Title: Scientific Computing and Computational Science
Date: Jun 19, 2017 05:15 PM

URL: http://pirsa.org/17060067

Abstract:

Pirsa: 17060067 Page 1/23

Scientific Computing and
Computational Science

irsa: 17060067 Page 2/23

* What is a Computer?
* How do | program it?

Pirsa: 17060067 Page 3/23

irsa: 17060067

Von Neumann Architecture

Memory

|

|

|

|

Arithmetic
» Logic
Control .
Unit « Unit
Accumulator
X \\
Input Output

Sequential
Execution:

X:=a+b

read instruction
read a
read b

add
write x

U b WN =

[Wikipedia]

Page 4/23

C64 (1984)

Graham (UW, 2017) [The Record]
A\ I =

Pirsa: 17060067 Page 5/23

Algorithm Development

* Naive idea:
— Von Neumann (and others) developed a theoretical
model of computing
— Take an algorithm (i.e. constructive proof), map it to
this model, implement it in a computer language
* In practice:

— What is possible (and what is efficient) is not
determined by an abstract model, but by current-day
hardware technology

— Good algorithms today look very different than e.g. 20
years ago

Pirsa: 17060067 Page 6/23

Pirsa: 17060067

Branch

Instruction

Predictors l

ll Fetch Unit

Haswell

(D

32KB L1 I-Cache (8 way)

168~

C

6 Instructions ™~
r

(

16B Predecode, Fetch Buffer]

2x20 Instruction Queue

r

aads Complex] [Simple][Simple | [Simple
B Decoder) |Decoder) | Decoder) | Decoder

4 pops™

k. 4 4

W THop™ Tpop™N T pop™
y A A Y

ﬁ.SK pop Cache (8 way)

56 pop Decode Queue]

4 pops
328

4 pops SN

(

192 Entry Reorder Buffer (ROB) J

[

+ 4
168 Integer 168 AVX 48 Entry Branch 72 Entry 42 Entry
Registers Registers Order Buffer Load Buffer Store Buffer
a A A A r A
[60 Entry Unified Scheduler J
Part 0 Port 1 Port 5 Port 6| Port 2 Port 3 JPort 4 |Port 7
+ r A L 3

ALU

256-bit

L 4
ALU
granch || vmuL ||| LeA Fa:‘tLt’E x
Shift VShift MUL

64-bit 64-bit
AGU AGU

Store
AGU

A h h A 4
256-bit | [256-bit] [256-bit] [256-bit
FMA FMA VALU FShuffle
FBlend FADD VBlend J | FBlend

r A
ALU
Branch Sgore
Shift 2x328 ata
'y

Processor

[IDF 2012]

Page 7/23

\
Branch Instruction
Predictors Fetch Unit
)
, |
Haswell L1 ITLBI 32KB L1 I-Cache (8 way)

\
166~

[16B Predecode, Fetch Buffer)
]

6 Instmctmns\l\

2x20 Instruction Queue

Coda omplex tmple Simple Slmpl
H Decode Decode Decoder Decode
pops 1 uop 1 uop"‘-\ 1 uop
h 4
(1 SK pop Cache (8 wayﬂ—/—{ 56 pop Decode Queue]
4 ;1;);5 4 uops\l\
(192 Entry Reorder Buffer (ROB)]
1
1l 1 1 1 1l

Pirsa: 17060067 Page 8/23

s G 7

A 7 U s
l | 4 pops$ 1 uop* Tpop™. | |10p\1\
\ 4

(1 SK pop Cache (8 way) 56 pop Decode Queue J

4 pops $

(192 Entry Reorder Buffer (ROB)

4 pops
32B

./

Pirsa: 17060067

! !
168 Integer 168 AVX 48 Entry Branch 72 Entry 42 Entry
Registers Registers Order Buffer Load Buffer Store Buf'fer
1 !
(60 Entry Umﬁed Scheduler)
Port O Port 1 Port 5 Port 6] Port 21 Port Blporl 4 Port ?
{] { £ _
ALU 256-bit ALU ALU 256-bit 64-bit 64-bit Store
Branch VMUL LEA Fast LEA VALU AGU AGU AGU
Shift VShift MUL VShufﬂe
h 4
256-bit 256-bit] [256-bit 256 bit ALU
FMA FMA VALU FShuffle| | Branch
FBlend FADD VBlend FBlend Shift 2x328

!] 38 !
L2TLB L1 DTLBI 32KB L1 D-Cache (8 way)]
A

Page 9/23

Sequential vs. Parallel

* Modern CPUs are highly parallel:
— Time for one add operation: 10 sec
— Peak performance: 1012 Flop/sec

* Efficient algorithms need to be parallel, not
sequential

— Operations need to be /ocal and independent

irsa: 17060067 Page 10/23

Causality

* Newtonian: Events have a unique global order

* (speed of light) times (0.33 ns) =10 cm
— Smaller than a laptop

* Relativistic: Events can have spacelike relation

— “Statements can be reordered by the system”
— aka “memory model”, “cache coherency”

Pirsa: 17060067 Page 11/23

[edwardbosworth.com]

Pirsa: 17060067 Page 12/23

Pirsa: 17060067 Page 13/23

Out-et Order
Control

Pirsa: 17060067 Page 14/23

Causality

* Newtonian causality:

— A convenient fiction supported by hardware and
standard programming languages

* Relativistic causality:

— Reality; significantly faster, but amazingly difficult
to use correctly

— See also accelerators, GPUs

Pirsa: 17060067 Page 15/23

Energy Consumption

 Some well-known laws:
—-Q=t | (parasitic capacity)
~U=R" |
—P=U - |

* Typical desktop CPU power and area:
50 W /200 mm?2 = 2.5 kW/m?

* Stovetop: 1.5 kW / 750 cm? = 0.2 kW/m?

irsa: 17060067 Page 16/23

Supercomputer?

Pirsa: 17060067 Page 17/23

Are Pachner moves local?
(Can they be parallelized?)

A- '/\ <> L <> [Hellman, arXiv:1102.1688]

#-0 G-

* Answer:
— They are not local (only “almost local”)

— Need to form a monoid (or lattice?) for efficient
parallelization

irsa: 17060067 Page 18/23

Object-Oriented Programming

* Current main-stream paradigm for large
programs

* Objects:
— Have a unique identity
— Can model (classical) real-world items
— Have a state that can change

* Problem:

— Doesn’t make sense for mathematical operations

Pirsa: 17060067 Page 19/23

irsa: 17060067

Functional Programming

“Functional” because there is an algebra of
functions (e.g. composition)

Usually:

— Value semantics (no identities)

— Referential transparency (immutability)

Ideal for mathematical expressions, and for
parallel programming

(Surprisingly, can define object identities on
top of this)

Page 20/23

Functional Programming

* Dichotomy between mathematics and programming:

1. Math is about eternal truths (there is no “time” in a
proof)

2. Programs execute sequentially

* How can one prove statements about programs?

* Functional programming:
— Design programs to be order-independent

— Remove distinction between data and functions
letx=1 let f = sin

sin(x) f(1)
end end

Pirsa: 17060067 Page 21/23

i - o —
julia
* From juliacode.org:

— high-level, high-performance dynamic programming
language for technical computing

— sophisticated compiler

— distributed parallel execution

— numerical accuracy

— extensive mathematical function library

— mature, best-of-breed open source C and Fortran libraries
for linear algebra, random number generation, ...

— powerful browser-based graphical notebook interface

* Note: only few years old, still immature

Pirsa: 17060067 Page 22/23

Summary

* Causality in computers is relativistic
— Newtonian causality is an expensive fiction

 Computers are highly parallel machines
— Even laptops and cell phones

* Object-oriented programming doesn’t help
with mathematical modeling

— Mathematical entities do not have an identity
(functional programming!)

Pirsa: 17060067 Page 23/23

