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Abstract: | will review various approaches to bouncing cosmologies and will discuss challenges which the different approaches face.
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Outline

Challenges

R. Branden- Q Introduction
berger

@ Challenges for Bouncing Cosmologies
@ Challenges for Inflationary Cosmology
o Stability of the Contracting Phase
@ Obtaining a Bounce

@ S-Brane Bounce

Q String Gas Cosmology
o Background for String Gas Cosmology

o String Gas Cosmology and Structure Formation
o Overview

o Analysis

@ Discussion and Conclusions
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Cgaallenges

R. Branden-

berger

Introduction

Isotropic CMB Background

COBE DMR Microwave Sky at 53 GHz
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Map of the Cosmic Microwave Background
(CMB)

Challenges
R. Branden-
berger

Introduction

Credit: NASA/WMAP Science Team
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Angular Power Spectrum of CMB Anisotropies

Challenges

R. Branden- Multipole moment [
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Early Work

Challenges

SMALL-SCALE FLUCTUATIONS OF RELIC RADIATION
R. Branden-

berger

eTeseel

Introduction

1970Ap&SS. .

Ig(M/Mg)

Fig. 1a. Diagram of gravitational instability in the ‘big-bang’ model. The region of instability is

located to the right of the line Ms(t); the region of stability to the left. The two additional lines of

the graph demonstrate the temporal evolution of density perturbations of matter: growth until the

moment when the considered mass is smaller than the Jeans mass and oscillations thereafter. It is

apparent that at the moment of recombination perturbations corresponding to different masses
correspond to different phases.

AT,
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Key Realization

Challenges
R. Branden-
berger

Introduction

@ Given a scale-invariant power spectrum of adiabatic
fluctuations on "super-horizon" scales before teq, i.€.
standing waves.

@ — "correct" power spectrum of galaxies.

@ — acoustic oscillations in CMB angular power
spectrum.

Pirsa: 17060096 Page 8/89



Angular Power Spectrum of CMB Anisotropies

Challenges

R. Branden- Multipole moment [
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Early Work

Challenges

R. Branden-
berger

roduction

la. Disgram of gravitational instability in the ‘big-bang’ model, The region of insubility is

located to the right of the line AMi(r): the region of sabulity to the lefl. The two additional lines of

the graph demonatrate the temporal evolution of dermity perturbations of matter: growih until the

moment when the consldered mass i umaller than the Jeans mass and cecillations thereafier. Tt s

apparent that a1 the moment of perturbations 10 different masses
comvenpond Lo differenl phase
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Fig. Ib.  The dependence of the square of the amplitude of density perturbations of matier on scale
The fine line designates the usually sssumed dependence (d¢/ghw ~ M = 11 is apparent that Nuctua-
T of relia radiation should depend o aké in & similar manner
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Key Challenge

Challenges
R. Branden-
berger

Introduction

How does one obtain such a spectrum?
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Hubble Radius vs. Horizon

Challenges

R. Branden-
s o Horizon: Forward light cone of a point on the initial

Introduction Cauchy surface.

Challenges

Horizon: region of causal contact.
Hubble radius: Iy(t) = H~'(t) inverse expansion rate.

Hubble radius: local concept, relevant for dynamics of
cosmological fluctuations.

In Standard Big Bang Cosmology: Hubble radius =
horizon.

In any theory which can provide a mechanism for the
origin of structure: Hubble radius # horizon.
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Criteria for a Successful Early Universe
Scenario

Challenges

R. Branden-

e @ Horizon > Hubble radius in order for the scenario to

Introduction solve the “horizon problem” of Standard Big Bang
Challenges Cosmology.

o Scales of cosmological interest today originate inside
the Hubble radius at early times in order for a causal
generation mechanism of fluctuations to be possible.
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Introduction solve the “horizon problem” of Standard Big Bang
Challenges Cosmology.
@ Scales of cosmological interest today originate inside
the Hubble radius at early times in order for a causal
generation mechanism of fluctuations to be possible.

o Squeezing of fluctuations on super-Hubble scales in
order to obtain the acoustic oscillations in the CMB
angular power spectrum.

@ Mechanism for producing a scale-invariant spectrum of
curvature fluctuations on super-Hubble scales.
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Criteria for a Successful Early Universe
Scenario

Challenges

R. Branden-

Setg @ Horizon > Hubble radius in order for the scenario to
Introduction solve the “horizon problem” of Standard Big Bang
Cosmology.

o Scales of cosmological interest today originate inside
the Hubble radius at early times in order for a causal
generation mechanism of fluctuations to be possible.

o Squeezing of fluctuations on super-Hubble scales in
order to obtain the acoustic oscillations in the CMB
angular power spectrum.

@ Mechanism for producing a scale-invariant spectrum of
curvature fluctuations on super-Hubble scales.
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Inflation as a Solution

Challenges

R. Branden-
berger

Introduction
Pt post / |
& jes inflation / “ Hubble radius

horizon

inflation
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Bouncing Cosmologies as a Solution

Challenges

R. Branden-
berger

Introduction
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Challenges
R. Branden-
berger

Introduction

Emergent Universe
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Emergent Universe as a Solution

Challenges

R. Branden-
berger

Introduction
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Cpallenges

R. Branden-
berger

@ Challenges for Bouncing Cosmologies
o Challenges for Inflationary Cosmology
o Stability of the Contracting Phase
o Obtaining a Bounce

Introduction

Challenges
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Conceptual Problems of Inflationary
Cosmology

Challenges

R. Branden-

@ Nature of the scalar field ¢ (the “inflaton")

o Conditions to obtain inflation (initial conditions, slow-roll
conditions, graceful exit and reheating)

o Amplitude problem

o Trans-Planckian problem

@ Singularity problem

o Cosmological constant problem
@ Applicability of General Relativity
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Origin of Inflation?

Challenges

R. Branden-

o To obtain inflationary dynamics free of initial condition
fine tuning we require super-Planckian field values.

o — requires embedding of inflation into a quantum
gravitational theory.

o But: No-go theorems on obtaining de Sitter space in
string theory.
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Trans-Planckian Problem

Challenges

R. Branden-
berger

o Success of inflation: At early times scales are inside
the Hubble radius — causal generation mechanism is
possible.

o Problem: If time period of inflation is more than 70H~",
then A\ () < Iy at the beginning of inflation.

@ — new physics MUST enter into the calculation of the

fluctuations.
22/73

Page 27/89



Pirsa: 17060096

Cosmological Constant Problem

Challenges

R. Branden-

phi phi

@ Quantum vacuum energy does not gravitate.
o Why should the almost constant V() gravitate?

Vo

] 0120
Aobs
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Applicability of GR

Challenges

R. Branden-
berger

o In all approaches to quantum gravity, the Einstein action
is only the leading term in a low curvature expansion.

o Correction terms may become dominant at much lower
energies than the Planck scale.

o Correction terms will dominate the dynamics at high
curvatures.

@ The energy scale of inflation models is typically
n ~ 10'%GeV.

@ — n too close to my, to trust predictions made using
GR.
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Zones of Ignorance

Challenges

R. Branden-
berger

post
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Anisotropy Problem of the Contracting Phase

Challenges

s Problem: The energy density in anisotropies increases
berger faster than the energy density in matter and radiation in the
contracting phase.

ds? = di? — &(1) ) o7

!
o 0 P
5 _3mg,+6;9’

é,‘ +3H9; =
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Anisotropy Problem of the Contracting Phase

Challenges

Problem: The energy density in anisotropies increases
faster than the energy density in matter and radiation in the
contracting phase.

ds? = di? — &(1) ) e o?

R. Branden-

!
L LS e
H_3m3,+6;9’

é,‘ +3H9; —
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Anisotropy Problem of the Contracting Phase

Challenges

el Problem: The energy density in anisotropies increases
berger faster than the energy density in matter and radiation in the
contracting phase.

ds? = d? — &(1) )  e?o?

I
T il L
: _3m§,+6;9’
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-6
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Challenges

R. Branden-

berger

Black Hole Formation in the Contracting Phase

Worry: Cosmological fluctuations become nonlinear on
sub-Hubble scales and form black holes.

Starting point: scalar cosmological perturbations in
longitudinal gauge:

ds? = a(n)? {[1 +20(n, X)]dn2 — [1 — 20(7, X)] §dx'dx/ } .

Equation of motion:

g MDD g (g ) 1Yo,

1+3w (-n) K (1 +3w)2 (—n)2
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Black Hole Formation (ctd.)

Challenges

R. Branden-

e Resulting fractional density contrast:

Foer a3 (k2 3

Criterium for direct black hole formation.

/ doM > Ms .
R<Rs

Result: for Bunch-Davies vacuum initial conditions early in
the contracting phase the first scale to form black holes is
the Hubble scale.
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Black Hole Formation (ctd.)

Challenges

R. Branden-

The condition that black holes form becomes

1/5
H| ~ c?/ow3 (@) M

Fho

o Forcs < 1 we have H < Mp,.

o For a radiation dominated phase at late stages of
contraction no black holes form from the direct channel
if |Hmax| < Mpy.
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Initial Condition Problem of the Contracting
Phase

Cpallenges

R. Branden-
berger
o Q: Attractor Nature of the Background

o A: o.k. for Ekpyrotic contraction, not o.k. for matter
bounce.
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Initial Condition Problem of the Contracting
Phase

Challenges

R. Branden-

o Q: Attractor Nature of the Background

o A: o.k. for Ekpyrotic contraction, not o.k. for matter
bounce.

o Q: What initial conditions for fluctuations?
@ Usual answer: vacuum - but why?
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Initial Condition Problem of the Contracting
Phase

Challenges

R. Branden-
berger
o Q: Attractor Nature of the Background

o A: o.k. for Ekpyrotic contraction, not o.k. for matter
bounce.

o Q: What initial conditions for fluctuations?
o Usual answer: vacuum - but why?

@ Note: For inflation the use of vacuum initial conditions
for fluctuations can be justified.
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Obtaining a Bounce

Challenges

R. Branden-
berger

o New matter which violates the Null Energy
Condition.

o Challenges: Instabilities.

Pirsa: 17060096 Page 40/89



Obtaining a Bounce

Challenges

R. Branden-
berger

o New matter which violates the Null Energy
Condition.

o Challenges: Instabilities.
o Modifications of Gravity.
o Challenges: Instabilities.
o Quantum Resolution.
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Some Examples

Challenges

R. Branden- Modified Matter

berger
@ Ghost condensate [C. Lin, L. Perreault Levasseur and
R.B., arXiv:1007.2654 [hep-th]]

o Galileon matter [A. ljjas and P. Steinhardt, 2016]
Modified Gravity

@ Horava-Lifshitz gravity [R.B., arXiv:0904.2835 [hep-th]]
Quantum Resolution

@ Loop quantum cosmology [Lectures by Ashtekar,
Bojowald, Barrau, Agullo]

o Perfect bounce [S. Gielen and N. Turok]
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Challenges
R. Branden-
berger

Introduction

S-Brane
Bounce

@ S-Brane Bounce
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Challenges

R. Branden-

berger

S-Brane
Bounce

Temporal Duality

Starting point: Type Il superstring theory in the presence of
non-trivial gravito-magnetic fluxes (Euclidean background)

Temperature duality:

Z(T) = Z(TE/T).

T.: Self-dual temperature (equals the Hagedorn
temperature modulo coupling constants)

Physical temperature
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Challenges

R. Branden-

S-Brane
Bounce

S-Brane

o ForT < Tcand T > T, the dynamics of the low energy
modes of string theory is given by dilaton gravity
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S-Brane

Challenges

R. Branden- o ForT <« Tcand T > T, the dynamics of the low energy
s modes of string theory is given by dilaton gravity

s @ Begin in a contracting phase with T > Tcand T
A decreasing (i.e. Tp increasing).

@ When T = T, a set of string states becomes massless

S-Brane (enhanced symmetry states)

Bounce

o These states must be included in the action for the low
energy modes.

o S-Brane: termin the action presentonlyat T = T,

o S-brane has p < 0and p = |p| > 0 — S-brane is matter
violating the NEC and can mediate a transition from
contraction to expansion.

@ — S-Brane bounce.

age 2% Of AVe
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Challenges
R. Branden-
berger

Introduction

Challenges

S-Brane
Bounce

R
Sg /d“x\/—g[i -Vﬂcpv"*cp] +/d4x\/—gn*arT§

—K / drd®¢vVhe®s(r).
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Evolution of Fluctuations through the Bounce

Challenges

R. Branden-

o Consider initially scale-invariant cosmological
fluctuations in the contracting phase on super-Hubble
scales.

i o Matching conditions across the S-brane: continuity of
I the induced metric and extrinsic curvature.

o Note: matching surface uniquely determined!

o Result: the spectrum of cosmological perturbations
after the bounce on super-Hubble scales is
scale-invariant.
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Challenges

R. Branden-
berger

Q String Gas Cosmology
o Background for String Gas Cosmology
o String Gas Cosmology and Structure Formation
o Overview
o Analysis
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Principles

Challenges
e Ildea: make use of the new symmetries and new degrees of
freedom which string theory provides to construct a new
i theory of the very early universe.
Assumption: Matter is a gas of fundamental strings
Assumption: Space is compact, e.g. a torus.
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Principles

Cpallenges

R, Branden- Idea: make use of the new symmetries and new degrees of
i freedom which string theory provides to construct a new

theory of the very early universe.

Assumption: Matter is a gas of fundamental strings
Assumption: Space is compact, e.g. a torus.
Key points:

o New degrees of freedom: string oscillatory modes

o Leads to a maximal temperature for a gas of strings,
the Hagedorn temperature

@ New degrees of freedom: string winding modes

o Leads to a new symmetry: physics at large R is
equivalent to physics at small R
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T-Duality

Challenges

R. Branden-
berger

T-Duality
@ Momentum modes: E, = n/R
@ Winding modes: E;, = mR
@ Duality: R - 1/R (n,m) — (m,n)
o Mass spectrum of string states unchanged
@ Symmetry of vertex operators

o Symmetry at non-perturbative level — existence of
D-branes
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Adiabatic Considerations

Challenges

el Temperature-size relation in string gas cosmology
berger

A

T-dual Phase
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Challenges

R. Branden-

berger

troduction

Singularity Problem in Standard and
Inflationary Cosmology

Temperature-size relation in standard cosmology
-
|

\
\
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Dynamics

Challenges

R. Branden-
berger

Assume some action gives us R(t)
T

Hogedom|Phase

2: Bouncing Cosmology
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String Gas Bounce

Challenges

R. Branden-
berger

Two possibilities:
@ Thermal Bounce
@ Emergent Scenario

In both cases, a long Hagedorn phase will allow
thermalization of the string gas on large scales.
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Doubled Spacei_n SGC

Challenges

AN Candidate for dynamics in the Hagedorn phase: Double
berger Field Theory [C. Hull and B. Zwiebach, 2009]
Idea: For each dimension of the underlying topological
space there are two position operators [R.B. and C. Vafa]:

@ x: dual to the momentum modes
@ X: dual to the winding modes
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Doubled Space in SGC

Challenges

M Candidate for dynamics in the Hagedorn phase: Double
“berger Field Theory [C. Hull and B. Zwiebach, 2009]
Idea: For each dimension of the underlying topological
space there are two position operators [R.B. and C. Vafa]:
@ x: dual to the momentum modes
@ X: dual to the winding modes

We measure physical length in terms of the light degrees
of freedom.

I(R) R for R>1,

I(R) lR for R< 1.
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Double Field Theory Approach

Challenges

el Idea Describe the low-energy degrees of freedom with an
- action in doubled space in which the T-duality symmetry is
manifest.

o / dxdie 2R,

1 1
§HMN8M’HKL8N?{KL — EHMNaM?{KL(?K?{NL

AHMNE,Ond — OONHMN — 47{MN g, dONd
49y HMNond + %nMNnKLaMEA kONE - (| HaB-
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Challenges

R. Branden-
berger

g’ -Q”‘bkﬂ‘
bikg"  gjj — bikg"' by

(&fsxi)a
0 &

3k, 0
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Singularity Resolution in SGC

Challenges

R. Branden-
berger
o Consider test particles in a DFT background.
o Derive geodesic equation of motion

o Consider a cosmological background with b = 0 and
fixed dilaton.
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Introduction

Singularity Resolution in SGC

Challenges

R. Branden-

berger
o Consider test particles in a DFT background.
o Derive geodesic equation of motion

o Consider a cosmological background with b = 0 and
fixed dilaton.

o Find that the geodesics can be extended to infinite
proper time in both time directions.

© — geodesic completeness.
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Singularity Resolution in SGC

Cpallenges Metric in DFT:

R. Branden-
berger

dS? = —dt? + HyndXMaxV

Specialization to a cosmological background:

ds? = —dt? + b?(t)8;dx dx! + b~2(t)8" dx;dx;,
Point particle geodesics

d (di’(a1_

ds
L
ds
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Singularity Resolution in SGC

bl Proper distance going forwards in time:

R. Branden-

berger
t2

AS = [ ~()7'dt+ T2,

fo
Proper distance going backwards in time:
fo

AS — F(t)dt + Ty,
t

geodesic completeness in terms of physical time:

to(1) t for t>1,

= }for t< .
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Emergent Dynamics

Challenges

R. Branden-
berger

We will thus consider the following background dynamics for
the scale factor a(t):
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Dimensionality of Space in SGC

Challenges

R. Branden- o Begin with all 9 spatial dimensions small, initial
temperature close to Ty — winding modes about all
spatial sections are excited.

o Expansion of any one spatial dimension requires the
annihilation of the winding modes in that dimension.

berger
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Moduli Stabilization in SGC

Clallenges Size Moduli [S. Watson, 2004; S. Patil and R.B., 2004, 2005]

R. Branden-

berger winding modes prevent expansion
momentum modes prevent contraction
— Verr(R) has a minimum at a finite value of
R, — Rmnin
in heterotic string theory there are enhanced symmetry
states containing both momentum and winding which
are massless at R,
— Vert(Rmin) =0
— size moduli stabilized in Einstein gravity background
Shape Moduli [E. Cheung, S. Watson and R.B., 2005]

o enhanced symmetry states
@ — harmonic oscillator potential for 6
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Theory of Cosmological Perturbations: Basics

Challenges

omsems  Cosmological fluctuations connect early universe theories
e with observations

Introduction

o Fluctuations of matter — large-scale structure
o Fluctuations of metric — CMB anisotropies
o N.B.: Matter and metric fluctuations are coupled

Key facts:

o 1. Fluctuations are small today on large scales

o — fluctuations were very small in the early universe
@ — can use linear perturbation theory

@ 2. Sub-Hubble scales: matter fluctuations dominate
o Super-Hubble scales: metric fluctuations dominate
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Quantum Theory of Linearized Fluctuations

Sl Step 1: Metric including fluctuations

R. Branden-

ds? a[(1 + 20)dn? — (1 — 24)dx?]
¢ = o+ 0p

Note: ® and d¢ related by Einstein constraint equations
Step 2: Expand the action for matter and gravity to second
order about the cosmological background:

S : / d*x((V')2 - vv' + z—”vz)
- S z

v a(5p + gqa)

&
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Challenges

R. Branden-

Step 3: Resulting equation of motion (Fourier space)

z”
Vk + (k% — ?)Vk =0

Features:

o oscillations on sub-Hubble scales
@ squeezing on super-Hubble scales vy ~ z
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Cpallenges

R. Branden-

Derge: Step 3: Resulting equation of motion (Fourier space)

z”
e =W =0

Features:

o oscillations on sub-Hubble scales
@ squeezing on super-Hubble scales v ~ z

Quantum vacuum initial conditions:

Vi(ni) = (V2k)™
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Structure formation in inflationary cosmology

Challenges

R. Branden-
berger

N.B. Perturbations originate as quantum vacuum
fluctuations.

Page 86 106
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Background for string gas cosmology

Challenges

R. Branden-
berger

Pirsa: 17060096 Page 73/89



Structure formation in string gas cosmology

Challenges

R. Branden-
berger

N.B. Perturbations originate as thermal string gas
fluctuations. S—
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Method

Challenges

R. Branden-
berger

Introduction

o Calculate matter correlation functions in the Hagedorn
phase (neglecting the metric fluctuations)

o For fixed k, convert the matter fluctuations to metric
fluctuations at Hubble radius crossing t = t;( k)

o Evolve the metric fluctuations for t > t;(k) using the
usual theory of cosmological perturbations
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Extracting the Metric Fluctuations

Challenges

R. Branden-

o Ansatz for the metric including cosmological perturbations
and gravitational waves:

ds? = &(n)((1 + 29)dn? — [(1 — 20)d; + h;]ax’ax!) .

Inserting into the perturbed Einstein equations yields

(Io(k)[%) = 167°G*k~* (6T (k)3 T 0(k)).,

(|h(K)|?) = 1672GPk=(6T' (K)o T'j(k)) .
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Power Spectrum of Cosmological Perturbations

Challenges

R. Branden-
berger

Key ingredient: For thermal fluctuations:
T2
<5P2> = ﬁcv-
Key ingredient: For string thermodynamics in a compact
space

R2/63
T — 1T

Cv = 2
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Challenges

S Power spectrum of cosmological fluctuations

Introduction

Po (k) 8G°k~' < |6p(K)|? >
= B8G?k? < (6M)? >

8G°k* < ((5p)2 >R

| 3 1
T
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Challenges

e Power spectrum of cosmological fluctuations

Po(k) = B8G*k~' < |6p(k)® >
= B8G?k? < (M)? >

8G%k* < ((5p)2 >R

5 1
T

Key features:

o scale-invariant like for inflation
@ slight red tilt like for inflation
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Spectrum of Gravitational Waves

Challenges
R. Branden-
berger

16m° Gk~ < | Ty(k)]? >
167Gk~ < |T{(R))? >

1671-262313(1 —T/Th)
S

Key ingredient for string thermodynamics

T

<|Ti(R)I* >~
; R4

(1-T/Th)
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BICEP-2 Results

Challenges

R. Branden- B2xB2
berger ’ B2xB1c
B2xKeck (preliminary)

NH
x
=

=

N

Q-
2]
-
e s

100 150
Multipole
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Requirements

Challenges

R. Branden-
berger

o Emergent phase in thermal equilibrium

o Cy(R) ~ R? obtained from a thermal gas of strings
provided there are winding modes which dominate.

o Cosmological fluctuations in the IR are described by
Einstein gravity.
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Challenges

R. Branden-
berger

Conclusions

@ Discussion and Conclusions
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Questions

Challenges

B @ Q: What is the new physics responsible for the
“berger bounce?

Introduction

Conclusions
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Questions

Cpallenges

e o Q: What is the new physics responsible for the
“berger bounce?

@ A: Duality Symmetry of Superstring Theory

o Q: Might this physics resolve the singularity for the
perturbations as well as the background?

o A:yes

o Does this new physics have any observational
signature?

o A:yes, a slight blue tilt of the spectrum of gravitational
waves.

o A: What general principles underlie the theory,
beyond wanting to resolve the singularity?

@ A: Unification of all four forces of nature at a quantum
level.

Conclusions
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Challenges

R. Branden-

berger

Conclusions

o Q: Does a consistent picture for cosmology require
that both the background and perturbations are
quantized?

@ A:No

o Q: Does the bounce or pre-bounce phase help in
setting initial conditions?

@ A: The initial conditions for fluctuations are set in the
bounce phase.
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Challenges

R. Branden-

berger

Conclusions

Conclusions

@ Current paradigm: cosmological inflation.
o Alternatives to cosmological inflation exist.
@ Many of these alternatives are bouncing scenarios.

@ Superstring cosmology — need to look beyond inflation
and beyond point particle effective field theory.
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Cpallenges

R. Branden-

berger

Conclusions

Conclusions

@ Current paradigm: cosmological inflation.
o Alternatives to cosmological inflation exist.
o Many of these alternatives are bouncing scenarios.

@ Superstring cosmology — need to look beyond inflation
and beyond point particle effective field theory.

@ String Gas Cosmology: Model of cosmology of the very
early universe based on new degrees of freedom and
new symmetries of superstring theory.

o Thermal string fluctuations lead to a scale-invariant
spectrum of cosmological fluctuations with a blue tilt of
the tensor modes.
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Conclusions

Challenges

R. Branden- @ Current paradigm: cosmological inflation.
berger £ : : . .
o Alternatives to cosmological inflation exist.
@ Many of these alternatives are bouncing scenarios.

@ Superstring cosmology — need to look beyond inflation
and beyond point particle effective field theory.

o String Gas Cosmology: Model of cosmology of the very
early universe based on new degrees of freedom and
new symmetries of superstring theory.

@ Thermal string fluctuations lead to a scale-invariant
spectrum of cosmological fluctuations with a blue tilt of
the tensor modes.

@ String Theory testable through cosmological
observations.

Conclusions
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