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Triangulation size?

» What is the “size” of a D-triangulation?

N = # of half-edges (size of n,ay)
Ny = # of vertices
N; = # of edges

Np = # of D-simplices
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Triangulation size?

» What is the “size” of a D-triangulation?

N = # of half-edges (size of n,ay)
Ny = # of vertices
N; = # of edges

Np = # of D-simplices
» Relations: N = Np(D + 1)!/2, 2Np_1 = Np(D + 1),
S (=1)KN, = y (Euler characteristic). In D > 4 more linear

£Lak=0
(Dehn-Sommerfield) relations.
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Triangulation size?

» What is the “size” of a D-triangulation?

N = # of half-edges (size of n,ay)
Ny = # of vertices
N; = # of edges

N

S

Np = # of D-simplices
» Relations: N = Np(D +1)!/2, 2Np_; = Np(D + 1),
Ezzo(—l)ka = x (Euler characteristic). In D > 4 more linear
(Dehn-Sommerfield) relations.
» Only [%J independent numbers. In 3D and 4D these are usually
taken to be Np and Np_», or Np and Nj.

» Recall the EH action S[Np, Np_2] = kpNp — kp_2Np_» is exactly
a linear combination of these.

» As we will see: for fixed Np, varying the ratio Np_,/Np has a large
effect on the random geometries!
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Labeling & symmetry

» Recall from yesterday: in 2D for fixed N, a uniform labeled
triangulation t with N, triangles is equivalent to an unlabeled
triangulation t with probability proportional to 1/|Aut(t)]:

1
Zy, = Z 1 = (3N5)! Z m

~ labeled unlabeled _
triangulations t triangulations t

» No longer equivalent if N, (or Np in dimension D) is allowed to vary.

» Settle upon convention that S[Np, Np] is action for unlabeled
triangulations:

7 Z e~ S[Nb.No] Z e~ S[No,No]
labels)! i
. labeled (# abe S) unlabeled _ ‘AUt(t)\
triangulations t triangulations t

(#labels = Np(D + 1)!/2 for general and Ny for simplicial
triangulations)
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Moves in 3D

» 23-move: select a uniform random triangle, merge incident
tetrahedra, split into 3 tetrahedra.
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Moves in 3D

» 23-move: select a uniform random triangle, merge incident
tetrahedra, split into 3 tetrahedra.
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Moves in 3D

» 23-move: select a uniform random triangle, merge incident
tetrahedra, split into 3 tetrahedra.

» 32-move:. select uniform random tetrahedron and one of its edges,
check edge has degree 3, merge tetrahedra, split into 2 tetrahedra.
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Moves in 3D

» 23-move:. select a uniform random triangle, merge incident
tetrahedra, split into 3 tetrahedra.

» 32-move:. select uniform random tetrahedron and one of its edges,
check edge has degree 3, merge tetrahedra, split into 2 tetrahedra.

» Always valid for general triangulations, provided tetrahedra are
distinct. For simplicial triangulations need to check no “double”

edges or triangles created.

P(a—b) SelectProb(a—b) AcceptProb(a— b)

» Detailed balance:

P(b—a) SelectProb(b—a) AcceptProb(b—a)
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Moves in 3D

» I14-move: select a uniform tetrahedron, split into 4 tetrahedra.

» 41-move: select a uniform tetrahedron and one of its vertices, check
configuration, remove vertex.

» Always valid both for general and simplicial triangulations.

Page 10/41
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Grand canonical?

» The Markov step that attempts 23-, 32-, 14-, 41-move with
probabilities £, 2, 252 12 (0 < p < 1) satisfies detailed balance

22 2 7 2
(w.r.t. Boltzmann weight e~>[Ns:Nol)
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Moves in 3D

» 14-move: select a uniform tetrahedron, split into 4 tetrahedra.

» 41-move: select a uniform tetrahedron and one of its vertices, check
configuration, remove vertex.

» Always valid both for general and simplicial triangulations.

- . P(a—b) _ 1/(N5) A(a—b) 1 S[NZ N3)—S[NE N
Detailed balance: P(b—a) 4/(4"\}2}) A(b—a) e (N5, Ng]—S[N5',Ny]

28

v

N =Ng+3
N} = N§ +1
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Grand canonical?

» The Markov step that attempts 23-, 32-, 14-, 41-move with
probabilities £, 2, 152 12 (0 < p < 1) satisfies detailed balance

22 2 0 2
(w.r.t. Boltzmann weight e~>Ns:Nol)
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Grand

canonical?

The Markov step that attempts 23-, 32-, 14-, 41-move with

probabilities £, 2, 152 l;p (0 < p < 1) satisfies detailed balance

202 2
(w.r.t. Boltzmann weight e~>Ns:Nol)

» Ergodic, provided we do not restrict N3 or Ng! [Pachner, 01

» To ensure ergodicity for N3 < n, must allow intermediate

triangulations of size N3 < f(n).

2
cn

» Theoretically: f(n) < e [Mijatovic, 03]

> In practice: f(n) < n+ 2 for all n <9 (10° triangulations) [Burton,'11]
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Grand

canonical?

The Markov step that attempts 23-, 32-, 14-, 41-move with

probabilities 2, 2, 152 l;p (0 < p < 1) satisfies detailed balance

202072
(w.r.t. Boltzmann weight e~>[Ns:Nol)
» Ergodic, provided we do not restrict N3 or Ng! [Pachner, 01

» To ensure ergodicity for N3 < n, must allow intermediate

triangulations of size N3 < f(n).

. 2
» Theoretically: f(n) < e [Mijatovic, 03]

1

» In practice: f(n) < n+ 2 for all n <9 (10° triangulations) [Burton,'11]

Need to use a grand-canonical ensemble in 3D/4D (contrary to 2D)!
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» Why not just

1 -
Z — - *S[N_’,NO] — Z . *:‘\3!‘\."3.| S N ‘N R N . N ?
Z \Aut(t)\e Z N3 € . 5[Ns, No] = r3N3—roNo

triang. t N3

» Typically Zy, = > |Au];_(t)|e"'°N0 ~ f(N3)eo)Ns 35 N3 — o0,
f(N3) — 0 subexponentially.

» k3 < c(ko): Z[K3, ko] = o0

N3 distribution
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» Why not just

1 .
Z= = o= SINsNo) Zv e M STN: Nl = k1 Na—rea No?
Z \Aut(t)\e Z N3 € . 5[Ns, No] = r3N3—roNo

triang. t N3

» Typically Zy, = 5 mtrsrefoMo ~ f(N3)ec(ro)Ms a5 Ny — oo,

L |A1lt(.t)|
f(N3) — 0 subexponentially.
» k3 < c(ko): Z[K3, ko] = 0
» k3 > c(ko): N3 = 1 with positive probability.

1 N3 distribution
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» Why not just

1 |
Z=Y e NNl =N "7y e SN, No] = r3Ns—rioNo?
\Aut(t)\e N; € . S[N3, No] = r3N3—roNo

triang. t N3

g Typlca”y ZN3 - z |:’\111t(t)|e“0N0 ~ f(N3)e(:(HO)7N3 as N3 — 00,

f(N3) — 0 subexponentially.
» k3 < ¢c(ko): Z[K3, ko] = o0
» k3 > c(ko): N3 = 1 with positive probability.
> |f N3 = n is desired, use S[N3, NO] — h'-3N3 — H-(}NO + (:UV3 — n[l or2

| N3 distribution

t n
~
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» Why not just

1 -
Z = = —5[N3,Ng] __ 7Zn *h3N31 SINa. Nol = w2 Na—roNo?
Z ]Aut(t)\e Z N3 € . S[N3, No] = k3 N3—roNo

triang. t N3

» Typically Zy, = > |Au]i(t)|eHON0 ~ f(N3)e(Fo)Ns a5 N3 — o0,
f(N3) — 0 subexponentially.
» k3 < c(ko): Z[K3, ko] = o0
» k3 > c(ko): N3 = 1 with positive probability.
» If N3 = n is desired, use S[N3, No] = h‘-3N3 — H-ONO + (:“V3 — ﬂ‘l o2
» Rejection sampling of MCMC: effectively simulate
Zny=n[ko] = D e"oMo  Need ¢ not too small.
» Need ¢ not too large for ergodicity.

1 N3 distribution

T
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MCMC overview

» Read parameters: desired size n, coupling ky.

» Initialize configuration: correct topology is sufficient.

» Start performing Monte Carlo moves indefinitely
» Thermalization phase

» Parameter tuning (€, kp, relative move frequency p)
» Monitor thermalization with suitable observables.

» Measurement phase

» With predetermined frequency attempt measurement.
» If desired, reject configuration if size outside window around n.
» Add measurement data to list or histogram.
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Phases

» By examining the moves we can already get an idea what the
geometries will look like for kg very small/large.

» ko large, maximize Ny for fixed Njs: _ _
many 14-moves — tree-like structure. %

» ko small, minimize Ny for fixed Ns:
many 23-moves — highly connected
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Phases

» By examining the moves we can already get an idea what the
geometries will look like for kg very small/large.

» ko large, maximize Ny for fixed Njs:
many 14-moves — tree-like structure.
“Branched polymer phase”

dy = 2, d :4/3

» ko small, minimize Ny for fixed Ns:
many 23-moves — highly connected
“Crumpled phase”
no conclusive scaling (dy = ds = o0?)

» Indeed these structures are characteristic for the two phases of DT
n 3D and 4D |[Boulatov, Krzywicki, Ambjgrn, Varsted, Agishtein, Migdal, Jurkiewicz,

Renken, Catterall, KL‘;{{UT_ Thorleifsson, Bialas, Burda, Bilke, Thorleifsson, Petersson, _“JUQ]
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Phase transition

(No)/N3

1.1.1111.1l1.1.1.1111.1.111.111,'1.“

» All is not lost: perhaps enhanced scaling at the phase transition?
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Phase transition

(No) /N3

» All is not lost: perhaps enhanced scaling at the phase transition?
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Phase transition

1 1 L 1 1 L ‘__j Hl)

» All is not lost: perhaps enhanced scaling at the phase transition?

» Not clear from this plot whether transitions is discontinuous (1st
order) or continuous (higher order).
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Double peak structure

Maximal vertex degree

——
o i
-

8 > ol . 1
X 9 | 1

Monte Carlo time

» When kg is tuned to critical value: MCMC jumps between two
meta-stable states.
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Double peak structure

Maximal vertex degree

e
st
~
s 1
L L
bE &
.

Monte Carlo time histogram

» When kg is tuned to critical value: MCMC jumps between two
meta-stable states.

» If double peak in histogram becomes more pronounced as N; — oo
then transition is discontinuous.
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Double peak structure

Maximal vertex degree

Monte Carlo time histogram

-
. N3 2k - N3 = bk

» When kg is tuned to critical value: MCMC jumps between two
meta-stable states.

» |f double peak in histogram becomes more pronounced as Ny — o0
then transition is discontinuous.

» It does. No hope of new scaling at transition.

x"‘\'r;g 1( );‘ _'I\"_‘; = 20k
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How to proceed?

» 3D-—4D: Situation is similar, though discontinuity less pronounced.

Pirsa: 17060083 Page 29/41



How to proceed?

» 3D-—4D: Situation is similar, though discontinuity less pronounced.

» Enlarge phase diagram with extra couplings or matter fields.
» Higher curvature terms.
. . -5 =5 \I8
» Non-trivial measure: e re " [1,, , [deg(op-2)|".
» Gauge fields, Gaussian fields, Ising models.
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How to proceed?

» 3D-—4D: Situation is similar, though discontinuity less pronounced.

» Enlarge phase diagram with extra couplings or matter fields.
» Higher curvature terms.
» Non-trivial measure: e > — e > Hn“ | deg(op-2)|".
» Gauge fields, Gaussian fields, Ising modtels.
» Change the ensemble of geometries.
» Change topology.
» Different polyhedra as building blocks.
» Introduce foliation: Causal Dynamical Triangulations (CDT).
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Causal Dynamical Triangulations in 3D

» Consider a (general or simplicial) 3-Triangulation of topology
St x §2.

» It is causal if it is “foliated” by triangulations of $? and all
tetrahedra of two types (31-, 22-simplex).
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Adaption to Causal triangulations

\g g A\ ‘I - \ \ C-H ‘ ) )
» Replace moves Q }$/v 4» _ 4“‘* with a set that

preserves the foliation and is ergodic in causal triangulations (with

<

ny

A R

» Update detailed balance conditions.
» Construct by hand an initial configuration with correct topology.

) ——

b
4
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Phase diagram of CDT in 3D
» For fixed N;

» ko large, maximize Ny, few 22-simplices

» ko small, minimize Ny, many 22-simplices

[Ambjorn, Jurkiewicz, Loll, hep-th/0011276]

8.05
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Phase diagram of CDT in 3D
» For fixed Nj

» Ko large, maximize Ny, few 22-simplices
Weak correlation between slices; collection of 2d random geometries
» ko small, minimize Ny, many 22-simplices

8.05
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A closer look at the condensation phase

» As N3 — oo the relative fluctuations of Np(t') w.r.t (Na(t"))
decrease to 0.

No(t)
1200

900
600 -

300

10 20 30 40 50 60 70
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A closer look at the condensation phase

» As N3 — oo the relative fluctuations of No(t') w.r.t (Na(t"))
decrease to 0.

» (N,(t')) accurately matches a - cos?(b - t’) (which happens to match
the volume profile of S3).

» Spectral dimension d, ~ 3.

— E—
“‘ﬁ‘-‘-‘: -~
Na(t') No(t) %/
1200 1200 \/
N{/ ;’f
900 | 900 N—f
600 - 600 Sl x T
M A NPAA A A __
300 - 300 J\/\/\/"“\f'\m\/\' Mgy
- : L
30 - 20 0 10 20 30 40 S0 60 70
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CDT in 4D: the state of the art

» A richer phase diagram in 4D: similar phase C with semi-classical
volume profile and d; ~ 4.

[Ambjorn, Coumbe, Gizbert-Studnicki, Goerlich, Jordan, Jurkiewicz, Klitgaard, Loll, ...]
Oa8 T T T T T
0.6 +
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02} C “ "
0
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Take-home messages

» Simulating random geometry, in particular (Causal) Dynamical
Triangulations, is not more difficult than simulating the Ising model.
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Take-home messages

» Simulating random geometry, in particular (Causal) Dynamical
Triangulations, is not more difficult than simulating the Ising model.

» Continuous phase transitions are essential to model sub-Planckian
geometry.
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Take-home messages

» Simulating random geometry, in particular (Causal) Dynamical
Triangulations, is not more difficult than simulating the Ising model.

» Continuous phase transitions are essential to model sub-Planckian
geometry.

» The possession of a semi-classical thermodynamic limit is a highly
non-trivial property in the case of (background-independent) random
geometries.
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