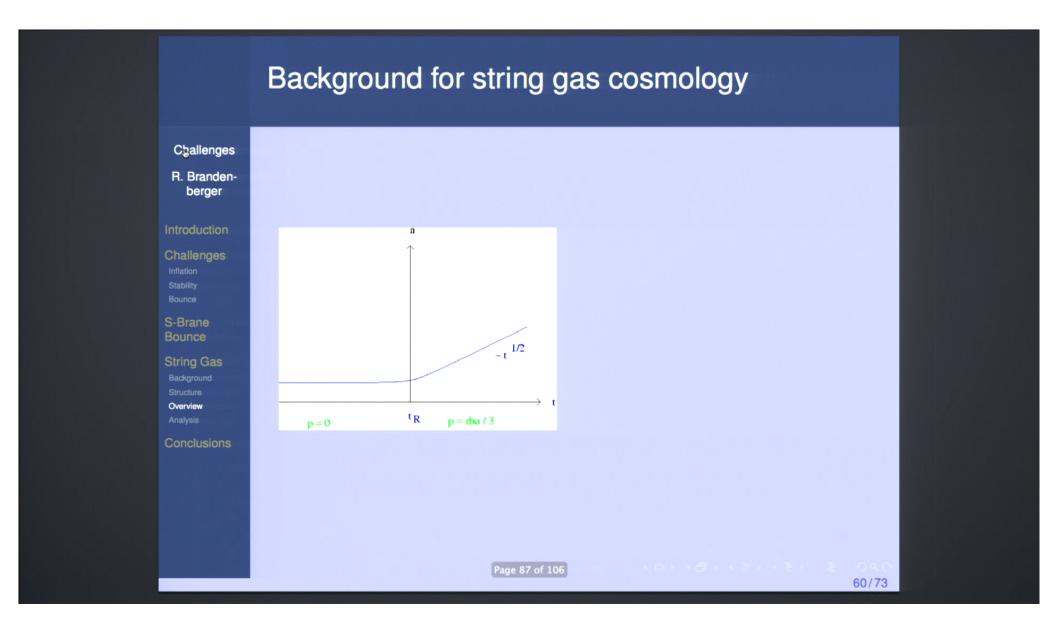

S-Brane

String Gas

Background Structure

Overview Analysis

Conclusions



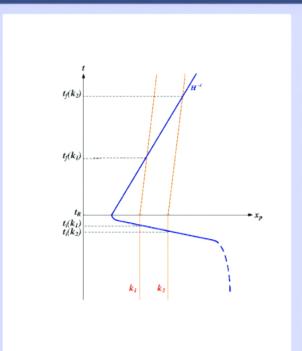
N.B. Perturbations originate as quantum vacuum fluctuations.

Page 86 of 106

59/73

Pirsa: 17060096 Page 72/89

Pirsa: 17060096 Page 73/89


R. Brandenberger

Challenges

S-Brane

String Gas

Overview

N.B. Perturbations originate as thermal string gas fluctuations. Page 88 of 106

61/73

Page 74/89 Pirsa: 17060096

Method

Challenges

R. Brandenberger

Introduction

Challenges

Stability

S-Brane Bounce

String Gas

Structure Overview

Analysis

Conclusions

- Calculate matter correlation functions in the Hagedorn phase (neglecting the metric fluctuations)
- For fixed k, convert the matter fluctuations to metric fluctuations at Hubble radius crossing $t = t_i(k)$
- Evolve the metric fluctuations for $t > t_i(k)$ using the usual theory of cosmological perturbations

62/73

Pirsa: 17060096 Page 75/89

Extracting the Metric Fluctuations

Challenges

R. Brandenberger

Introduction

Challenges

Stability

S-Brane Bounce

String Gas

Background Structure Overview

Analysis

Conclusions

Ansatz for the metric including cosmological perturbations and gravitational waves:

$$ds^2 = a^2(\eta) ((1+2\Phi)d\eta^2 - [(1-2\Phi)\delta_{ij} + h_{ij}]dx^i dx^j).$$

Inserting into the perturbed Einstein equations yields

$$\langle |\Phi(\mathbf{k})|^2 \rangle = 16\pi^2 G^2 \mathbf{k}^{-4} \langle \delta T^0_0(\mathbf{k}) \delta T^0_0(\mathbf{k}) \rangle,$$

$$\langle |\mathbf{h}(\mathbf{k})|^2 \rangle = 16\pi^2 G^2 k^{-4} \langle \delta T^i{}_j(\mathbf{k}) \delta T^i{}_j(\mathbf{k}) \rangle.$$

Power Spectrum of Cosmological Perturbations

Challenges

R. Brandenberger

Introduction

Challenges

Stability

S-Brane

String Gas

Background Structure Overview

Analysis

Conclusions

Key ingredient: For thermal fluctuations:

$$\langle \delta \rho^2 \rangle = \frac{T^2}{R^6} C_V.$$

Key ingredient: For string thermodynamics in a compact space

$$C_V pprox 2rac{R^2/\ell_s^3}{T\left(1-T/T_H
ight)}$$
 .

R. Brandenberger

Introduction

Challenges

Stability

S-Brane Bounce

String Gas

Background Structure Overview

Analysis

Conclusions

Power spectrum of cosmological fluctuations

$$P_{\Phi}(k) = 8G^{2}k^{-1} < |\delta\rho(k)|^{2} >$$

$$= 8G^{2}k^{2} < (\delta M)^{2} >_{R}$$

$$= 8G^{2}k^{-4} < (\delta\rho)^{2} >_{R}$$

$$= 8G^{2}\frac{T}{\ell_{s}^{3}}\frac{1}{1 - T/T_{H}}$$

Key features:

- scale-invariant like for inflation
- slight red tilt like for inflation

R. Brandenberger

Introduction

Challenges

Stability

S-Brane

String Gas

Background Structure Overview Analysis

Conclusions

Power spectrum of cosmological fluctuations

$$P_{\Phi}(k) = 8G^{2}k^{-1} < |\delta\rho(k)|^{2} >$$

$$= 8G^{2}k^{2} < (\delta M)^{2} >_{R}$$

$$= 8G^{2}k^{-4} < (\delta\rho)^{2} >_{R}$$

$$= 8G^{2}\frac{T}{\ell_{s}^{3}}\frac{1}{1 - T/T_{H}}$$

Key features:

- scale-invariant like for inflation
- slight red tilt like for inflation

Spectrum of Gravitational Waves

R.B., A. Nayeri, S. Patil and C. Vafa, Phys. Rev. Lett. (2007)

Challenges

R. Brandenberger

Introduction

Challenges

Stability

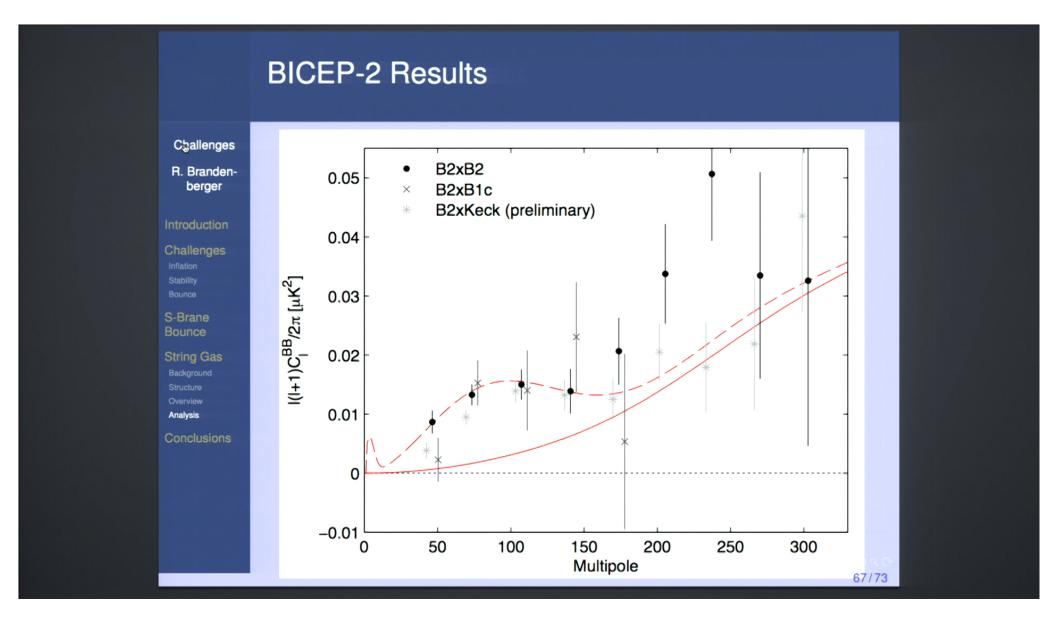
S-Brane Bounce

String Gas

Background Structure Overview

Analysis

Conclusions


$P_h(k) = 16\pi^2 G^2 k^{-1} < |T_{ij}(k)|^2 >$ $= 16\pi^2 G^2 k^{-4} < |T_{ij}(R)|^2 >$ $\sim 16\pi^2 G^2 \frac{T}{\ell_s^3} (1 - T/T_H)$

Key ingredient for string thermodynamics

$$<|T_{ij}(R)|^2> \sim \frac{T}{I_s^3R^4}(1-T/T_H)$$

Key features:

- scale-invariant (like for inflation)
- slight blue tilt (unlike for inflation)

Pirsa: 17060096 Page 81/89

Requirements

Challenges

R. Brandenberger

Introduction

Challenges

Stability

S-Brane Bounce

String Gas

Structure Overview

Analysis

Conclusions

- Emergent phase in thermal equilibrium
- $C_V(R) \sim R^2$ obtained from a thermal gas of strings provided there are winding modes which dominate.
- Cosmological fluctuations in the IR are described by Einstein gravity.

68/73

Pirsa: 17060096 Page 82/89

Plan

Challenges

R. Brandenberger

Introduction

Challenges

Stability

S-Brane Bounce

String Gas

Background Structure Overview

Conclusions

1 Introduction

- Challenges for Bouncing Cosmologies
 - Challenges for Inflationary Cosmology
 - Stability of the Contracting Phase
 - Obtaining a Bounce
- 3 S-Brane Bounce
- 4 String Gas Cosmology
 - Background for String Gas Cosmology
 - String Gas Cosmology and Structure Formation

69/73

- Overview
- Analysis
- 5 Discussion and Conclusions

Pirsa: 17060096

Questions

Challenges

R. Brandenberger

Introduction

Challenges

Stability

S-Brane Bounce

String Gas

Background Structure Overview Analysis

Conclusions

• Q: What is the new physics responsible for the bounce?

- A: Duality Symmetry of Superstring Theory
- Q: Might this physics resolve the singularity for the perturbations as well as the background?
- A: yes
- Does this new physics have any observational signature?
- A: yes, a slight blue tilt of the spectrum of gravitational waves.
- A: What general principles underlie the theory, beyond wanting to resolve the singularity?
- A: Unification of all four forces of nature at a quantum level.

70/73

Pirsa: 17060096 Page 84/89

Questions

Challenges

R. Brandenberger

Introduction

Challenges

Stability

S-Brane Bounce

String Gas

Structure Overview

Conclusions

• Q: What is the new physics responsible for the bounce?

- A: Duality Symmetry of Superstring Theory
- Q: Might this physics resolve the singularity for the perturbations as well as the background?
- A: yes
- Does this new physics have any observational signature?
- A: yes, a slight blue tilt of the spectrum of gravitational waves.
- A: What general principles underlie the theory, beyond wanting to resolve the singularity?
- A: Unification of all four forces of nature at a quantum level.

70/73

Pirsa: 17060096 Page 85/89

R. Brandenberger

Introduction

Challenges

Stability Bounce

S-Brane Bounce

String Gas

Structure
Overview
Analysis

Conclusions

- Q: Does a consistent picture for cosmology require that both the background and perturbations are quantized?
- A: No
- Q: Does the bounce or pre-bounce phase help in setting initial conditions?
- A: The initial conditions for fluctuations are set in the bounce phase.

71/73

Pirsa: 17060096 Page 86/89

Conclusions

Challenges

R. Brandenberger

Introduction

Challenges

Stability

S-Brane Bounce

String Gas

Background Structure Overview Analysis

Conclusions

- Current paradigm: cosmological inflation.
- Alternatives to cosmological inflation exist.
- Many of these alternatives are bouncing scenarios.
- Superstring cosmology → need to look beyond inflation and beyond point particle effective field theory.
- String Gas Cosmology: Model of cosmology of the very early universe based on new degrees of freedom and new symmetries of superstring theory.
- Thermal string fluctuations lead to a scale-invariant spectrum of cosmological fluctuations with a blue tilt of the tensor modes.
- String Theory testable through cosmologica observations.

72/73

Pirsa: 17060096 Page 87/89

Conclusions

Challenges

R. Brandenberger

Introduction

Challenges

Stability

S-Brane Bounce

String Gas

Structure Overview

Conclusions

- Current paradigm: cosmological inflation.
- Alternatives to cosmological inflation exist.
- Many of these alternatives are bouncing scenarios.
- Superstring cosmology → need to look beyond inflation and beyond point particle effective field theory.
- String Gas Cosmology: Model of cosmology of the very early universe based on new degrees of freedom and new symmetries of superstring theory.
- Thermal string fluctuations lead to a scale-invariant spectrum of cosmological fluctuations with a blue tilt of the tensor modes.
- String Theory testable through cosmologica observations.

72/73

Pirsa: 17060096 Page 88/89

Conclusions

Challenges

R. Brandenberger

Introduction

Challenges

Stability Bounce

S-Brane Bounce

String Gas

Structure Overview

Conclusions

- Current paradigm: cosmological inflation.
- Alternatives to cosmological inflation exist.
- Many of these alternatives are bouncing scenarios.
- Superstring cosmology → need to look beyond inflation and beyond point particle effective field theory.
- String Gas Cosmology: Model of cosmology of the very early universe based on new degrees of freedom and new symmetries of superstring theory.
- Thermal string fluctuations lead to a scale-invariant spectrum of cosmological fluctuations with a blue tilt of the tensor modes.
- String Theory testable through cosmological observations.

72/73

Pirsa: 17060096 Page 89/89