$\label{thm:continuous} Title: Monte Carlo \ methods \ in \ Dynamical \ Triangulations \ -3$

Date: Jun 22, 2017 08:45 AM

URL: http://pirsa.org/17060082

Abstract:

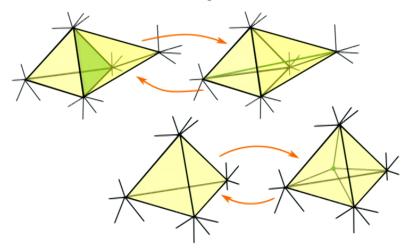
Pirsa: 17060082

Making Quantum Gravity Computable, 22-06-2017

Monte Carlo methods in Dynamical Triangulations

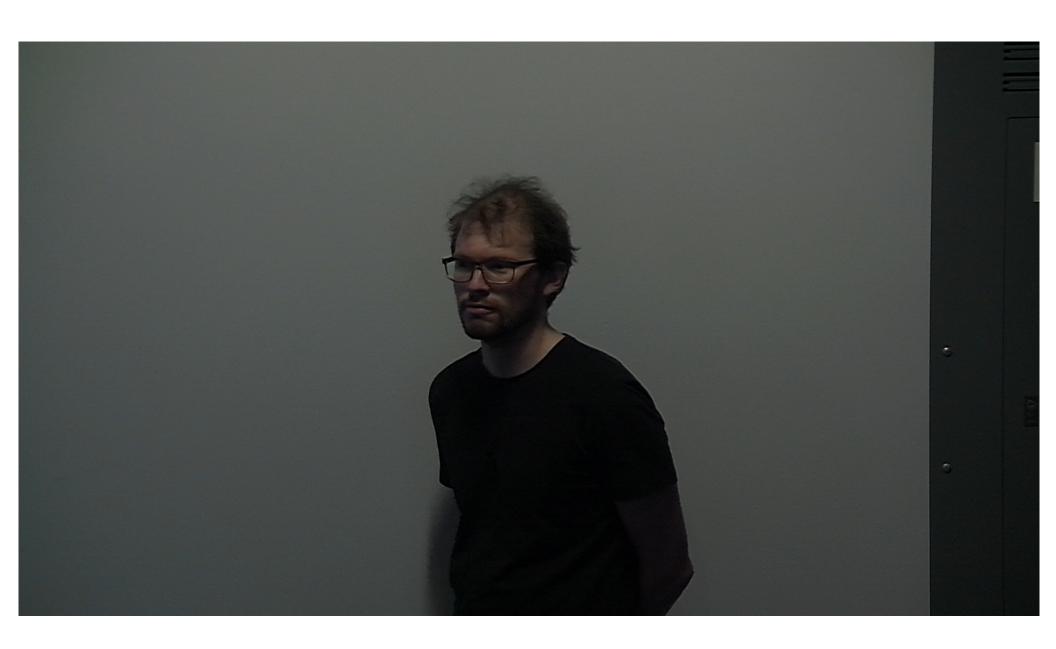
Part II: Higher dimensions

Timothy Budd



IPhT, CEA, Université Paris-Saclay
timothy.budd@cea.fr, http://www.nbi.dk/~budd/

Pirsa: 17060082 Page 2/37



Pirsa: 17060082

Outline

- ▶ Day 1: 2D random geometry
 - Combinatorial representation
 - Markov Chain Monte Carlo (MCMC) methods
 - Matter coupling
 - Observables
- Day 2: Dynamical Triangulations in higher dimensions
 - Quantum gravity
 - Combinatorial representation
 - MCMC methods
 - Phase diagram
 - Causal Dynamical Triangulations
- ▶ Tutorials: numerical analysis of various 2D random geometries
 - Measure observables for random geometries (produced by black box)
 - Extract critical exponents.
 - Experiment with (new?) observables.
 - Conclusions will be collected at the end and be discussed.

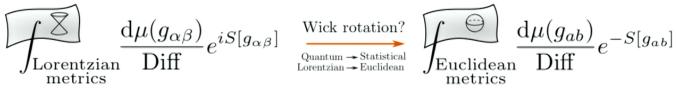
Pirsa: 17060082 Page 4/37

$$\int_{\text{Lorentzian}} \frac{\mathrm{d}\mu(g_{\alpha\beta})}{\text{Diff}} e^{iS[g_{\alpha\beta}]}$$

Difficulties:

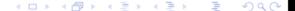
- QFT in perturbative regime: non-renormalizable
- Infinite-dimensional integral
- What is a good diffeo-invariant measure?
- · Destructive interference is delicate
- How to interpret integrand?
- Numerical evaluation is hard

Pirsa: 17060082 Page 5/37

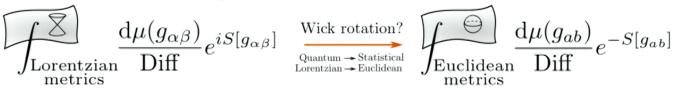


Difficulties:

- QFT in perturbative regime: non-renormalizable
- Infinite-dimensional integral
- What is a good diffeo-invariant measure?
- Destructive interference is delicate
- How to interpret integrand? Probability distribution
- Numerical evaluation is hard
- Classical solutions? Action is unbounded below.

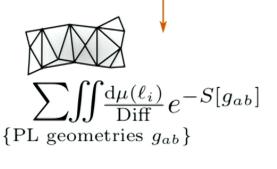


Pirsa: 17060082 Page 6/37



Difficulties:

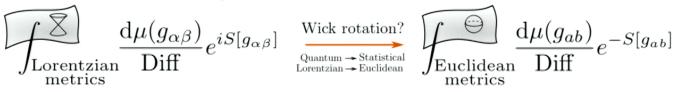
- QFT in perturbative regime: non-renormalizable
- Infinite-dimensional integral
- What is a good diffeo-invariant measure?
- Destructive interference is delicate
- How to interpret integrand? Probability distribution
- Numerical evaluation is hard-doable in principle
- Classical solutions? Action is unbounded below.
- Does the integral converge?
- Does it possess a continuum limit?



<ロト (回り (重) (重) (重)

Pirsa: 17060082

Cut-off

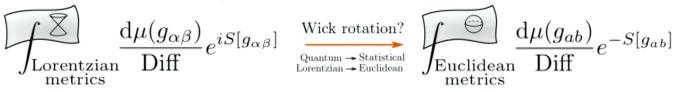


Difficulties:

- QFT in perturbative regime: non-renormalizable
- Infinite-dimensional integral
- What is a good diffeo-invariant measure?
- Destructive interference is delicate
- How to interpret integrand? Probability distribution
- Numerical evaluation is hard-doable in principle
- Classical solutions? Action is unbounded below.
- Does the integral converge?
- Does it possess a continuum limit?

Cut-off

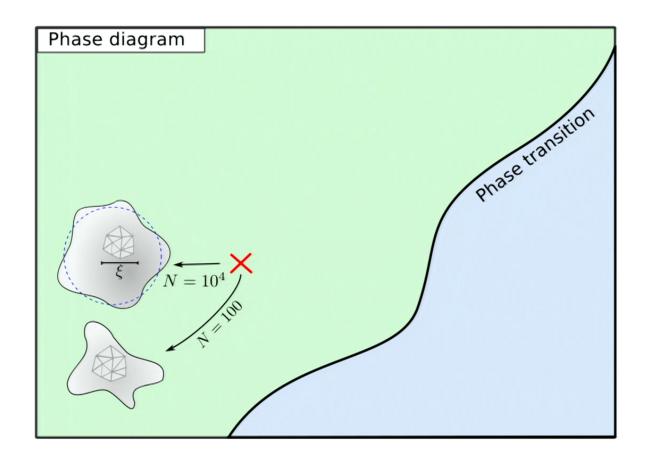
イロン イ何ン イヨン イヨン



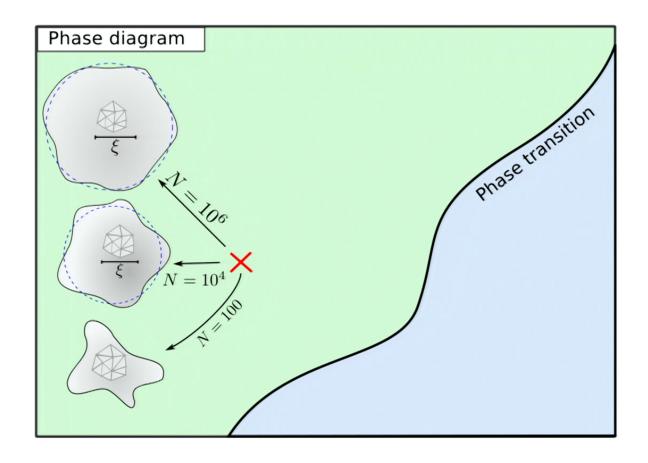
Difficulties:

- QFT in perturbative regime: non-renormalizable
- Infinite-dimensional integral
- What is a good diffeo-invariant measure?
- Destructive interference is delicate
- How to interpret integrand? Probability distribution
- Numerical evaluation is hard-doable in principle
- Classical solutions? Action is unbounded below.
- Does the integral converge?
- Does it possess a continuum limit?

Cut-off

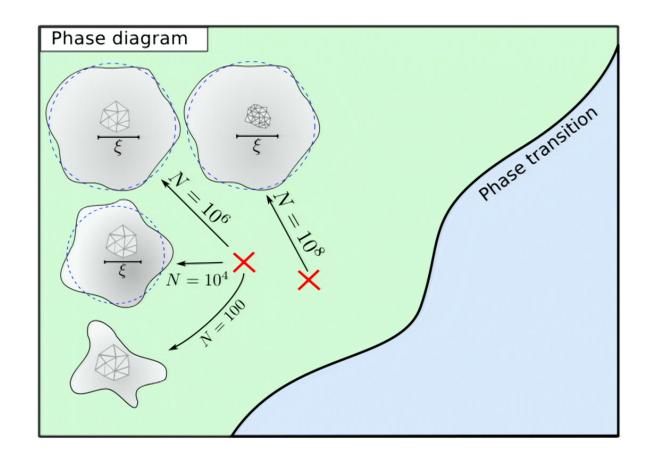


Pirsa: 17060082 Page 10/37



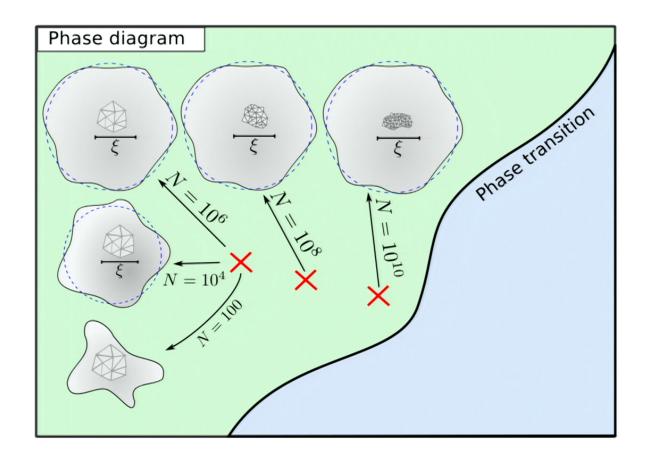
Pirsa: 17060082

4 D > 4 D > 4 E > 4 E > E 990



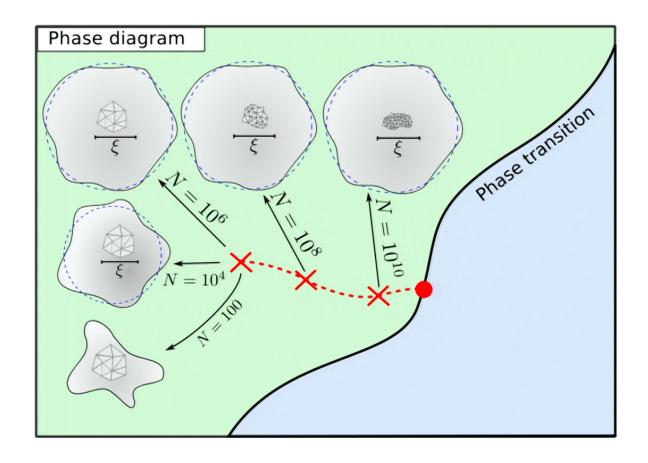
Pirsa: 17060082

4日 > 4回 > 4重 > 4重 > 重 り90



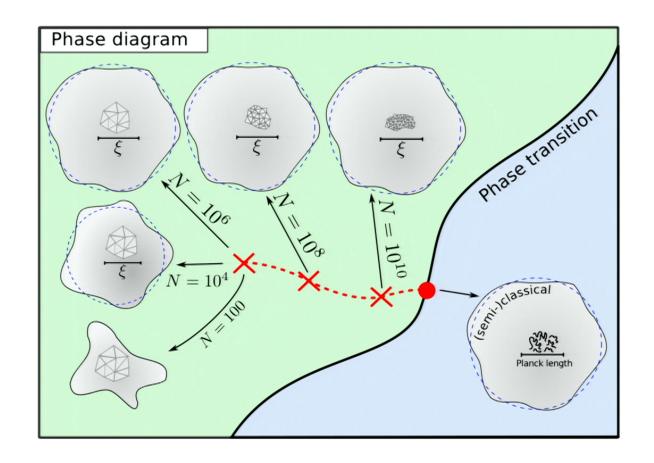
4 D > 4 B > 4 E > 4 E > E 9 Q C

Pirsa: 17060082 Page 13/37



4 D > 4 B > 4 E > 4 E > 9 Q C

Pirsa: 17060082 Page 14/37

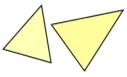


4□ > 4□ > 4Ē > 4Ē > Ē
90

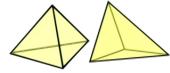
Pirsa: 17060082 Page 15/37

Piecewise linear geometry

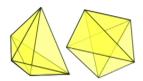
▶ *D*-simplex: $\{\sum_{i=0}^D \lambda_i \mathbf{x}_i : \lambda_i \in [0,1], \sum \lambda_i = 1\} \subset \mathbb{R}^D$ with Euclidean geometry.



$$D=2$$



$$D=3$$

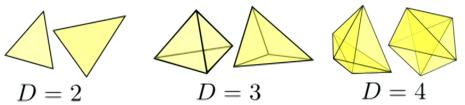


$$D=4$$

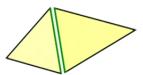
Pirsa: 17060082 Page 16/37

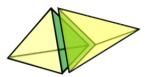
Piecewise linear geometry

▶ *D*-simplex: $\{\sum_{i=0}^{D} \lambda_i \mathbf{x}_i : \lambda_i \in [0,1], \sum \lambda_i = 1\} \subset \mathbb{R}^D$ with Euclidean geometry.



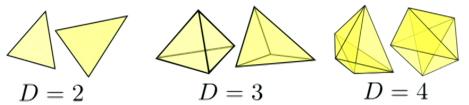
▶ D-simplices can be glued into larger metric spaces along matching (D-1)-simplices.



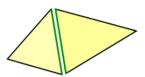


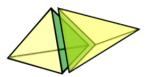
Piecewise linear geometry

▶ *D*-simplex: $\{\sum_{i=0}^{D} \lambda_i \mathbf{x}_i : \lambda_i \in [0,1], \sum \lambda_i = 1\} \subset \mathbb{R}^D$ with Euclidean geometry.

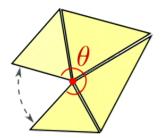


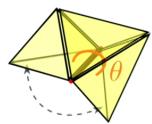
▶ D-simplices can be glued into larger metric spaces along matching (D-1)-simplices.





▶ Resulting geometry has curvature supported on (D-2)-simplices.

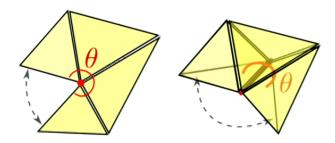




Einstein-Hilbert action

▶ Integrated curvature is naturally expressed in terms of deficit angles [Regge, '61]

$$\int d^D x \sqrt{g} R \longrightarrow \sum_{(D-2)-\text{simplices } \sigma} |\sigma| (2\pi - \theta_\sigma)$$



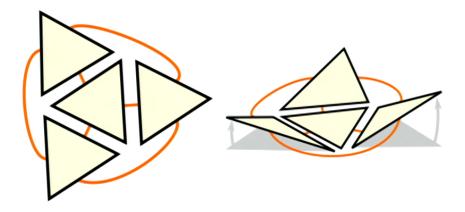
▶ If all simplices are taken of equal shape (say, equilateral) then linearity of Regge action implies that EH $(+\int \mathrm{d}^D x \sqrt{g} \Lambda)$ is a simple linear combination

$$\kappa_D N_D - \kappa_{D-2} N_{D-2}$$
.

Makes sense to include in MCMC at least such two terms in Boltzmann weight.

Pirsa: 17060082 Page 19/37

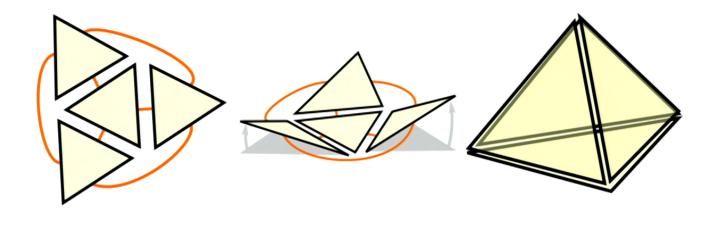
▶ Recall: need next and adjacent to navigate a map, or a polyhedron.



(ロ)(回)(重)(重) 重 のQで

Pirsa: 17060082 Page 20/37

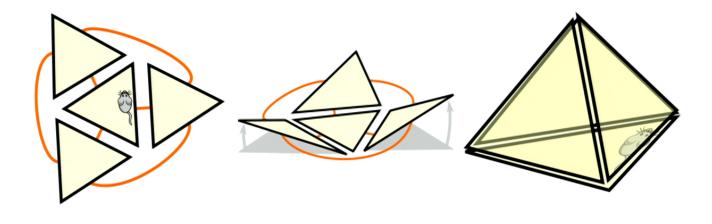
▶ Recall: need next and adjacent to navigate a map, or a polyhedron.



←□→ ←□→ ← □→ ← □→

Pirsa: 17060082 Page 21/37

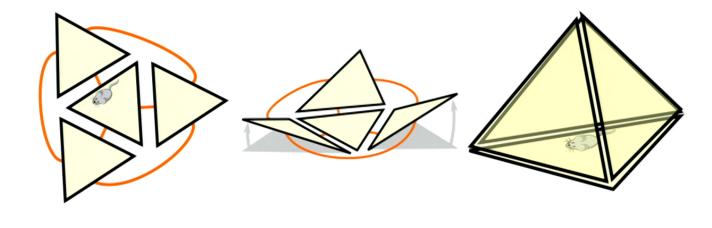
▶ Recall: need next and adjacent to navigate a map, or a polyhedron.



←□→ ←□→ ← □→ ← □→

Pirsa: 17060082 Page 22/37

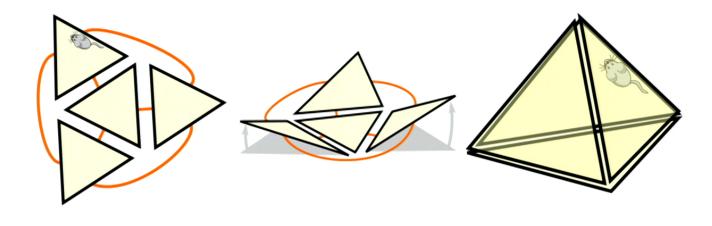
▶ Recall: need next and adjacent to navigate a map, or a polyhedron.



←□→ ←□→ ← □→ ← □→

Pirsa: 17060082 Page 23/37

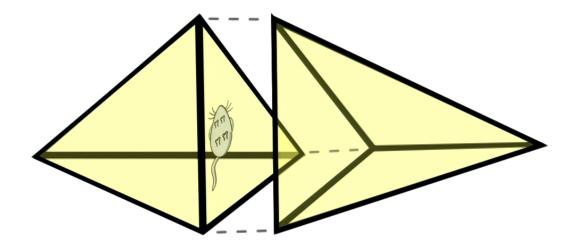
▶ Recall: need next and adjacent to navigate a map, or a polyhedron.



←□→ ←□→ ← □→ ← □→

Pirsa: 17060082 Page 24/37

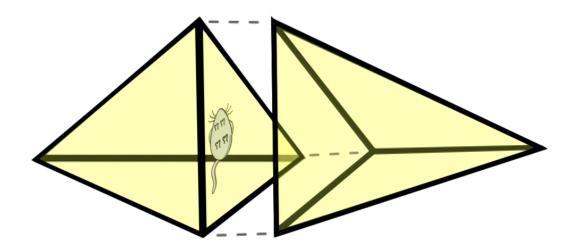
▶ Recall: need next and adjacent to navigate a map, or a polyhedron.



∢□ Σ ∢圖 Σ ∢園 Σ ∢園 Σ □

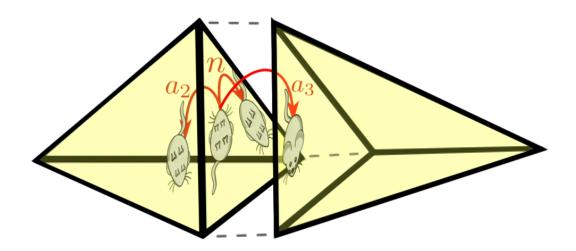
Pirsa: 17060082 Page 25/37

- ▶ Recall: need next and adjacent to navigate a map, or a polyhedron.
- ▶ Generalize: For *D*-dimensional geometry, $(n, a) \rightarrow (n, a_2, \dots, a_D)$. a_d maps half-edge i to its d-dimensional neighbor $a_d(i)$.



イロト イプト イミト (主) 三国

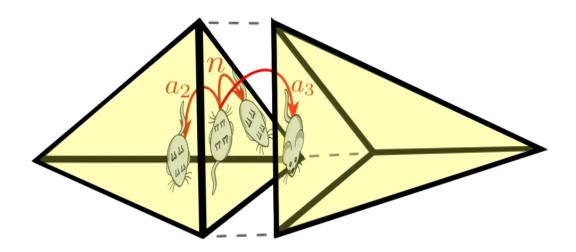
- ▶ Recall: need next and adjacent to navigate a map, or a polyhedron.
- ▶ Generalize: For *D*-dimensional geometry, $(n, a) \rightarrow (n, a_2, \dots, a_D)$. a_d maps half-edge i to its d-dimensional neighbor $a_d(i)$.



4□ > 4□ > 4 = > 4 = > = 90

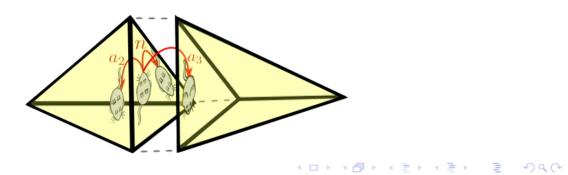
Pirsa: 17060082 Page 27/37

- ▶ Recall: need next and adjacent to navigate a map, or a polyhedron.
- ▶ Generalize: For *D*-dimensional geometry, $(n, a) \rightarrow (n, a_2, \dots, a_D)$. a_d maps half-edge i to its d-dimensional neighbor $a_d(i)$.
- ▶ Cells of various dimensions are identified as orbits. In 3D: $(n, a_2) \rightarrow \text{polyhedra}, (n, a_3) \rightarrow \text{faces}, (a_2, a_3) \rightarrow \text{edges}, (n \circ a_2, n \circ a_3) \rightarrow \text{vertices}.$



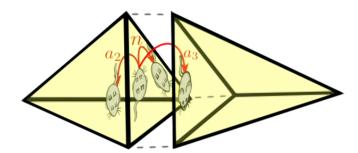
Pirsa: 17060082 Page 28/37

▶ When does a triple of permutations (n, a_2, a_3) determine a topological 3-manifold?



Pirsa: 17060082 Page 29/37

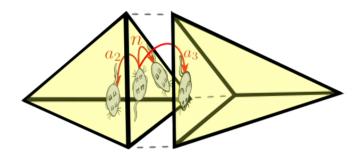
- ▶ When does a triple of permutations (n, a_2, a_3) determine a topological 3-manifold?
 - ▶ $a_d \circ a_d = 1$, $a_d(x) \neq x$ for all x and d.
 - ▶ Proper gluing: $n \circ a_3 \circ n = a_3$.
 - Polyhedra (orbits under n, a_2) should have 3-ball topology (i.e. boundary S^2): Euler formula!
 - Neighbourhood of vertices (orbits under $n \circ a_2$, $n \circ a_3$) should have 3-ball topology: Euler formula!



◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ · 臺 · • • ○ • ○ ○

Pirsa: 17060082 Page 30/37

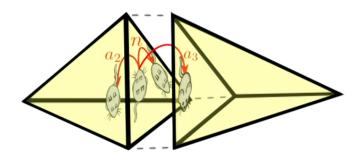
- ▶ When does a triple of permutations (n, a_2, a_3) determine a topological 3-manifold?
 - ▶ $a_d \circ a_d = 1$, $a_d(x) \neq x$ for all x and d.
 - ▶ Proper gluing: $n \circ a_3 \circ n = a_3$.
 - Polyhedra (orbits under n, a_2) should have 3-ball topology (i.e. boundary S^2): Euler formula!
 - Neighbourhood of vertices (orbits under $n \circ a_2$, $n \circ a_3$) should have 3-ball topology: Euler formula!



←□ ト ←□ ト ← 亘 ト ← 亘 ・ り へ ()・

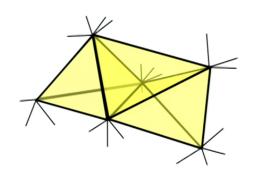
Pirsa: 17060082 Page 31/37

- ▶ When does a triple of permutations (n, a_2, a_3) determine a topological 3-manifold?
 - ▶ $a_d \circ a_d = 1$, $a_d(x) \neq x$ for all x and d.
 - ▶ Proper gluing: $n \circ a_3 \circ n = a_3$.
 - Polyhedra (orbits under n, a_2) should have 3-ball topology (i.e. boundary S^2): Euler formula!
 - Neighbourhood of vertices (orbits under $n \circ a_2$, $n \circ a_3$) should have 3-ball topology: Euler formula!
- What is the topology of the resulting 3-manifold?
 - Unfortunately, no simple combinatorial/algorithmic way to decide!
 - Luckily, any two geometries with equal topology are connected by a finite sequence of local moves!
- Situation very similar in 4D (and higher).



Pirsa: 17060082 Page 32/37

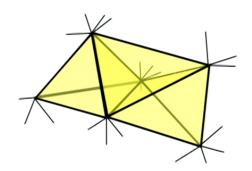
▶ *D-triangulation*: all *D*-cells are taken to be *D*-simplices (i.e. triangles in 2*D*, tetrahedra in 3*D*, 4-simplices in 4*D*).



◆□▶◆□▶◆臺▶◆臺▶ 臺 釣魚@

Pirsa: 17060082

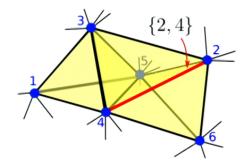
- ▶ *D-triangulation*: all *D*-cells are taken to be *D*-simplices (i.e. triangles in 2*D*, tetrahedra in 3*D*, 4-simplices in 4*D*).
- ▶ In *D*-triangulations all dynamical information is stored in a_D .
- ▶ Amounts to (D+1)!/2 numbers to store/update per D-simplex.



イログ イ御 とくきとくきとりま

Pirsa: 17060082

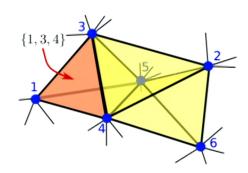
- ▶ *D-triangulation*: all *D*-cells are taken to be *D*-simplices (i.e. triangles in 2*D*, tetrahedra in 3*D*, 4-simplices in 4*D*).
- ▶ In *D*-triangulations all dynamical information is stored in a_D .
- ▶ Amounts to (D+1)!/2 numbers to store/update per D-simplex.
- ▶ Label the vertices of a *D*-triangulation.
- ► Simplicial D-triangulation: each edge, face, ..., D-simplex must be uniquely characterized by its set of incident vertices.



(4日) (例) (量) (量) (量) (量) (例) (例)

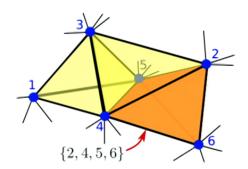
Pirsa: 17060082 Page 35/37

- ▶ *D-triangulation*: all *D*-cells are taken to be *D*-simplices (i.e. triangles in 2*D*, tetrahedra in 3*D*, 4-simplices in 4*D*).
- ▶ In D-triangulations all dynamical information is stored in a_D .
- ▶ Amounts to (D+1)!/2 numbers to store/update per D-simplex.
- ▶ Label the vertices of a *D*-triangulation.
- ▶ Simplicial D-triangulation: each edge, face, . . . , D-simplex must be uniquely characterized by its set of incident vertices.



Pirsa: 17060082 Page 36/37

- ▶ *D-triangulation*: all *D*-cells are taken to be *D*-simplices (i.e. triangles in 2*D*, tetrahedra in 3*D*, 4-simplices in 4*D*).
- ▶ In D-triangulations all dynamical information is stored in a_D .
- ▶ Amounts to (D+1)!/2 numbers to store/update per D-simplex.
- ▶ Label the vertices of a *D*-triangulation.
- Simplicial D-triangulation: each edge, face, ..., D-simplex must be uniquely characterized by its set of incident vertices.
- ► Knowing the set {{1,3,4,5}, {2,3,4,5}, {2,4,5,6},...} of D-simplices, can reproduce the triple (n, a₂, a₃) up to relabeling (and orientation).



Pirsa: 17060082 Page 37/37