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Abstract: In the last decade various cosmological spacetimes have been quantized using the techniques of loop quantum gravity. To understand
singularity resolution and decipher reliable Planck scale physics, development of new numerical methods and usage of high performance computing
is critical in loop quantum cosmology. In recent years, these developments have robustly demonstrated resolution of singularities in quantum
spacetimes. These methods have provided detailed understanding of the emergence of new physics at Planck scale, and of classicality when
spacetime curvature becomes very small.A Further, they have validated an effective spacetime description of the underlying quantum geometry -- a
key ingredient of phenomenological predictionsin loop quantum cosmology. These lectures will introduce these numerical methods.
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Introduction to loop quantum cosmology: first results of
quantum bounce

Finite difference methods: gaining insights on different
quantizations

Robustness of quantum bounce and probing deep Planckian
geometry

Summary
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A simple example of a big bang

A spatially flat homogeneous and isotropic universe sourced with a
massless scalar field ¢. Matter Hamiltonian: H, = P2 /2v.

Classically p oc a=%. As scale factor @ — 0, energy density and
curvature become infinite in finite time.

Hamilton's equations give two solutions: an expanding and a
contracting universe (both solutions are singular).
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Quantum Cosmological Models: WDW approach

@ Quantize geometry and matter for a homogeneous universe.
Only finite number of degrees of freedom, system can be
treated quantum mechanically. Arena to apply the techniques
of full theory of quantum gravity in a simplified yet non-trivial
setting. (Hope to gain new insights, lessons for full QG).

@ Wheeler-DeWitt quantization (based on metric variables)

(Misner, Wheeler, DeWitt 1970's).

o Basic variables: Geometry — v, p, o 0, Matter — ¢, p.

e Operators: v W(v, ¢) = v W (v, ), p, V(v,d) = —ihj—)lli(z',q’))

v

e Hamiltonian constraint — (¢ p,,)2 W (v, ¢) = H, W(v, o)

e For a massless scalar in spatially flat isotropic model:
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Strategy to extract physics:

@ Physical Hilbert space: self-adjoint Hamiltonian constraint,
inner product, physical states, observables.

e Construct initial states (such as Gaussian states) in the GR
epoch, and evolve them numerically.

e Compute expectation values of observables (and their
fluctuations). Compare with the classical trajectory.

&

WDW states follow the classical trajectory all the way to the big
bang. Singularity not resolved.
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Loop quantum cosmology

A non-perturbative quantization of homogeneous spacetimes using
techniques of loop quantum gravity (Bojowald, Ashtekar, Lewandowski (2001-03)).

LQG based on connection and triad variables which are symmetry
reduced before quantization. Captures key elements of the
underlying discrete quantum geometry when gravitational part of
Hamiltonian constraint expressed in terms of holonomies of the
symmetry reduced connection and triads.

(.*_Yg”‘.\! - — / (l.'i;_!,. j\T Eijf\' P::h (ﬁ'm'} bjbk/ | (‘](‘t f_*j”
Jv

There are different possible regularizations of the field strength. A
consistent quantization must be free of fiducial structures, give GR
in infra-red limit and should have a well defined scale at which
quantum effects become important. In isotropic LQC there is a
unique viable quantization (corichi, singh (2007)). Von-Neumann stability
analysis of quantum Hamiltonian constraint confirms this result

(Cartin, Khanna Nelson, Sakellariadou, PS (06-12))
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Loop quantization at the level of physical Hilbert space first
established for a spatially flat isotropic model with a massless
scalar field (Ashtekar, Pawlowski, Ps (2006)). Various generalizations available.

Quantum Hamiltonian constraint: 9°V = —©W

O := —B(v) " CH )V (v + 4, ¢) + C°(0)¥(v, ) + C~ (v) (v — 4, $)]

L e LS o
C™(v) = 3 v+ 2| |lv+ 1] — v+ 3|, A—W
C(v) = CHw—4)= T g flo - 3|~ o - 1]].
Cw) = -C*(v)-C~(v),

B) = Zpuflw+12 = o —13]"

Discreteness in difference equation a direct manifestation of the non-local
nature of the field strength, and the underlying quantum geometry.

At small spacetime curvature (large volume limit), quantum difference
equation is approximated by the WDW equation.
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Quantum Bounce

BIG BOUNCE

Feature Story in New Scientist Dec 2008 by A. Ananthaswamy

For states which are sharply peaked at late times, big bang is
replaced by a quantum bounce.

Sharply peaked states bsounce at a maximum of energy density
Pmax = %/SW(:AJ ~ 0.4] PPlanck

A~ 0.29(Gh)'/? is the minimum area in quantum geometry

Classical singularity recovered when A — 0.
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In the last decade, loop quantization of various cosmological
spacetimes performed and generalizations studied by various
groups. Resolution of singularity found in all the cases.

@ Interestingly, for sharply peaked states physics can be
captured extremely well by an effective spacetime description.
Very rich physics explored.

@ Impact of bounce studied for signatures in cosmological
perturbations in the very early universe (agullo, Ashtekar, Barrau, Bojowald,
de Blas, Grain, Hossain, Maartens, Mena Marugan, Mielczarek, Olmedo, PS, Tsujikawa, ... 2004-15)

@ Indications of a potential non-singularity theorem in effective
spacetime (saini, PS 2000-16)

@ Techniques applied to black hole spacetimes (ashtekar, Boehmer,

Bojowald, Corichi, Gambini, Modesto, Pullin, Olmedo, PS, Vandersloot 2007-17).
@ Provides some insights for the fate of gravitational collapse in

general (Bojowald, Goswami, Husain, Kunstatter, Rovelli, PS, Vidotto 2005-17).
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Many questions remain open

Is quantum bounce a generic phenomena in the theory?

Sharply peaked states bounce at volumes greater than
10°Vplanck. For such states effective spacetime description is
excellent. But what about quantum states which probe the
deep Planck regime? Does effective dynamics still works?

What is the state of the universe on the other side? How do
large quantum fluctuations affect the bounce?

Do bounces occur in quantum anisotropic models and black
hole spacetimes?

For isotropic model in LQC there is a unique consistent
quantization which is physically viable. What about
anisotropic models and black hole spacetimes? How do we
rule out consistent quantizations?
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[I. Finite difference methods: Given a discretization, how to
determine their viability.
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Consider a PDE

gulz.t] @dffz i)
: : == gix.i
ot i Ox 9(a )

Depending on complexity of underlying geometry, demand of
higher order accuracy and stability, different methods available to
obtain a numerical solution.

@ Finite difference method
@ Finite volume method
@ Finite element method: such as continuous and discontinuous

Galerkin (DG)

Finite volume and finite element methods are especially well suited
for computations in complicated domains on (locally) irregular or
unstructured meshes.

The structure of quantum geometry determines which method to
use. LQC based on finite difference method, along with
applications of DG method in novel algorithms.
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Finite volume and finite element methods

Finite volume: solution approximated in a small volume around a
node by a constant wy () at the center x;,. PDE is satisfied by the
cell average values: h.,\.‘—'(é'ﬁﬁ- + fi F1/2 = i /2 hiqp.

Divergence term can be evaluated as a surface term. Flux
evaluation at the boundary of each finite volume. Powerful method

for non-linear conservation laws.

Continuous Galerkin: In each element, local solution is
approximated using basis functions N;(x;):

/ 82 e,
whiT) = )y welNi(z).

PDE can be solved with a continuous Galerkin scheme. Introduce

test functions (weak formulation).

2 8.0 S _
: = j\f!_ 2ds—0
/ ( == a0 ) (x)da

Time implicit scheme. Inversion of a global matrix required.
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~—clement — —element—
Continuous Galerkin method Discontinuous Galerkin method

In CG method function approximated by a piecewise linear function
in each element based on the nodal values.

In DG method on each element we find a piecewise linear
discretization. Approximation across the nodes not assumed
continuous. Locally continuous discretization, globally
discontinuous.

Basis and test functions chosen based on continuous Galerkin, but
equation satisfied in sense closer to finite volume.

Resulting matrix local, can be inverted easily. Explicit time
scheme. Operators tend to be more sparse than in continuous
Galerkin, leading to faster solutions.
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Finite differences
Starting from the standard definition

s f(z+ h) — f(z)
= |im

dx h—0 /1.

ar

we can obtain an approximate numerical derivative making the
discreteness of the spatial grid (h) very small.

(i) Forward difference: 9Z

(iii) Central difference: tl’

Central difference gives more accurate approximation if

/1. = |f”(;'{7)/f”,('-r)|
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Finite difference method

Choose a spatial grid labelled by x;., with £ = 1..N. At a grid
point =" , the PDE is approximated using central difference as

dw(x, t) ! ol Trar = fulZei T

— { g i s
dt hi + hi—1 9Tk, t)

(hl.- — ;F.A-+[ — ;I';‘v)

w and f,, are numerical approximations to v and f in PDE. These
are assumed to be well approximated by local polynomials.

very simple, highly efficient method

explicit in time

extensive theoretical understanding

unsuitable for complex geometries and discontinuities
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dw(x, t) o Polteal Bl = Pl B 3. T

— " { o O
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(hl.- — ;F.A-+[ — ;I';‘v)
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Finite difference method

Consider a hyperbolic PDE

du b du 0

ST
To obtain solution, provide initial data «(0, ) at t = 0. Determine
values of u(t,x) for positive t.

Solution: u(t, x) = uy(&) with £ = = — at.

Characteristics: lines on which £ is constant. « is the speed of
propagation along the characteristics.

For a system of hyperbolic equations, f)—‘; + n:j—‘; + Bu = g(t, )

where wu is a vector, characteristic speeds are given by the
eigevalues of matrix o (which are real).
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Finite difference method

Let us introduce grids in both
time and space coordinates, la-
belled by discreteness i and k&
respectively. A point (¢, zm,)

is represented as (nk,mh)
where n, m are integers.

The hyperbolic PDE can be discretized in various ways utilizing
freedom to express derivatives as differences.

Some examples:

Forward time forward space (one step)

=17, n4l o Jh=1(,,n L e
b=l —wlsral st [ =0

1 /

Leapfrog (multi-step)
L (,,n+1 o Qe N s
27(“-’”;. = “"‘m—'l) i Eﬁ(“"m.JrI - “"'-m—l) =0
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Consistency and convergence

Using forward time forward space discretization we can write

w T (14 aMw,, — aw! 1

T / m

Here A = k/h is the inverse of the characteristic speed.
The comparison between the solution from finite differencing and

the PDE depends on A and h.

Consistency: a smooth solution of PDE is also a solution of the
corresonding finite difference equation.

Convergence: whether solutions of finite difference scheme
approximate solutions of the corresonding PDE.

A finite difference scheme may be consistent but not convergent.

Lax-Richtmyer Equivalence Theorem: A consistent finite difference
scheme for which initial value problem is well posed is convergent
if and only if it is stable.
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Stability of a finite difference scheme leads to restrictions on the
way h and k shoud be chosen.

Courant-Friedrichs-Lewy condition: For a hyperbolic equation

o L ou _ 0
5% o

with an explicit finite difference scheme

H+] = n n Sl
w = aw i T b“-m i Urn+1

1 Fr L=

with A\ fixed, a necessary condition for stability is |aA| < 1.

The numerical speed of propagation must be greater than the
speed of propagation of PDE (A~! > |a|)

Courant number: v = aA. CFL condition implies |v| < 1.
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