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Abstract: <p>We investigate the usefulness of ground states of quantum spin chains with symmetry-protected topological order (SPTO) for
measurement-based quantum computation. We show that, in spatial dimension one, if an SPTO phase supports quantum wire, then, subject to an
additional symmetry condition that is satisfied in all cases so far investigated, it can also be used for quantum computation. Joint work with
Dongsheng Wang, Abhishodh Prakash, Tzu-Chieh Wel and David Stephen; See arXiv:1609.07549v1</p>
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Outline

. Motivation for “computational phases of quantum matter”

. Background review

. Our result: computational phases of matter in 1D.

. A question to you
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Measurement-based quantum computation
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measurement of Z (®), X (1), cosa X +sinaY ()

e Information written onto the resource state, pro-
cessed and read out by one-qubit measurements only.

e Universal computational resources exist:
cluster state, AKLT state.
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How rare are MBQC resource states
in Hilbert space?
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MBQC resource states are rare

Fraction of useful

= states smaller than

exp(-n 2)

[n: number of qubits]

D. Gross, S.T. Flammia, J. Eisert, PRL 2009.
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MBQC resource states are rare

D>

3 )
B % Fraction of useful

&‘a? S e states smaller than
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[n: number of qubits]

D. Gross, S.T. Flammia, J. Eisert, PRL 2009.
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What about ‘“realistic” ground states?

The AKLT state on a 2D honeycomb lattice is universal for
MBQC.

A. Miyake, Ann. Phys. 2011
T.-C. Wei, 1. Affleck and R. Raussendorf, PRL 2011.
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What about phases?

Probabiity of spanning domain

Phase transition in MBQC power coincides with physical phase
transition AKLT-order to Neel order.

H. Niggemann, A. Klumper, and J. Zittartz, Z. Phys. 1997.
A.S. Darmawan, G.K. Brennen, and S.D. Bartlett, NJP 2012.
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What about symmetry?

MBQC-AQC hybrid:

L4

FIG. 1: Quantum computation is processed on the edge state
which plays the role of a “holographic screen,” while its com-
putational capability relies on the symmetry-protected topo-

T(.)Els:ﬁiT S'“ﬁﬁ"@f"“""ﬁ Trom the pulk.

A. Miyake, PRL 2010.
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What about symmetry?

Symmetry-protected phases for measurement-based quantum computation

Dominic V. Else,! Tlai Schwarz,b? Stephen D. H}lrt‘]vtt?l and Andrew C. Du}ufrtyl

' Centre for Engineered Quantum Systems, School of Physics,
The University of Sydney, Sydney, NSW 2006, Australia
2 Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel

Ground states of spin lattices can serve as a resource for measurement-based quantum compu-
tation. Ideally, the ability to perform quantum gates via measurements on such states would be
insensitive to small variations in the Hamiltonian. Here, we describe a class of svinmetry-protected

T8

As a result, measurement-based quantum gates can be a robust property of an entire
phase in a quantum spin lattice, when protected by an appropriate symmetry.

This gives wire. Can we have universal quantum computation?

D.V. Else,1 I. Schwarz, S.D. Bartlett, and A.C. Doherty, PRL 2012.
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Part II:

Review of background material
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Matrix-product states [MPS]

. are states of the form:

[®) = 3. (RIAl1]A[i] - Alin]|L) [i1, 32, -, in)

i1,-n  expansion coefficient

with the A[i;] are D x D-matrices, and i, = 1,..,d.

e d is the physical dimension
e D is the bond dimension.

575

physical legs
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Matrix-product states [MPS]

e Ground states of 1D gapped phases are described by MPS.

e MBQUC resource states are described by MPS.

e Advantage: MPS tensors are local objects.

virtual space — Ai — virtual space

physical space
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MBQC with MPS

virtual space
C Spu-—>
in A out

e

measured qudit

The circuit equivalent of MBQC lives on the virtual space.
The A(¢) are the gates.

Q: For which post-measurement states ¢ is A(¢) unitary?

D. Gross, J. Eisert, PRL 2007.
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Example: 1D cluster states are MPS

,

blocked site

In the eigenbasis of local oz, the 2-blocked tensor A(+,+4) is

A(-l_! +) -[1 A(-l-! _) Oz,
A(—,+) oz, A(—,—) oy.

e Measurement in the o;-basis gives wire on the virtual space.

e Unitary gates and logical measurement in other bases.
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Example: 1D cluster states are MPS

,
-

blocked site

In the eigenbasis of local oz, the 2-blocked tensor A(+,+) is

A(-I_! +) -[3 A(-l-} _) Oz,
A(—,+) oz, A(—,—) oy.

e Measurement in the o;-basis gives wire on the virtual space.

e Unitary gates and logical measurement in other bases.
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Cluster states and symmetry

1D cluster states have an on-site Zo X Zpy-symmetry.
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Symmetry-protected topological order

Definition of SPTO phases:

%
—_
L
+~=

_—

parameter 1

We consider ground states of Hamiltonians that are invariant
under a symmetry group G.
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Symmetry-protected topological order

(‘\l%
—
O

—_

parameter 1

Two points in parameter space lie in the same SPTO phase iff
they can be connected by a path of Hamiltonians such that

1. At every point on the path, the corresponding Hamiltonian is
invariant under G.

2. Along the path the energy gap never closes.
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Topological characterization of SPT phases

« "

Fact: In spatial dimension 1, SPT phases are characterized by
the symmetry group G and the cohomology class [w] € H2(Q).

What is the cocycle w?

X. Chen, Z.C. Gu, and X.G. Wen, PRB 2011.
N. Schuch, D. Perez-Garcia, 1. Cirac, Phys. RRB 2011.
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Topological characterization of SPT phases

The MPS tensors A satisfy the symmetry constraint, Vg € G,

A = Vg {4 Vg
| |
U(g)

U is a unitary representation, V a projective representation of G,

V(gh) = w(g,h)V(g)V (h),
for some function w: G x G — U(1).

X. Chen, Z.C. Gu, and X.G. Wen, PRB 2011.
N. Schuch, D. Perez-Garcia, 1. Cirac, Phys. RRB 2011.
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Topological characterization of SPT phases

V(gh) = w(g,h)V(g)V(h).

The function w: G x G — U(1) is subject to a constraint and
an identification.

e The constraint comes from (V(g)V (h))V (k) = V(g)(V(R)V (k)).

e The identification comes from equivalence under rephasing,

V(g) — x(9)V(g),
where y is some phase factor x : G — U(1).

This makes [w] an element in the cohomology group H2(G).
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Main conjecture & our result

L S

Conjecture: The computational power of resource states for
MBQC is uniform across symmetry-protected topological phases.

Our result: The conjecture holds in spatial dimension 1. Avail-
able logical gates, state preparations and measurements are de-
termined by G, [w].
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Stepping stone

Theorem 1 [*¥]. Consider a symmetry-protected phase charac-
terized by a finite Abelian group and a maximally non-commutative
cohomology class [w]. Then, for every MPS in this phase there
exists a basis w.r.t. which the MPS tensor A has the decompo-
sition

Ai = (Bi)junk ® (Ci)ogical-

Therein, the operators C; are elements of a finite group, and are
constant throughout the phase.

Physical implication:
Can realize quantum wire on the logical subsystem.

. D. Else et al., PRL 2012.
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Obstacle to quantum computation

1

1Ca

K log

=
-
—_

There exists a basis in which this factorization holds

Obstacle:
For other measurement bases,
logical and junk subsystem become entangled.
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Part III:

Computational phases of quantum matter in 1D

Pirsa: 17060056 Page 27/49



Result

Theorem 2 [*] Consider a symmetry-protected phase of a group
G with the properties

(i) the ground state is unique,
(ii) there is a wire basis, and
(iii) for all C; exists a g € G such that C; ® I =V (g).

Then, this SPTO phase has the uniform computational power to
execute MBQC simulations of measuring the logical observables

-1 -1 -1 -1

O — C’L Cj' + C] C’l C’i C_} - Cj C’L Vz J
2 2 ? b

and of the Lie group unitary gates generated by O.

)

*: R.Raussendorf, D.S. Wang, A. Prakash, T.-C. Wei, D.T. Stephen, arXiv:1609.
I: Also see for 1 phase: Miller and Miyake, PRL 2016.
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Deviate from protected basis
without losing control
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Computational primitives

. Oblivious wire: drives junk subsystem
towards a fixed point state

. Unitary operations with small rotation
angle

1

. Measurement

1ca

K log

jun
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Primitive 1: oblivious wire

. Measure a given qudit in the protected basis.

. Propagate byproduct C; through the chain, using the sym-
metry relation.

AR - BB

u U G

. Forget the outcome i.
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Primitive 1: oblivious wire

e This procedure implements the channel £ on the junk system

£() =3 Bi()BY.

e If the ground state is unique then £ has a unique fixed point
Pfix-

This generates reproducible conditions
on the junk subsystem.
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Primitive 2: small-angle unitary

Procedure:

1. Given a wire basis By = {|i)}, measure in the basis B’

) 1) + da|2),

|1
2) = |2) - dal1).

and |3') = |3) etc.

2. Propagate the byproduct C; as before.

3. Apply (several rounds of) oblivious wire.
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Primitive 2: small-angle unitary

Given the outcome 1/, the result of this procedure on an input
state o ® psix IS, to linear order in da,

da
o ® prix —r V110 @ pfix + ?[1121(3 — u;lCT, o] ® prix+

1

da
+ ; {v21C + 13,07, 0} @ prix

where C = Cflc?g and the v;; are given by lim, EHB.I'[,’)“XB}. = Vi Pfix-

Commutator term: unitary rotation — good.
Anti-commutator term: non-unitary stretching — bad.
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Primitive 2: small-angle unitary

Outcome 1’:

do
T R Pfix v110 @ prix + 5 [121C - v510, 0] ® prix+
do g

+5{:’/21(? + 13,C7, 0} ® prix

Outcome 2

doa . ook
o ® Prix V220 @ pfix + ?[VQIC —v21C", 0] ® prix+

do ’

- 5{1/21(7 + 5,07, 0} ® prix

Probabilistically add both branches (forget outcome):

o ® prix —> (v11 + v22)0 ® prix + da [v21C — vil(ﬁ,a] ® Prix
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Primitive 2: small-angle unitary

This implements, with probability v11 4+ v22, a heralded unitary

vy1C — uglcﬁ)

U(da) = exp (z’d :
(d) (11 + v22)

Recall C := Cl_lcg is from the algebraic part of A; v;; are complex numbers

describing the fixed point state of the junk system, lim, L‘.“B,—_pﬂxB; = Vi Ptix-
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Primitive 2: finite-angle unitary

e Chop up a rotation about a finite angle ¢ into N rotations
about an angle ¢/N.

e Error per individual rotation is O(¢?/N?) [second order in da]

e Total error is O(¢2/N). Hence for a total error ¢ need
N = 0(¢?/¢)

small-angle rotations.
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Primitive 3: measurement

e Second-order corrections in da (or «) indeed violate unitarity

e Can use this fact to implement measurement

e Project to eigenstates of C
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Unitary-to-measurement changeover

4
In(ax)

Total error for unitary e = O(a?N). N = 1600 in this plot.
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Result

Theorem 2 [*] Consider a symmetry-protected phase of a group
GG with the properties

(i) the ground state is unique,
(ii) there is a wire basis, and
(iii) for all C; exists a g € G such that C; ® I =V (g).

Then, this SPTO phase has the uniform computational power to
execute MBQC simulations of measuring the logical observables

-1 -1 -1 -1

O — CT; C] + CJ C’l CT; C_} - CJ Cz V?’ J
2 ) 2 H )

and of the Lie group unitary gates generated by O.

*. R.Raussendorf, D.S. Wang, A. Prakash, T.-C. Wei, D.T. Stephen, arXiv:1609.
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quantum phases

quantum computation ,~

Lie group of gates
for MBQC
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Intrinsic Symmetry-protected
topological order topological order

MBQUC relates to symmetry-protected topological order like
topological QC relates to topological order.
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Summary and outlook
T et e e e e e e g o e S |

e Computational power for MBQC is uniform across 1D-SPT
phases.

e Algorithm converts the topological characterization G, [w] of

an SPT phase into the corresponding MBQC scheme

e Goal: Reproduce the above in spatial dimension 2 (and higher).

arXiv:1609.07549
arXiv:1611.08053
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Question: How to implement the symmetry?

O®DOODVOWDL®
OOODOOOD
®OOVOWVL®
0101010101016

®OOVLOVL®

each symmetry g € G acts in a local-global translation-
invariant fashion.

This approach seems to marginally fit in 1D, but not in higher
dimension.
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MBQC forward cones: discrete electrodynamics
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Question: How to implement the symmetry?

®DOODVOWDL®
0/0)0[010]0]6,
®OODVOVL®
0101010101010

®OOVLOVL®

each symmetry ¢ € G acts in a local-global translation-
invariant fashion.

This approach seems to marginally fit in 1D, but not in higher
dimension.
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A ZS‘*—symmetry

x X Z Z
X$Z, ﬁX, Zﬁi | Z$7
Z X

non-gauge gauge

These symmetries describe what matters about 2D cluster
states.

We want to regard those as the fundamental symmetries
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Symmetry

er ee

252" symmetry emerges via Lego
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Symmetry

x X Z Z
X$Z, &X, Z& | Z$7
Z X

non-gauge gauge

But the question is:
Is there a natural physical phase throughout which these
symmetries persist?
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