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Abstract: In the last decade various cosmological spacetimes have been quantized using the techniques of loop quantum gravity. To understand
singularity resolution and decipher reliable Planck scale physics, development of new numerical methods and usage of high performance computing
is critical in loop quantum cosmology. In recent years, these developments have robustly demonstrated resolution of singularities in quantum
spacetimes. These methods have provided detailed understanding of the emergence of new physics at Planck scale, and of classicality when
spacetime curvature becomes very small.A Further, they have validated an effective spacetime description of the underlying quantum geometry -- a
key ingredient of phenomenological predictionsin loop quantum cosmology. These lectures will introduce these numerical methods.
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Von Neumann analysis for stability

Using Fourier analysis the finite difference equation:

n | . n N
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becomes

Wt = glth,C "

with g(h,¢) = (1 — aX) + are ™, 0 = (¢

Advancing the solution by one time step equals multiplying Fourier
transform by an amplification factor.

A one step finite difference scheme is stable if and only if

lg(0,h, k)| <14 Ck with C' as some constant.

If g(0, N, k) is independent of h and k, a scheme is stable iff
19(0)] < 1.
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Stability of a finite difference scheme leads to restrictions on the
way h and k shoud be chosen.

Courant-Friedrichs-Lewy condition: For a hyperbolic equation
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with an explicit finite difference scheme
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with A\ fixed, a necessary condition for stability is |aA| < 1.

The numerical speed of propagation must be greater than the
speed of propagation of PDE (A™! > |a|)

Courant number: v = aA. CFL condition implies |v| < 1.
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Example 1: Forward time central space

Finite difference equation:

Von-Neumann analysis yields

L ar /o T
‘(']"(--:””H (_f] =i _) ((ﬁ”H “ sz))) =0

leading to

)

g|* = 1+ a*)\*sin® @
Hence |g| > 1 unless 6 = 0 or .
Forward time central space scheme is unstable. For a fixed «, one

can choose A very small to delay instability. However, instability
will apear at a certain time and the solution will blow up.
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Example 2: Forward time backward space

Finite difference equation:

“.’.,Hrl - _“'n. | (_l’/\((l-’” . .“__,”- | )
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Von-Neumann analysis yields

g (f/ S p—fﬂ)) =0

Stability requires —2aA(1 —a\)(1 —cosf) <0
Leads to CFL condition: |aA| < 1.

If the CFL condition is satisfied the forward time backward space
method is stable.
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Stability of LQC difference equation at large volume

The quantum Hamiltonian constraint for massless scalar in
spatially flat isotropic FRW spacetime can be rewritten as
(Ashtekar, Pawlowski, PS (06); Ashtekar, Corichi, P$ (08)) (Improved dynamics approach)

P2U(v,6) = Co()W(r +4A, §) + Co(1)W(v, $) + C (1) (1 — 4))

where

o InG | L 8nG
COuly) = 2 v(v+2X), C_(v) = Y. v(v—2A),

Von-Neumann analysis leads to
Cr(1)g° + (Co(v) —w?)g+ C_(v) =0
Amplitude of both roots turn out to be unity.

The quantum Hamiltonian difference equation for improved
dynamics is stable at large volumes. (cartin, Khanna (06))
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Massless scalar + positive A in spatially flat isotropic FRW

(Ashtekar, Pawlowski, PS (06), Kaminski, Pawlowski; Pawlowski, Ashtekar (10))

030 (v, ¢) = Cy (V)W (44N, §)+(Co(V)+TY° GAV?) U (v, §)+C_ ()T (v—4X)

In large volume limit, von-Neumann analysis results in

/-2

fi= (1—2 i )i (1—2 i )é—'l
Aovie Iy P

where Agit 1= 3/(724).

For 0 < A < Ait, both roots have magnitude unity.

For A > A.it, one of the roots has magnitude greater than unity.

von Neumann analysis implies that for A > A, difference
equation is not stable at large volumes. (Tanaka et al (11))

Consistent with an independent analysis of the physical Hilbert
Space (Kaminski, Pawlowski (10))
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Stability of earlier LQC quantizations

Massless scalar in spatially flat isotropic FRW (ashtekar, Bojowald, Lewandowski
(03); Ashtekar, Pawlowski, Singh (06))

B(p)d‘) U(p,d) = (Fo(p)U(p+4po, o) + folp) U(p,d) + f_(p) U(p — 4o,

where
1 /8w I Q,, [3/2 3/2
2V 6 8(vp,)3 2lp) \w—+wu)f‘—ur+;m\~

ﬁﬂdzhwfﬂu)wdﬁmdz—hw%ﬁqw
3/2 . e
( 3L, ) ( i ‘/’ — Mo .";4)

Von-Neumann analysis yields

and Blp) = (%)

8mylh,

F+()g* + (fo(u) — 87GB(p)h*?)g + f(

Both roots have magnitude equal to unity. The difference equation

is stable at large volumes. (Nothing seems to be wrong with old
loop quantization! Not really.)
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Massless scalar + positive A in isotropic spatially flat FRW

B(p) ()“’ U, d) = fil(p)U(p+ 4po,d) +
g ) 3/2 i
(,fn(ﬂ) + 2 (\—FII—L) ;\;:"“’) W, @) + fo(p) U —4p,)

von-Neumann stability yields

1 /0

,/nwm-+(/uw B(p) h*w? + >((—") .\/r‘*--)w,f (1) =0
) /

In the large volume limit we get

o0& 5

& V. 92 0 "‘i\[ln’l('"}/"u)::/r

v and i, are fixed by LQG, for any given value of A, there
exists a sufficiently large value y, such that |g2| > 1. The quantum
difference equation is unstable. Not a viable quantization.

Since ~
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I[Il. Robustness of bounce
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Numerical challenges

The quantum difference equation is extremely well approximated
by the second order Wheeler-DeWitt differential equation at small
spacetime curvatures (large volumes).

G OO
D) — ]271'(;{1' _ v
(.')(I,-‘f,‘)" (5)_1! B

Characteristic speeds: A\* = +
The stability of evolution constraints the maximum time step Ad¢:

Volume discreteness is fixed. The maximal possible time step is
inversely proportional to the maximal volume on the grid.

States which are highly quantum, and which probe deep Planckian
geometry require a very large grid in volume. The computational
cost of such numerical simulations is extremely high.
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Numerical challenges for isotropic and anisotropic models

@ |sotropic models:

e For sharply peaked initial states simulations: vty ~ 107,
computational time ~ 15 minutes on single core.
For widely spread states and those which can probe deep
Planck regime, vguter ~ 10'? (and higher). This requires 107
more spatial grid points. Since quantum grid is fixed, stability
requirements lead to 107 finer time steps. Such a simulation
would take 10" years!

@ Anisotropic models:
e Non-hyperbolicity encountered for Bianchi-l vacuum model

when casted in relational observables. However, one can
evaluate the entire physical wavefuntion by integration

X (l‘i| y U2, (13) — / (li'{'?;-’.(lu'r:‘l.{ ("{'rﬁ' w3 )(Iu-‘l (h L )("uu'j (.”2 )(ILL-‘:’, (.(‘:{)

o For a state sharply peaked at wy = w3 = 107, a typical
simulations require 10'* floating point operations.

o For wider states, and states probing deep quantum geometry,
typical simulations require 10'” flop. Memory needed ~ 5 Tb.
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Chimera scheme

(Diener, Gupt, PS (2014))
e Exploits the agreement between LQC and WDW theory at
large volumes.

@ Use two grids: An inner grid where the LQC difference
equation is solved, and a carefully chosen outer grid at large
volumes where the WDW theory is an excellent approximation.

e WDW equation is a partial differential equation, and we can
choose a different discretization in the outer grid using FD or
DG methods.

@ Choose a new coordinate: # = Inv

gy ) O L g
T 127G e e = 127G T
A= v v dx*

e Characteristic speeds are constants: A\* = +/127(G.

With the Chimera scheme with viyt = 12,500 and voyter = 2 X 1012
the evolution takes only 5 minutes on a single core.
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Results: Testing the validity of effective description

At a coarse level, effective theory captures underlying quantum
evolution quite well, especially for sharply peaked states.

However, effective theory becomes less reliable for states which
bounce deeper in Planck regime (even if v > 1), and for states
which have wide spreads (piener. Gupt, Ps (2014))
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Departures of effective description from the quantum evolution
found to depend in a subtle and non-monotonic way on the values
of field momentum and fluctuations.
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As an example, contrary to heuristic expectations, it is not always
true that for smaller relative fluctuations effective theory captures
quantum evolution better.

Nature of the departures also found to be quite sensitive to the
construction of initial states. Extra care needed in reaching
generalized conclusions in the effective descriptions.
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Quantum bounce for highly quantum states

Bounce not restricted to any special states. Even occurs for states
which are highly non-Gaussian or squeezed.

(Diener, Gupt, Megevand, PS (2014))
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Tight constraints on the growth of the fluctuations across the
bounce. State in the asymptotic future turns out to be very similar
to the one in the asymptotic past. Results are in agreement with
earlier analytical estimates (corichi, Kaminski, Montoya, Pawlowski, PS (2008-11))
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Results: Testing the validity of effective description

At a coarse level, effective theory captures underlying quantum
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Cyclic model inspired potential

POtential: ([’ — (-'f.(Jf.’_q).- (Diener, Gupt, Megevand, PS (appearing soon))
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Quantum bounce occurs even in the presence of a steep potential.
Qualitative features of the bounce unaffected by the potential for
various choices of parameters and initial conditions.
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Effective description in very good agreement in the presence of
potential for sharply peaked states.
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Evolution can be asymmetric across the multiple bounces. State
remains sharply peaked through out the evolution.

Non-singular evolution also achieved in inflationary potentials

(Ashtekar, Pawlowski, PS (in progress))
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Anisotropic quantum bounce

Rigorous quantization of Bianchi-I vacuum model available.
SlngUIE]rlty I’ESO|UtIOﬂ fOU nd (Martin-Benito, Mena Marugan, Pawlowski (2008)).

Cactus implementation of the Bianchi-1 vacuum spacetime
performed. Using HPC we can now rigorously understand the
physics of quantum bounce in Bianchi-I vacuum

(Diener, Joe, Megevand, PS (2017))
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Effective description turns out to be a good approximation for
sharply peaked states in the Bianchi-l model.

As in the isotropic model, the agreement between the quantum
evolution and the effective theory depends non-monotonically on
the relative fluctuations.
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Quantum geometry provides a glimpse on the way big bang
singularity may be resolved. No need of exotic matter/fine
tuning.

With new numerical algorithms and using HPC, we are now
able to explore extreme regimes of the quantum spacetime.

Numerical simulations prove to be an invaluable tool to
extract detailed physics of the quantum spacetime.

Quantum bounce turns out to be a generic feature in all the
simulations performed so far, including for highly quantum
states, in presence of potentials and anisotropies.

Using numerical simulations, valuable insights gained on the
validity of effective descriptions and when can the resulting
physics be considered reliable.
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Future Directions

For some COos n']OIOgK:aI mOdE|S, Cosmic microwave background

physics of quantum geometry
established with caveats (dis-
covered computationally).

Geometry

such as in presence of inflation, \ Pre-infation
anisotropies and inhomogeni- Gy — Bounce
ties, most of the physics un-
explored. Many analytical and pre-bounce Phase

s of the Universe
conceptual issues need to be

Inflation
But for more general models, Quantum I

overcome while numerical hur- 5. Ston P £ 248 130R%)
dles are crossed.

In the next decade, computational methods in quantum gravity
must for extracting robust predictions about the reliable signatures
of quantum geometry, such as in CMB.
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