Title: Monte Carlo methods in Dynamical Triangulations - 4

Date: Jun 22, 2017 09:45 AM

URL: http://pirsa.org/17060083

Abstract:

Pirsa: 17060083

Triangulation size?

▶ What is the "size" of a *D*-triangulation?

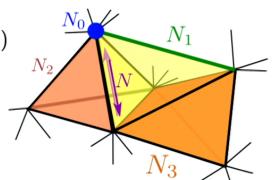
N=# of half-edges (size of n, a_d)

 $N_0=\#$ of vertices

 $N_1=\#$ of edges

:

 $N_D = \#$ of D-simplices



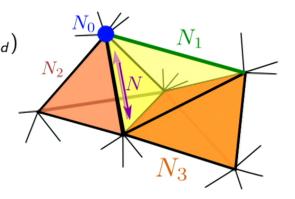
Pirsa: 17060083 Page 2/41

Triangulation size?

▶ What is the "size" of a *D*-triangulation?

N = # of half-edges (size of n, a_d) $N_0 = \#$ of vertices $N_1 = \#$ of edges \vdots

 $N_D = \#$ of *D*-simplices



▶ Relations: $N = N_D(D+1)!/2$, $2N_{D-1} = N_D(D+1)$, $\sum_{k=0}^{d} (-1)^k N_k = \chi$ (Euler characteristic). In $D \ge 4$ more linear (Dehn-Sommerfield) relations.

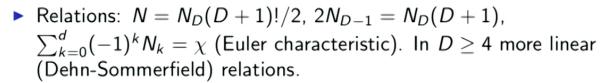
Pirsa: 17060083

Triangulation size?

▶ What is the "size" of a *D*-triangulation?

$$N=\#$$
 of half-edges (size of n,a_d) $N_0=\#$ of vertices $N_1=\#$ of edges

 $N_D = \#$ of *D*-simplices



- ▶ Only $\lfloor \frac{D+1}{2} \rfloor$ independent numbers. In 3D and 4D these are usually taken to be N_D and N_{D-2} , or N_D and N_0 .
- ▶ Recall the EH action $S[N_D, N_{D-2}] = \kappa_D N_D \kappa_{D-2} N_{D-2}$ is exactly a linear combination of these.
- As we will see: for fixed N_D , varying the ratio N_{D-2}/N_D has a large effect on the random geometries!

 N_1

Pirsa: 17060083 Page 4/41

Labeling & symmetry

▶ Recall from yesterday: in 2D for fixed N_2 a uniform labeled triangulation \mathfrak{t} with N_2 triangles is equivalent to an unlabeled triangulation $\tilde{\mathfrak{t}}$ with probability proportional to $1/|\mathrm{Aut}(\tilde{\mathfrak{t}})|$:

$$Z_{N_2} = \sum_{\substack{\text{labeled} \\ \text{triangulations } \mathfrak{t}}} 1 = (3N_2)! \sum_{\substack{\text{unlabeled} \\ \text{triangulations } \tilde{\mathfrak{t}}}} \frac{1}{|\operatorname{Aut}(\tilde{\mathfrak{t}})|}$$

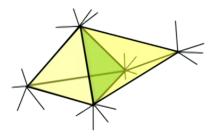
- ▶ No longer equivalent if N_2 (or N_D in dimension D) is allowed to vary.
- ▶ Settle upon convention that $S[N_D, N_0]$ is action for unlabeled triangulations:

$$Z = \sum_{\substack{\mathsf{labeled} \\ \mathsf{triangulations} \ \mathfrak{t}}} \frac{e^{-S[N_D,N_0]}}{(\#\mathsf{labels})!} = \sum_{\substack{\mathsf{unlabeled} \\ \mathsf{triangulations} \ \tilde{\mathfrak{t}}}} \frac{e^{-S[N_D,N_0]}}{|\mathsf{Aut}(\tilde{\mathfrak{t}})|}$$

(#labels = $N_D(D+1)!/2$ for general and N_0 for simplicial triangulations)

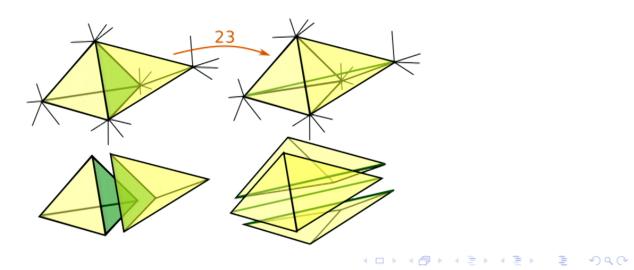
Pirsa: 17060083 Page 5/41

▶ 23-move: select a uniform random triangle, merge incident tetrahedra, split into 3 tetrahedra.



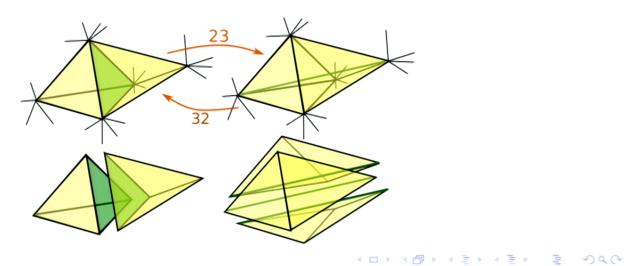
Pirsa: 17060083 Page 6/41

▶ 23-move: select a uniform random triangle, merge incident tetrahedra, split into 3 tetrahedra.



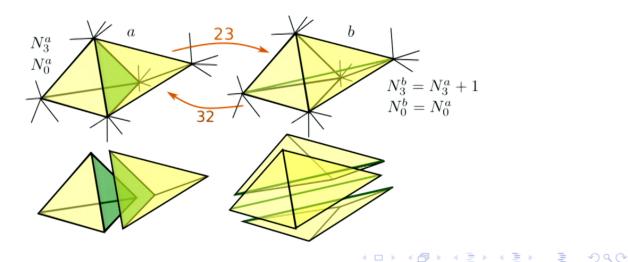
Pirsa: 17060083

- ▶ 23-move: select a uniform random triangle, merge incident tetrahedra, split into 3 tetrahedra.
- ▶ 32-move: select uniform random tetrahedron and one of its edges, check edge has degree 3, merge tetrahedra, split into 2 tetrahedra.



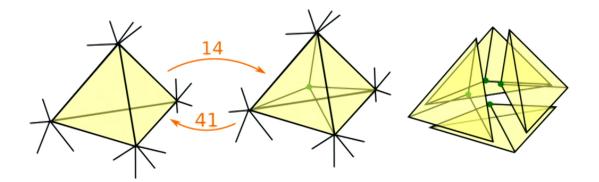
Pirsa: 17060083 Page 8/41

- ▶ 23-move: select a uniform random triangle, merge incident tetrahedra, split into 3 tetrahedra.
- ▶ 32-move: select uniform random tetrahedron and one of its edges, check edge has degree 3, merge tetrahedra, split into 2 tetrahedra.
- Always valid for general triangulations, provided tetrahedra are distinct. For simplicial triangulations need to check no "double" edges or triangles created.
- ▶ Detailed balance: $\frac{P(a \to b)}{P(b \to a)} = \frac{\text{SelectProb}(a \to b)}{\text{SelectProb}(b \to a)} \frac{\text{AcceptProb}(a \to b)}{\text{AcceptProb}(b \to a)}$



Pirsa: 17060083

- ▶ 14-move: select a uniform tetrahedron, split into 4 tetrahedra.
- ▶ 41-move: select a uniform tetrahedron and one of its vertices, check configuration, remove vertex.
- ► Always valid both for general and simplicial triangulations.

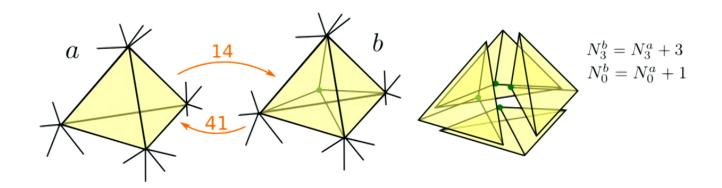


Pirsa: 17060083 Page 10/41

▶ The Markov step that attempts 23-, 32-, 14-, 41-move with probabilities $\frac{p}{2}, \frac{p}{2}, \frac{1-p}{2}, \frac{1-p}{2}$ (0 < p < 1) satisfies detailed balance (w.r.t. Boltzmann weight $e^{-S[N_3,N_0]}$).

Pirsa: 17060083 Page 11/41

- ▶ 14-move: select a uniform tetrahedron, split into 4 tetrahedra.
- ▶ 41-move: select a uniform tetrahedron and one of its vertices, check configuration, remove vertex.
- ▶ Always valid both for general and simplicial triangulations.
- ▶ Detailed balance: $\frac{P(a \to b)}{P(b \to a)} = \frac{1/(N_3^a)}{4/(4N_3^b)} \frac{A(a \to b)}{A(b \to a)} \stackrel{!}{=} e^{S[N_3^a, N_0^a] S[N_3^b, N_0^b]}$



Pirsa: 17060083

The Markov step that attempts 23-, 32-, 14-, 41-move with probabilities $\frac{p}{2}, \frac{p}{2}, \frac{1-p}{2}, \frac{1-p}{2}$ (0 < p < 1) satisfies detailed balance (w.r.t. Boltzmann weight $e^{-S[N_3,N_0]}$).

Pirsa: 17060083 Page 13/41

- ▶ The Markov step that attempts 23-, 32-, 14-, 41-move with probabilities $\frac{p}{2}, \frac{p}{2}, \frac{1-p}{2}, \frac{1-p}{2}$ (0 < p < 1) satisfies detailed balance (w.r.t. Boltzmann weight $e^{-S[N_3,N_0]}$).
- ▶ Ergodic, provided we do not restrict N_3 or N_0 ! [Pachner, '91]
- ▶ To ensure ergodicity for $N_3 \le n$, must allow intermediate triangulations of size $N_3 \le f(n)$.
 - ▶ Theoretically: $f(n) < e^{cn^2}$ [Mijatović, '03]
 - ▶ In practice: $f(n) \le n + 2$ for all $n \le 9$ (10⁸ triangulations) [Burton,'11]

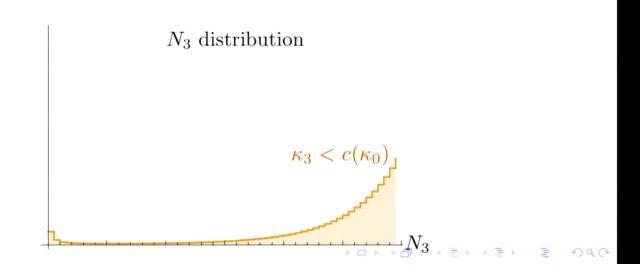
Pirsa: 17060083 Page 14/41

- ▶ The Markov step that attempts 23-, 32-, 14-, 41-move with probabilities $\frac{p}{2}$, $\frac{p}{2}$, $\frac{1-p}{2}$, $\frac{1-p}{2}$ (0 < p < 1) satisfies detailed balance (w.r.t. Boltzmann weight $e^{-S[N_3,N_0]}$).
- ▶ Ergodic, provided we do not restrict N_3 or N_0 ! [Pachner, '91]
- ▶ To ensure ergodicity for $N_3 \le n$, must allow intermediate triangulations of size $N_3 \le f(n)$.
 - ▶ Theoretically: $f(n) < e^{cn^2}$ [Mijatović, '03]
 - ▶ In practice: $f(n) \le n + 2$ for all $n \le 9$ (10⁸ triangulations) [Burton,'11]
- ▶ Need to use a grand-canonical ensemble in 3D/4D (contrary to 2D)!

Pirsa: 17060083 Page 15/41

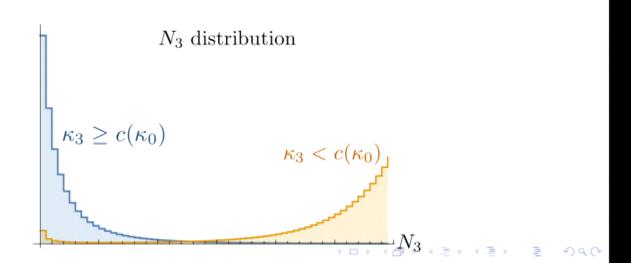
$$Z = \sum_{\text{triang. }\mathfrak{t}} \frac{1}{|\mathrm{Aut}(\mathfrak{t})|} e^{-S[N_3,N_0]} = \sum_{N_3} Z_{N_3} e^{-\kappa_3 N_3}, \ S[N_3,N_0] = \kappa_3 N_3 - \kappa_0 N_0?$$

- ▶ Typically $Z_{N_3} = \sum \frac{1}{|\operatorname{Aut}(\mathfrak{t})|} e^{\kappa_0 N_0} \sim f(N_3) e^{c(\kappa_0) \cdot N_3}$ as $N_3 \to \infty$, $f(N_3) \to 0$ subexponentially.
 - $\kappa_3 < c(\kappa_0)$: $Z[\kappa_3, \kappa_0] = \infty$



$$Z = \sum_{\text{triang. } \mathfrak{t}} \frac{1}{|\text{Aut}(\mathfrak{t})|} e^{-S[N_3, N_0]} = \sum_{N_3} Z_{N_3} e^{-\kappa_3 N_3}, \ S[N_3, N_0] = \kappa_3 N_3 - \kappa_0 N_0?$$

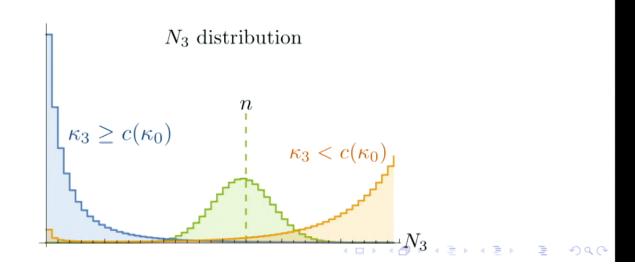
- ▶ Typically $Z_{N_3} = \sum \frac{1}{|\operatorname{Aut}(\mathfrak{t})|} e^{\kappa_0 N_0} \sim f(N_3) e^{c(\kappa_0) \cdot N_3}$ as $N_3 \to \infty$, $f(N_3) \to 0$ subexponentially.
 - $\kappa_3 < c(\kappa_0)$: $Z[\kappa_3, \kappa_0] = \infty$
 - $\kappa_3 \geq c(\kappa_0)$: $N_3 = 1$ with positive probability.



Pirsa: 17060083

$$Z = \sum_{\text{triang. } \mathfrak{t}} \frac{1}{|\text{Aut}(\mathfrak{t})|} e^{-S[N_3, N_0]} = \sum_{N_3} Z_{N_3} e^{-\kappa_3 N_3}, \ S[N_3, N_0] = \kappa_3 N_3 - \kappa_0 N_0?$$

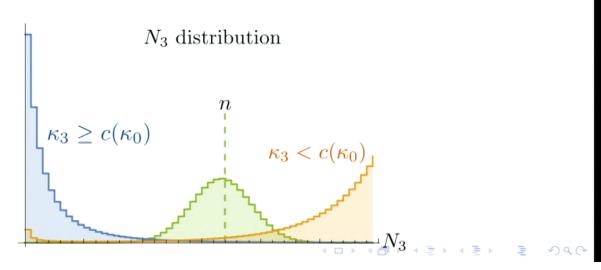
- ▶ Typically $Z_{N_3} = \sum \frac{1}{|\operatorname{Aut}(\mathfrak{t})|} e^{\kappa_0 N_0} \sim f(N_3) e^{c(\kappa_0) \cdot N_3}$ as $N_3 \to \infty$, $f(N_3) \to 0$ subexponentially.
 - $\kappa_3 < c(\kappa_0)$: $Z[\kappa_3, \kappa_0] = \infty$
 - $\kappa_3 \geq c(\kappa_0)$: $N_3 = 1$ with positive probability.
- ▶ If $N_3 = n$ is desired, use $S[N_3, N_0] = \kappa_3 N_3 \kappa_0 N_0 + \epsilon |N_3 n|^{1 \text{ or } 2}$.



Pirsa: 17060083 Page 18/41

$$Z = \sum_{\text{triang. } \mathfrak{t}} \frac{1}{|\text{Aut}(\mathfrak{t})|} e^{-S[N_3, N_0]} = \sum_{N_3} Z_{N_3} e^{-\kappa_3 N_3}, \ S[N_3, N_0] = \kappa_3 N_3 - \kappa_0 N_0?$$

- ▶ Typically $Z_{N_3} = \sum \frac{1}{|\operatorname{Aut}(\mathfrak{t})|} e^{\kappa_0 N_0} \sim f(N_3) e^{c(\kappa_0) \cdot N_3}$ as $N_3 \to \infty$, $f(N_3) \to 0$ subexponentially.
 - $\kappa_3 < c(\kappa_0)$: $Z[\kappa_3, \kappa_0] = \infty$
 - $\kappa_3 \ge c(\kappa_0)$: $N_3 = 1$ with positive probability.
- ▶ If $N_3 = n$ is desired, use $S[N_3, N_0] = \kappa_3 N_3 \kappa_0 N_0 + \epsilon |N_3 n|^{1 \text{ or } 2}$.
 - ▶ Rejection sampling of MCMC: effectively simulate $Z_{N_3=n}[\kappa_0] = \sum e^{\kappa_0 N_0}$. Need ϵ not too small.
 - ▶ Need ϵ not too large for ergodicity.



Pirsa: 17060083 Page 19/41

MCMC overview

- ▶ Read parameters: desired size n, coupling κ_0 .
- ▶ Initialize configuration: correct topology is sufficient.

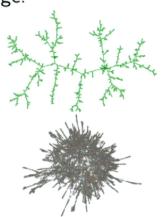
- Start performing Monte Carlo moves indefinitely
 - ► Thermalization phase
 - Parameter tuning $(\epsilon, \kappa_D, \text{ relative move frequency } p)$
 - ▶ Monitor thermalization with suitable observables.
 - Measurement phase
 - With predetermined frequency attempt measurement.
 - ▶ If desired, reject configuration if size outside window around *n*.
 - ▶ Add measurement data to list or histogram.

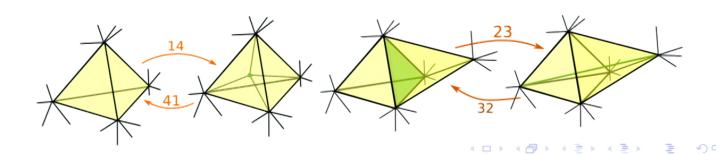
Pirsa: 17060083 Page 20/41

Phases

- ▶ By examining the moves we can already get an idea what the geometries will look like for κ_0 very small/large.
 - ▶ κ_0 large, maximize N_0 for fixed N_3 : many 14-moves \rightarrow tree-like structure.

▶ κ_0 small, minimize N_0 for fixed N_3 : many 23-moves \rightarrow highly connected

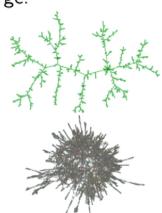




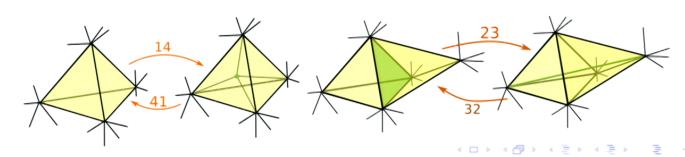
Pirsa: 17060083 Page 21/41

Phases

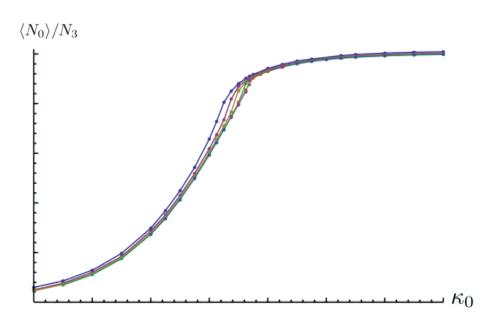
- ▶ By examining the moves we can already get an idea what the geometries will look like for κ_0 very small/large.
 - κ_0 large, maximize N_0 for fixed N_3 : many 14-moves \rightarrow tree-like structure. "Branched polymer phase" $d_{\rm H}=2,\ d_s=4/3$
 - κ_0 small, minimize N_0 for fixed N_3 : many 23-moves \rightarrow highly connected "Crumpled phase" no conclusive scaling $(d_H = d_s = \infty?)$



▶ Indeed these structures are characteristic for the two phases of DT in 3D and 4D. [Boulatov, Krzywicki, Ambjørn, Varsted, Agishtein, Migdal, Jurkiewicz, Renken, Catterall, Kogut, Thorleifsson, Bialas, Burda, Bilke, Thorleifsson, Petersson,..., '90s]



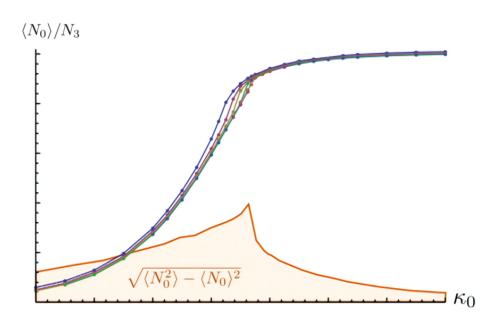
Phase transition



▶ All is not lost: perhaps enhanced scaling at the phase transition?

Pirsa: 17060083 Page 23/41

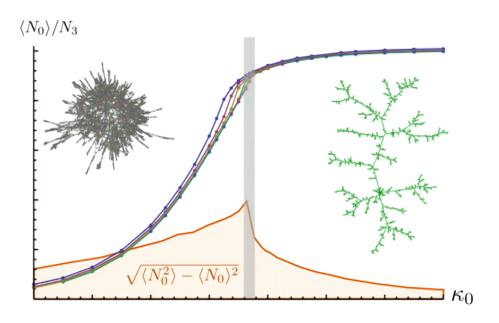
Phase transition



▶ All is not lost: perhaps enhanced scaling at the phase transition?

Pirsa: 17060083 Page 24/41

Phase transition

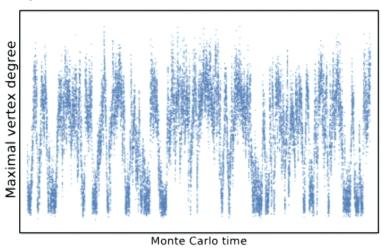


- ▶ All is not lost: perhaps enhanced scaling at the phase transition?
- ▶ Not clear from this plot whether transitions is discontinuous (1st order) or continuous (higher order).

4 □ > 4 回 > 4 恵 > 4 恵 > ・ 恵 ・ 夕 Q Q

Pirsa: 17060083 Page 25/41

Double peak structure

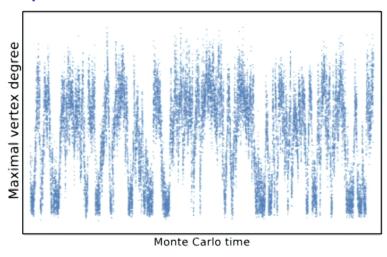


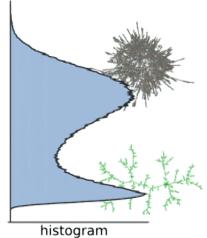
▶ When κ_0 is tuned to critical value: MCMC jumps between two meta-stable states.

→ □ → → □ → → 三 → ○ へ ○

Pirsa: 17060083 Page 26/41

Double peak structure

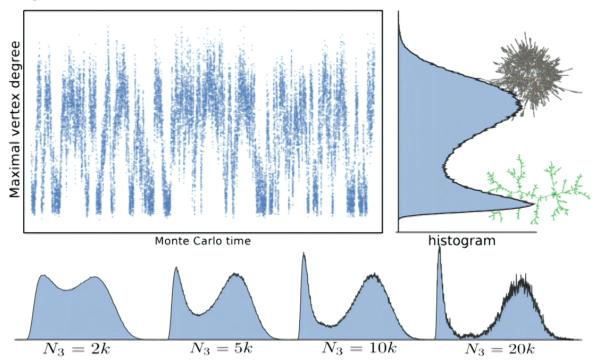




- ▶ When κ_0 is tuned to critical value: MCMC jumps between two meta-stable states.
- ▶ If double peak in histogram becomes more pronounced as $N_4 \to \infty$ then transition is discontinuous.

Pirsa: 17060083 Page 27/41

Double peak structure



- ▶ When κ_0 is tuned to critical value: MCMC jumps between two meta-stable states.
- ▶ If double peak in histogram becomes more pronounced as $N_4 \to \infty$ then transition is discontinuous.
- ▶ It does. No hope of new scaling at transition.

Pirsa: 17060083 Page 28/41

How to proceed?

▶ 3D→4D: Situation is similar, though discontinuity less pronounced.

Pirsa: 17060083 Page 29/41

How to proceed?

- ▶ 3D→4D: Situation is similar, though discontinuity less pronounced.
- ▶ Enlarge phase diagram with extra couplings or matter fields.
 - Higher curvature terms.
 - Non-trivial measure: $e^{-S} \rightarrow e^{-S} \prod_{\sigma_{D-2}} |\deg(\sigma_{D-2})|^{\beta}$.
 - ► Gauge fields, Gaussian fields, Ising models.

Pirsa: 17060083 Page 30/41

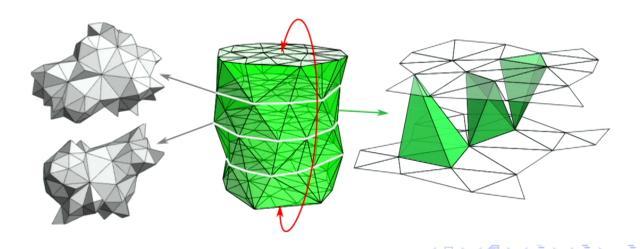
How to proceed?

- ▶ 3D→4D: Situation is similar, though discontinuity less pronounced.
- ▶ Enlarge phase diagram with extra couplings or matter fields.
 - Higher curvature terms.
 - Non-trivial measure: $e^{-S} \to e^{-S} \prod_{\sigma_{D-2}} |\deg(\sigma_{D-2})|^{\beta}$.
 - Gauge fields, Gaussian fields, Ising models.
- Change the ensemble of geometries.
 - Change topology.
 - Different polyhedra as building blocks.
 - ▶ Introduce foliation: Causal Dynamical Triangulations (CDT).

Pirsa: 17060083 Page 31/41

Causal Dynamical Triangulations in 3D

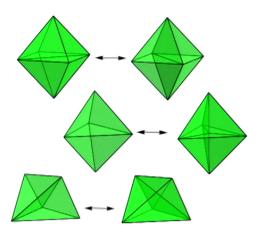
- ▶ Consider a (general or simplicial) 3-Triangulation of topology $S^1 \times S^2$.
- ▶ It is *causal* if it is "foliated" by triangulations of S^2 and all tetrahedra of two types (31-, 22-simplex).



Pirsa: 17060083 Page 32/41

Adaption to Causal triangulations

Replace moves with a set that preserves the foliation and is ergodic in causal triangulations (with fixed T).



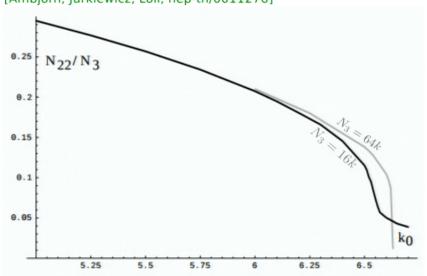
- Update detailed balance conditions.
- ► Construct by hand an initial configuration with correct topology.

Pirsa: 17060083 Page 33/41

Phase diagram of CDT in 3D

- ▶ For fixed N_3
 - κ_0 large, maximize N_0 , few 22-simplices
 - $ightharpoonup \kappa_0$ small, minimize N_0 , many 22-simplices

[Ambjorn, Jurkiewicz, Loll, hep-th/0011276]

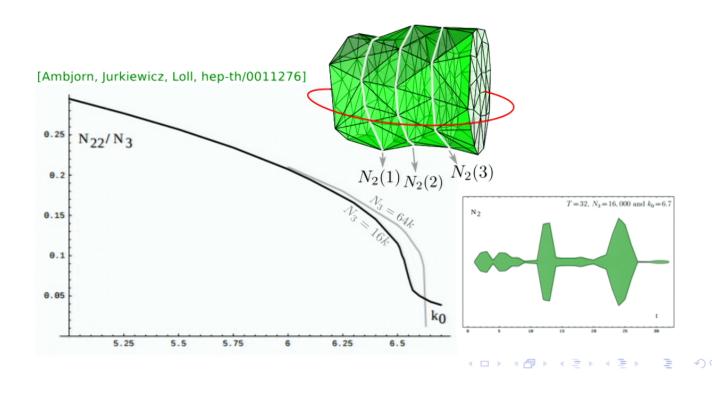


4日 > 4 同 > 4 き > 4 き > ・ き め Q Q

Pirsa: 17060083 Page 34/41

Phase diagram of CDT in 3D

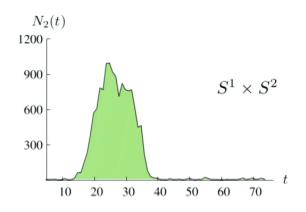
- ► For fixed *N*₃
 - $ightharpoonup \kappa_0$ large, maximize N_0 , few 22-simplices Weak correlation between slices; collection of 2d random geometries
 - \triangleright κ_0 small, minimize N_0 , many 22-simplices



Pirsa: 17060083 Page 35/41

A closer look at the condensation phase

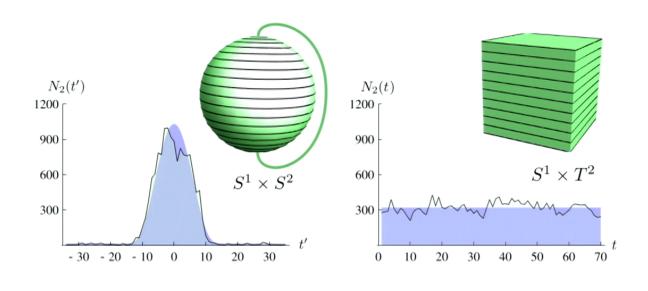
▶ As $N_3 \to \infty$ the relative fluctuations of $N_2(t')$ w.r.t $\langle N_2(t') \rangle$ decrease to 0.



Pirsa: 17060083 Page 36/41

A closer look at the condensation phase

- ▶ As $N_3 \to \infty$ the relative fluctuations of $N_2(t')$ w.r.t $\langle N_2(t') \rangle$ decrease to 0.
- ▶ $\langle N_2(t') \rangle$ accurately matches $a \cdot \cos^2(b \cdot t')$ (which happens to match the volume profile of S^3).
- Spectral dimension $d_{
 m s} pprox 3$.

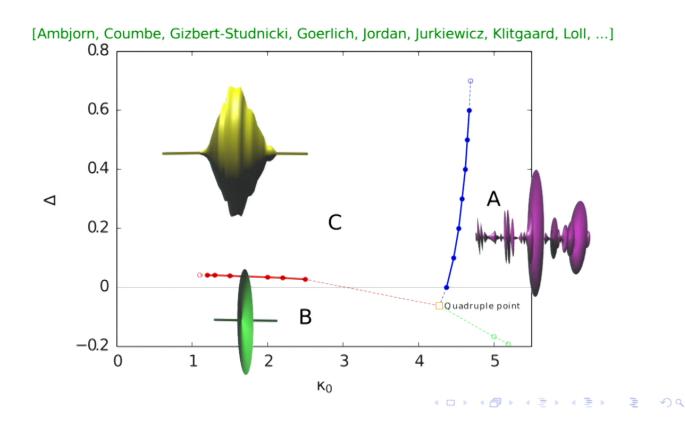


イロトオタト イミトイミト

Pirsa: 17060083 Page 37/41

CDT in 4D: the state of the art

▶ A richer phase diagram in 4D: similar phase C with semi-classical volume profile and $d_{\rm s} \approx 4$.



Pirsa: 17060083 Page 38/41

Take-home messages

► Simulating random geometry, in particular (Causal) Dynamical Triangulations, is not more difficult than simulating the Ising model.

Pirsa: 17060083 Page 39/41

Take-home messages

- ► Simulating random geometry, in particular (Causal) Dynamical Triangulations, is not more difficult than simulating the Ising model.
- Continuous phase transitions are essential to model sub-Planckian geometry.

Pirsa: 17060083 Page 40/41

Take-home messages

- Simulating random geometry, in particular (Causal) Dynamical Triangulations, is not more difficult than simulating the Ising model.
- Continuous phase transitions are essential to model sub-Planckian geometry.
- ► The possession of a semi-classical thermodynamic limit is a highly non-trivial property in the case of (background-independent) random geometries.

Pirsa: 17060083 Page 41/41