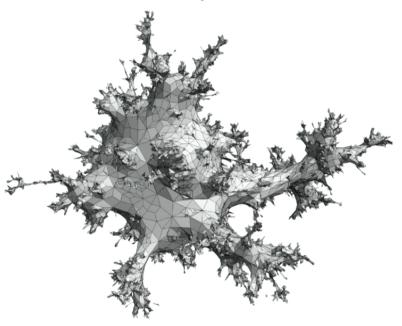
Title: Monte Carlo methods in Dynamical Triangulations - $\mathbf{1}$

Date: Jun 21, 2017 08:45 AM

URL: http://pirsa.org/17060075


Abstract:

Making Quantum Gravity Computable, 21-06-2017

Monte Carlo methods in Dynamical Triangulations

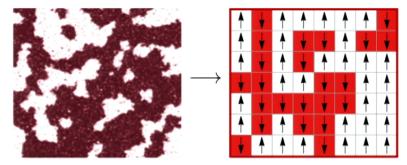
Part I: 2D random geometry

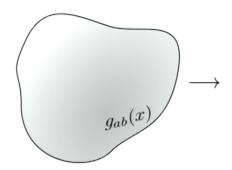

Timothy Budd

IPhT, CEA, Université Paris-Saclay timothy.budd@cea.fr, http://www.nbi.dk/~budd/

Pirsa: 17060075 Page 2/45

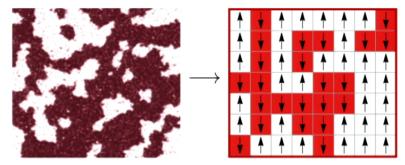
Outline

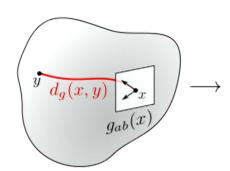

- ▶ Day 1: 2D random geometry
 - Combinatorial representation
 - Markov Chain Monte Carlo (MCMC) methods
 - Matter coupling
 - Observables
- Day 2: Dynamical Triangulations in higher dimensions
 - Quantum gravity
 - Combinatorial representation
 - MCMC methods
 - Phase diagram
 - Causal Dynamical Triangulations
- ▶ Tutorials: numerical analysis of various 2D random geometries
 - Measure observables for random geometries (produced by black box)
 - Extract critical exponents.
 - Experiment with (new?) observables.
 - Conclusions will be collected at the end and be discussed.


Pirsa: 17060075 Page 4/45

Discretization in . . .

▶ ...the Ising model: (Barkema's course)

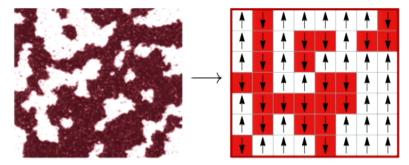

▶ ...Riemannian Geometry:

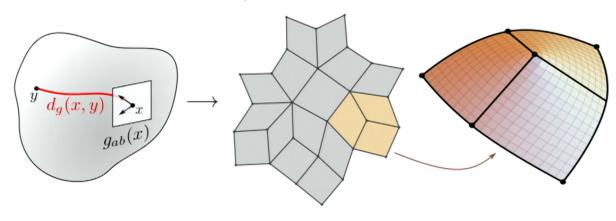


Discretization in . . .

▶ ...the Ising model: (Barkema's course)

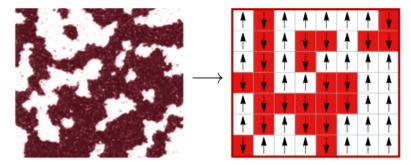
▶ ...Riemannian Geometry:

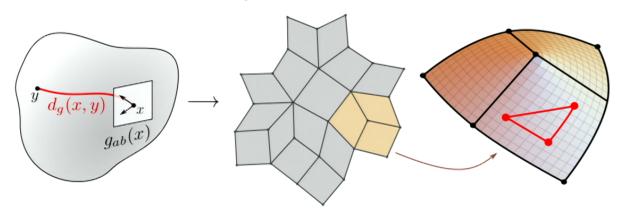



Pirsa: 17060075 Page 6/45

Discretization in . . .

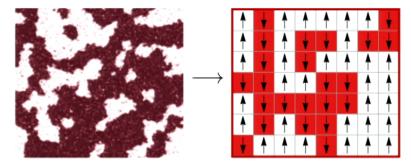
▶ ...the Ising model: (Barkema's course)

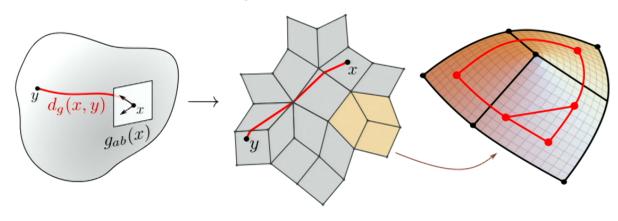

▶ ...Riemannian Geometry:


《四》《圖》《意》《意》

Discretization in . . .

▶ ...the Ising model: (Barkema's course)

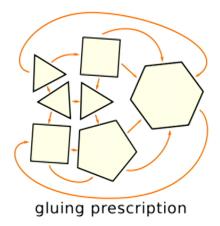

▶ ...Riemannian Geometry:

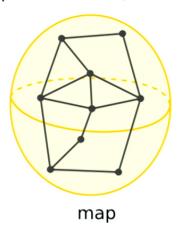

<ログ (回り (重) (重)

Discretization in . . .

▶ ...the Ising model: (Barkema's course)

▶ ...Riemannian Geometry:

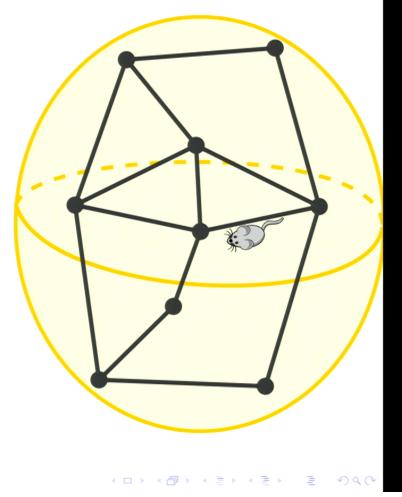

イロト (個) (選) (選)

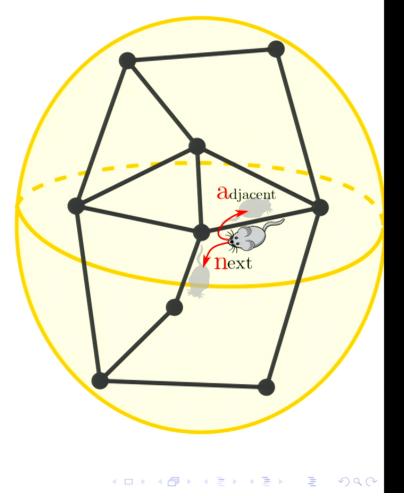

Geometry from polygons

▶ To change a discrete geometry, one may change . . .

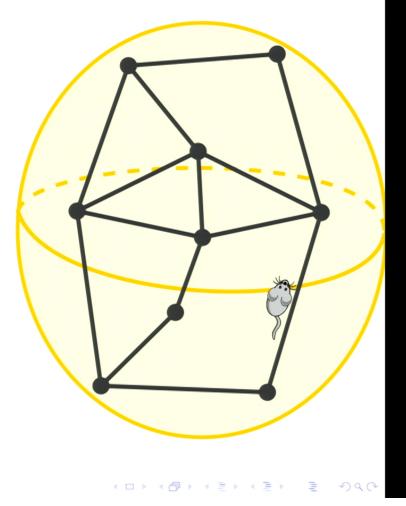
```
...shape of the polygons, ("Regge calculus")
...or the connectivity. ("Dynamical triangulation")
```

- ▶ Fix once and for all the geometry of each polygon of degree *k* to be that of the regular *k*-gon in Euclidean space with sides of length 1.
- ▶ Then can represent geometry equivalently by
 - a "gluing prescription" on a collection of polygons.
 - a "map": a proper embedding of a graph in a surface;

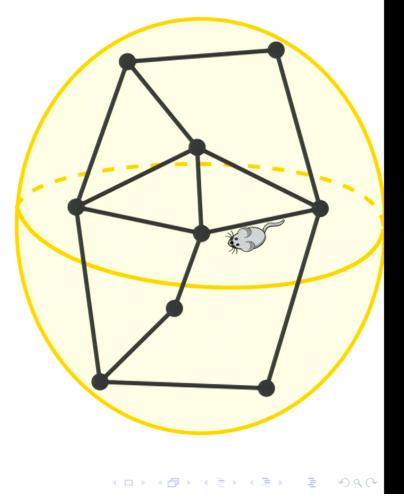



Pirsa: 17060075 Page 10/45

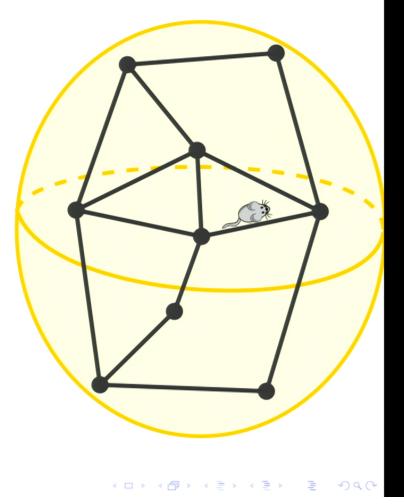
Navigate map using "next" and "adjacent".


Pirsa: 17060075 Page 11/45

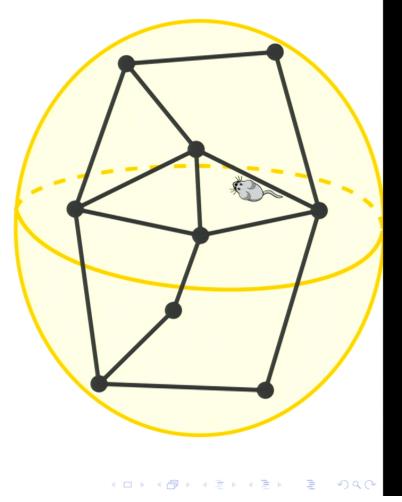
Navigate map using "next" and "adjacent".


Pirsa: 17060075 Page 12/45

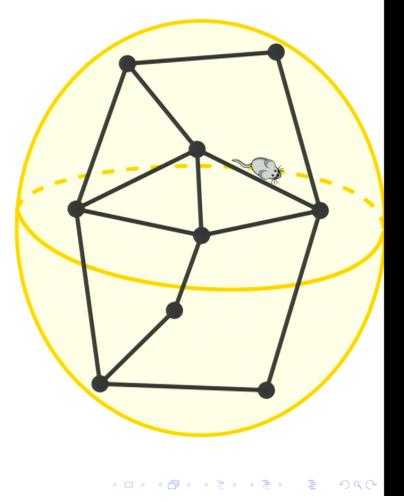
Navigate map using "next" and "adjacent".


Pirsa: 17060075 Page 13/45

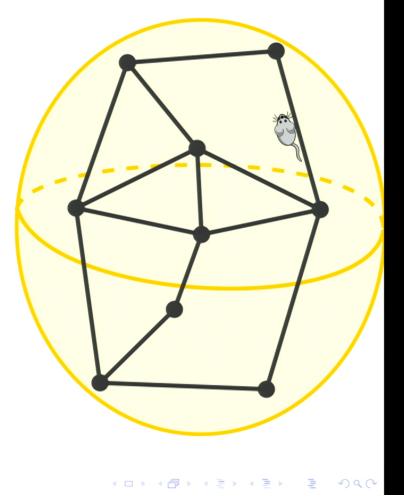
Navigate map using "next" and "adjacent".


Pirsa: 17060075 Page 14/45

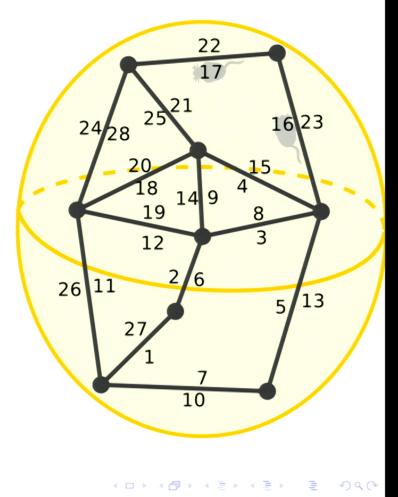
Navigate map using "next" and "adjacent".


Pirsa: 17060075 Page 15/45

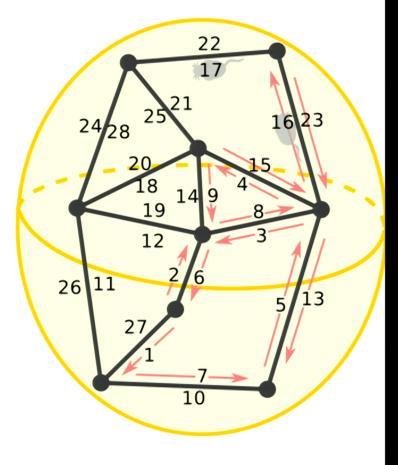
Navigate map using "next" and "adjacent".


Pirsa: 17060075 Page 16/45

Navigate map using "next" and "adjacent".


Pirsa: 17060075 Page 17/45

Navigate map using "next" and "adjacent".


Pirsa: 17060075 Page 18/45

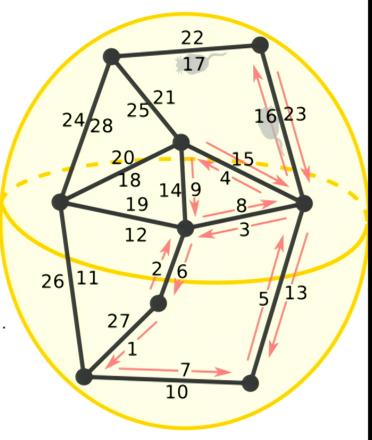
Navigate map using "next" and "adjacent".

Pirsa: 17060075 Page 19/45

- Navigate map using "next" and "adjacent".
- ► These define permutations on the half-edge labels, 1 · · · 28:

Pirsa: 17060075 Page 20/45

- Navigate map using "next" and "adjacent".
- ► These define permutations on the half-edge labels, 1 · · · 28:


$$n = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & \cdots & 28 \\ 7 & 12 & 6 & 9 & 3 & \cdots & 20 \end{pmatrix}
 a = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & \cdots & 28 \\ 27 & 6 & 8 & 15 & 13 & \cdots & 24 \end{pmatrix}$$

► Cycles of n represent faces:

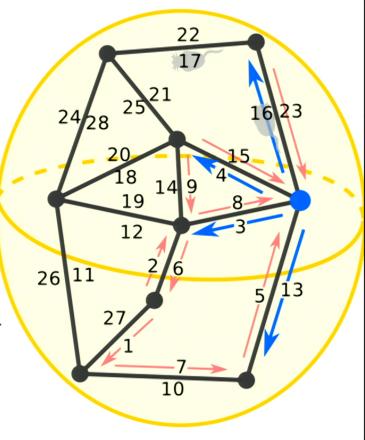
$$n = (17536)(498)\cdots$$

Cycles of a represent edges:

$$a = (127)(26)(38)(415)(513) \cdots$$

- Navigate map using "next" and "adjacent".
- ► These define permutations on the half-edge labels, 1 · · · 28:

► Cycles of n represent faces:


$$n = (17536)(498)\cdots$$

Cycles of a represent edges:

$$a = (127)(26)(38)(415)(513) \cdots$$

► Cycles of $n \circ a$ represent vertices:

$$n \circ a = (12)(341613)(510)\cdots$$

- Any pair (n, a) of permutations on $[2N] := \{1, 2, ..., 2N\}$ with $a \circ a = 1$ and $a(x) \neq x$ determines a (labeled) map with N edges, hence a piecewise flat geometry on an (oriented!) surface.
- ► Connected iff *n*, *a* act transitively.
- ▶ Topology? Euler's formula for the genus g = g(n, a):

$$2 - 2g = V - E + F = \# \text{Cyc}(n \circ a) - \# \text{Cyc}(a) + \# \text{Cyc}(n)$$

Pirsa: 17060075 Page 23/45

- Any pair (n, a) of permutations on $[2N] := \{1, 2, ..., 2N\}$ with $a \circ a = 1$ and $a(x) \neq x$ determines a (labeled) map with N edges, hence a piecewise flat geometry on an (oriented!) surface.
- Connected iff n, a act transitively.
- ▶ Topology? Euler's formula for the genus g = g(n, a):

$$2 - 2g = V - E + F = \# \text{Cyc}(n \circ a) - \# \text{Cyc}(a) + \# \text{Cyc}(n)$$

▶ The set \mathcal{T}_N of *labeled triangulations* of S^2 with N edges can be described combinatorially by

$$\mathcal{T}_N \equiv \{(n, a) : \text{transitive}, g(n, a) = 0, \text{ all cycles of } n \text{ of length } 3\}.$$

▶ The set Q_N of labeled quadrangulations of S^2 with N edges can be described combinatorially by

$$Q_N \equiv \{(n, a) : \text{transitive}, g(n, a) = 0, \text{all cycles of } n \text{ of length } 4\},$$
 etc.

▶ In particular, $|\mathcal{T}_N|$, $|\mathcal{Q}_N| < ((2N)!)^2 < \infty$.

Pirsa: 17060075 Page 24/45

Random discrete geometries

▶ The *uniform random* labeled triangulation of S^2 with N edges is an element of \mathcal{T}_N chosen with probability $1/|\mathcal{T}_N|$ each.

$$N = 60$$

▶ In statistical physics terminology: this is a canonical ensemble with partition function

$$Z_{\mathcal{N}} = \sum_{\mathfrak{m} \in \mathcal{T}_{\mathcal{N}}} 1 = |\mathcal{T}_{\mathcal{N}}|$$

Random discrete geometries

▶ The *uniform random* labeled triangulation of S^2 with N edges is an element of \mathcal{T}_N chosen with probability $1/|\mathcal{T}_N|$ each.

$$V = 60$$

In statistical physics terminology: this is a canonical ensemble with partition function

$$Z_N = \sum_{\mathfrak{m} \in \mathcal{T}_N} 1 = |\mathcal{T}_N|$$

▶ An *observable* is a function $\mathcal{O}: \mathcal{T}_N \to \mathbb{R}$. It has expectation value

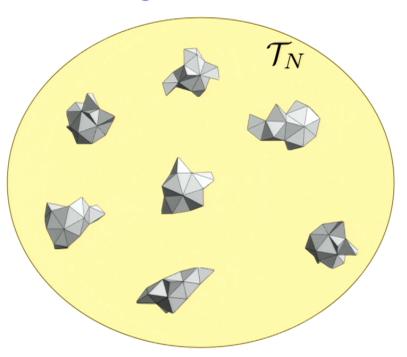
$$\langle \mathcal{O} \rangle_{N} = \frac{1}{Z_{N}} \sum_{\mathfrak{m} \in \mathcal{T}_{N}} \mathcal{O}(\mathfrak{m}).$$

Random discrete geometries

▶ The *uniform random* labeled triangulation of S^2 with N edges is an element of \mathcal{T}_N chosen with probability $1/|\mathcal{T}_N|$ each.

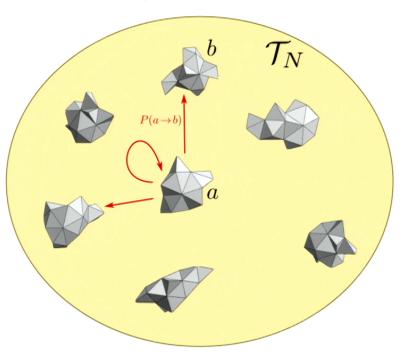
$$N = 60$$

▶ In statistical physics terminology: this is a canonical ensemble with partition function

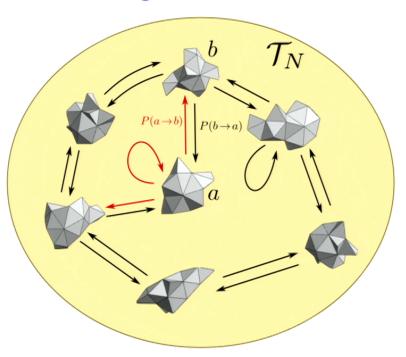

$$Z_{\mathcal{N}} = \sum_{\mathfrak{m} \in \mathcal{T}_{\mathcal{N}}} 1 = |\mathcal{T}_{\mathcal{N}}|$$

▶ An *observable* is a function $\mathcal{O}: \mathcal{T}_N \to \mathbb{R}$. It has expectation value

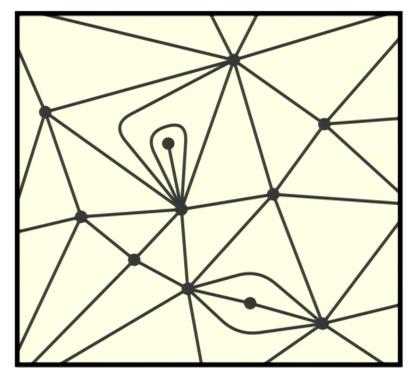
$$\langle \mathcal{O} \rangle_N = \frac{1}{Z_N} \sum_{\mathfrak{m} \in \mathcal{T}_N} \mathcal{O}(\mathfrak{m}).$$


- ▶ How to sample from this ensemble? And compute $\langle \mathcal{O} \rangle_N$?
 - The analytic way: combinatorial algorithms; direct random generation.
 - Markov Chain Monte Carlo methods.

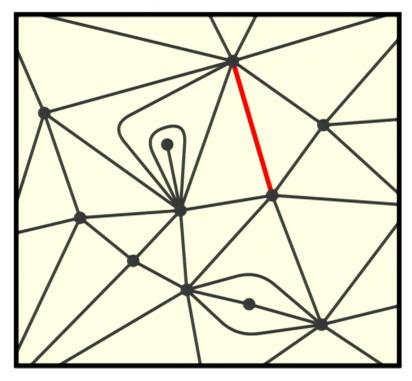
▶ To obtain a Markov process converging to the uniform distribution on \mathcal{T}_N (from any starting point) it suffices to select an update algorithm that...

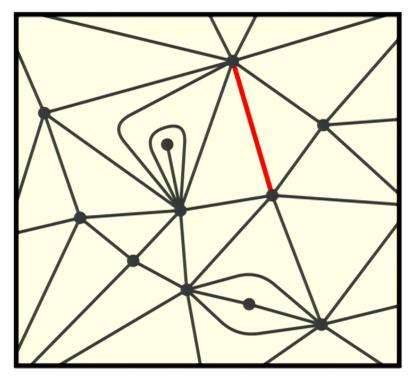

Pirsa: 17060075 Page 28/45

- ▶ To obtain a Markov process converging to the uniform distribution on \mathcal{T}_N (from any starting point) it suffices to select an update algorithm that...
 - preserves topology and size of the map;

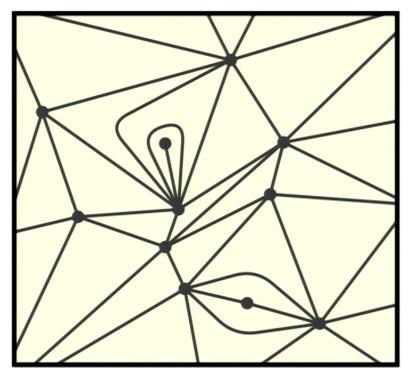


Pirsa: 17060075 Page 29/45

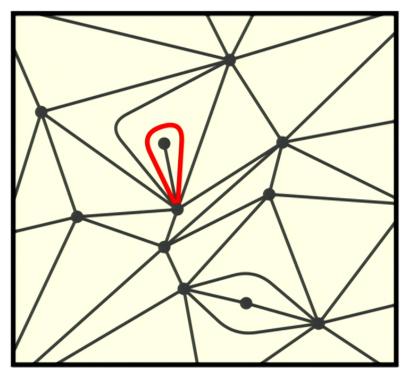

- ▶ To obtain a Markov process converging to the uniform distribution on \mathcal{T}_N (from any starting point) it suffices to select an update algorithm that...
 - preserves topology and size of the map;
 - ▶ satisfies Detailed balance: $P(a \rightarrow b) = P(b \rightarrow a)$;


Pirsa: 17060075 Page 31/45

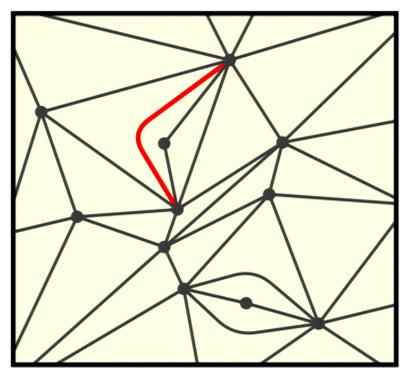
▶ Select a uniform random edge.


Pirsa: 17060075 Page 32/45

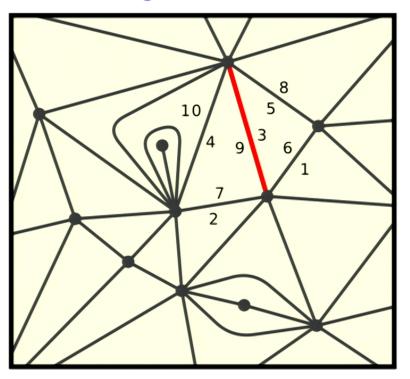
▶ Select a uniform random edge.


Pirsa: 17060075 Page 33/45

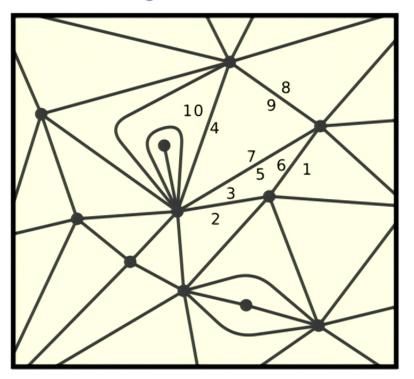
- ▶ Select a uniform random edge.
- ► Flip it: Delete edge and draw the other diagonal of the resulting quadrangle.


Pirsa: 17060075 Page 34/45

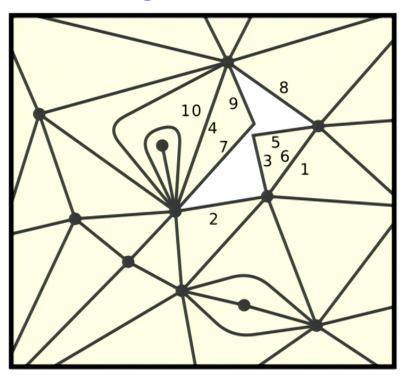
- ▶ Select a uniform random edge.
- ▶ Flip it: Delete edge and draw the other diagonal of the resulting quadrangle.


Pirsa: 17060075 Page 35/45

- ▶ Select a uniform random edge.
- ► Flip it: Delete edge and draw the other diagonal of the resulting quadrangle.

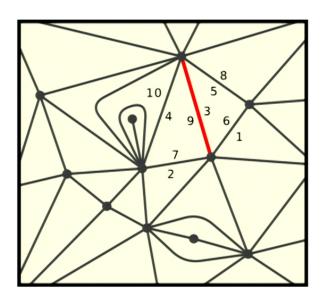


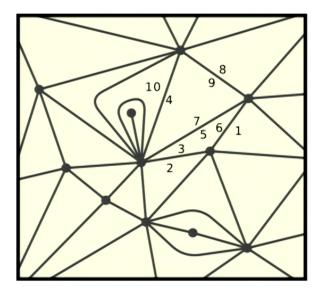
Pirsa: 17060075 Page 36/45



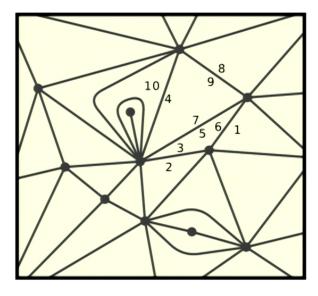
- ▶ Select a uniform random edge.
- ▶ Flip it: Delete edge and draw the other diagonal of the resulting quadrangle.
- ▶ In terms of (n,a): n' = n, a' =





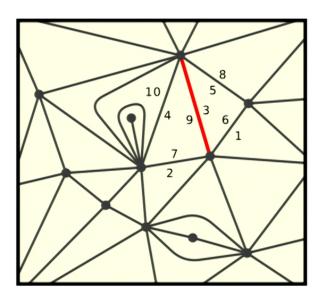

- ▶ Select a uniform random edge.
- ▶ Flip it: Delete edge and draw the other diagonal of the resulting quadrangle.
- In terms of (n,a): n' = n, $a' = (295)(378) \circ a$.

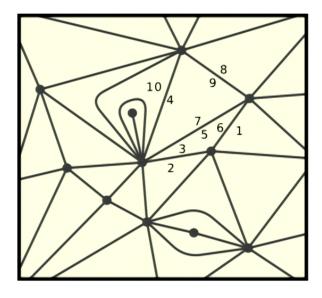
- ▶ Select a uniform random edge.
- ▶ Flip it: Delete edge and draw the other diagonal of the resulting quadrangle.
- ▶ In terms of (n,a): n' = n, a' =



▶ Detailed balance? Ergodic? No. No.

Pirsa: 17060075 Page 40/45





- ▶ Detailed balance? Ergodic? No. No.
- ► How about first flip then randomly permute labels? Yes. Yes. [Wagner, '36]

Pirsa: 17060075 Page 41/45

- ▶ Detailed balance? Ergodic? No. No.
- ► How about first flip then randomly permute labels? Yes. Yes. [Wagner, '36]
- In practice we don't permute. Why is that OK? Because flipping and permuting commute, and we may require observables $\mathcal{O}:\mathcal{T}_N\to\mathbb{R}$ to be invariant under label permutation.

Pirsa: 17060075 Page 42/45

Comment on labeling and symmetry

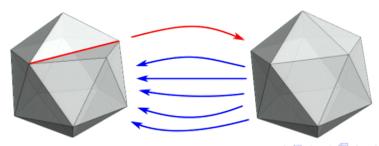
- ▶ Clearly labeling is useful when representing geometry in the computer.
- ► Another reason: it kills all possible symmetries, which is a good thing!

Pirsa: 17060075 Page 43/45

Comment on labeling and symmetry

- Clearly labeling is useful when representing geometry in the computer.
- Another reason: it kills all possible symmetries, which is a good thing!
- ▶ Let's look at unlabeled triangulations $\tilde{\mathcal{T}}_N = \mathcal{T}_n / \sim$, i.e. the set of equivalence classes of \mathcal{T}_n under relabeling \sim .
- ▶ Sampling uniformly from $\tilde{\mathcal{T}}_N$ is **not** the same as sampling \mathcal{T}_n and forgetting labels:

$$Z_{\mathcal{N}} = \sum_{\mathfrak{m} \in \mathcal{T}_{\mathcal{N}}} 1 = \sum_{[\mathfrak{m}] \in \tilde{\mathcal{T}}_{\mathcal{N}}} \left| [\mathfrak{m}] \right| = \sum_{[\mathfrak{m}] \in \tilde{\mathcal{T}}_{\mathcal{N}}} \frac{(2\mathcal{N})!}{|\mathrm{Aut}(\mathfrak{m})|}.$$


Pirsa: 17060075 Page 44/45

Comment on labeling and symmetry

- Clearly labeling is useful when representing geometry in the computer.
- Another reason: it kills all possible symmetries, which is a good thing!
- ▶ Let's look at unlabeled triangulations $\tilde{\mathcal{T}}_N = \mathcal{T}_n / \sim$, i.e. the set of equivalence classes of \mathcal{T}_n under relabeling \sim .
- ▶ Sampling uniformly from $\tilde{\mathcal{T}}_N$ is **not** the same as sampling \mathcal{T}_n and forgetting labels:

$$Z_{\mathcal{N}} = \sum_{\mathfrak{m} \in \mathcal{T}_{\mathcal{N}}} 1 = \sum_{[\mathfrak{m}] \in \tilde{\mathcal{T}}_{\mathcal{N}}} \left| [\mathfrak{m}] \right| = \sum_{[\mathfrak{m}] \in \tilde{\mathcal{T}}_{\mathcal{N}}} \frac{(2\mathcal{N})!}{|\mathrm{Aut}(\mathfrak{m})|}.$$

From the flip move point of view:

Pirsa: 17060075 Page 45/45