Title: Scientific Computing and Computational Science
Date: Jun 19, 2017 05:15 PM

URL: http://pirsa.org/17060067

Abstract:

Pirsa: 17060067 Page 1/23



Scientific Computing and
Computational Science
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* What is a Computer?
* How do | program it?

Pirsa: 17060067 Page 3/23



irsa: 17060067

Von Neumann Architecture

Memory

|

|

|

|

Arithmetic
»  Logic
Control .
Unit « Unit
Accumulator
X \\
Input Output

Sequential
Execution:

X:=a+b

read instruction
read a
read b

add
write x

U b WN =

[Wikipedia]

Page 4/23



C64 (1984)
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Algorithm Development

* Naive idea:
— Von Neumann (and others) developed a theoretical
model of computing
— Take an algorithm (i.e. constructive proof), map it to
this model, implement it in a computer language
* In practice:

— What is possible (and what is efficient) is not
determined by an abstract model, but by current-day
hardware technology

— Good algorithms today look very different than e.g. 20
years ago
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Sequential vs. Parallel

* Modern CPUs are highly parallel:
— Time for one add operation: 10 sec
— Peak performance: 1012 Flop/sec

* Efficient algorithms need to be parallel, not
sequential

— Operations need to be /ocal and independent
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Causality

* Newtonian: Events have a unique global order

* (speed of light) times (0.33 ns) =10 cm
— Smaller than a laptop

* Relativistic: Events can have spacelike relation

— “Statements can be reordered by the system”
— aka “memory model”, “cache coherency”
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[edwardbosworth.com ]
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Out-et Order
Control
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Causality

* Newtonian causality:

— A convenient fiction supported by hardware and
standard programming languages

* Relativistic causality:

— Reality; significantly faster, but amazingly difficult
to use correctly

— See also accelerators, GPUs
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Energy Consumption

 Some well-known laws:
—-Q=t | (parasitic capacity)
~U=R" |
—P=U - |

* Typical desktop CPU power and area:
50 W /200 mm?2 = 2.5 kW/m?

* Stovetop: 1.5 kW / 750 cm? = 0.2 kW/m?

irsa: 17060067 Page 16/23



Supercomputer?
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Are Pachner moves local?
(Can they be parallelized?)

A- '/\ <> L <> [Hellman, arXiv:1102.1688]

#-0 G-

* Answer:
— They are not local (only “almost local”)

— Need to form a monoid (or lattice?) for efficient
parallelization
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Object-Oriented Programming

* Current main-stream paradigm for large
programs

* Objects:
— Have a unique identity
— Can model (classical) real-world items
— Have a state that can change

* Problem:

— Doesn’t make sense for mathematical operations
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Functional Programming

“Functional” because there is an algebra of
functions (e.g. composition)

Usually:

— Value semantics (no identities)

— Referential transparency (immutability)

Ideal for mathematical expressions, and for
parallel programming

(Surprisingly, can define object identities on
top of this)
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Functional Programming

* Dichotomy between mathematics and programming:

1. Math is about eternal truths (there is no “time” in a
proof)

2. Programs execute sequentially

* How can one prove statements about programs?

* Functional programming:
— Design programs to be order-independent

— Remove distinction between data and functions
letx=1 let f = sin

sin(x) f(1)
end end
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i - o —
julia
* From juliacode.org:

— high-level, high-performance dynamic programming
language for technical computing

— sophisticated compiler

— distributed parallel execution

— numerical accuracy

— extensive mathematical function library

— mature, best-of-breed open source C and Fortran libraries
for linear algebra, random number generation, ...

— powerful browser-based graphical notebook interface

* Note: only few years old, still immature
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Summary

* Causality in computers is relativistic
— Newtonian causality is an expensive fiction

 Computers are highly parallel machines
— Even laptops and cell phones

* Object-oriented programming doesn’t help
with mathematical modeling

— Mathematical entities do not have an identity
(functional programming!)
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