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Abstract: In this work we consider a recent proposal in which gravitational interactions are mediated via the exchange of classical information and
apply it to a quantized Friedman-Robertson-Walker (FRW) universe with the assumption that any test particles must feel a classical metric. We
show that such a model results in decoherence in the FRW state that manifests itself as a dark energy fluid that fills the spacetime. Motivated by
guantum-classical interactions this model is yet another example of theories with violation of energy-momentum conservation whose signature
could have significant consequences for the observable universe.
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INTRODUCTION

e QUANTUM INTERACTIONS

—» Mediated by virtual particles

—» Produce entanglement

e CLASSICAL INTERACTIONS
—» Ehrenfest theorem

—» Do not produce entanglement
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INTRODUCTION

¢ & ¢
As an example of a quantum interaction we
consider electrodynamic theory that is
~ dominated by local interactions and long
range forces arise as fluctuations of gauge field.
( [§
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As an example of a quantum interaction we
consider electrodynamic theory that is
dominated by local interactions and long

range forces arise as fluctuations of gauge field.

The guantum interactions described by
guantum field theory are governed by
unitary evolution
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INTRODUCTION

As an example of a quantum interaction we
consider electrodynamic theory that is
~ dominated by local interactions and long
range forces arise as fluctuations of gauge field.

entanglement

— The quantum interactions described by

guantum field theory are governed by

source i test
@cl/a potennal‘ \ @ unitary evolution

Gravitation remains stubbornly resistant to quantization
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INTRODUCTION

Qeneral Relativity and Gravitation, Vol. 28, No. 5, 1996

On Gravity’s Role in Quantum State Reduction

k
Roger Penrose!'?

Received August £8, 1995. Rev. version December 12, 1995

The stability of a quantum superposition of two different stationary mass
distributions is examined, where the perturbing effect of each distribution
on the space-time structure Is taken into account, in accordance with
the principles of general relativity. It is argued that the definition of
the time-translation operator for the superposed space-times involves an
inherent ill-definedness, lending to an essential uncertainty in the energy
of the superposed state which, in the Newtonian limit, is proportional
to the gravitational self-energy Ea of the difference between the two
mass distributions. This is consistent with a suggested finite lifetime of
the order of h/E, for the superposed state, in agreement with a certain
proposal made by the author for a gravitationally induced spontaneous
quantum state reduction, and with closely related earlier suggestions by
Didsi and by Ghirardi et al.
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The stability of a quantum superposition of two different stationary mass
distributions is examined, where the perturbing effect of each distribution
on the space-time structure ls taken into account, in accordance with
the principles of gﬁlml"" valativity Tt e arenad that tha Aafinition ~F
the time-translation op PHYSICAL REVIEW A VOLUME 40, NUMBER 3} AUGUST 1, 1989
inherent ill-definedness
of the superposed stati
to the gravitational se
mass distributions. Th

Models for universal reduction of macroscopic quantum fluctuations

the order of h/E4 for t L. Diosi
proposal made by the | Central Research Institute for Physics, H-1525 Budapest 114, P.O. Box 49, Hungary
quantum state reductic (Received 17 October 1988 revised manuscript received 21 March 1989)

Didsi and by Ghirardi . This paper adopts the hypothesis that the absence of macroscopic quantum fluctuations is due to
- a certain universal mechanism. Such a mechanism has recently been proposed by Ghirardi er al
[Phys. Rev. DD 34, 470 (1986)], and here we recapitulate a compact version of it. Karolyhazy [Nuovo
Cimenta 52, 390 (1966)] showed earlier the possible role of gravity and, along this line, we construct
here n new parameter-free unification of micro- and macrodynamics. We apply gravitational mea-
sures for reducing macroscopic quantum fluctuations of the mass density. This model leads 1o clas
sical trajectories in the macroscopic limit of translational motion. For massive objects, unwanted
macroscopic superpositions of guantum states become destroyed in very short times. The relation

between state-vector and density-operator formulisms has also been discussed. We only anticipate
the need for elaborating characteristic predictions of the model in the region separating micro- and

macroscapic properies
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use principles of relativity to limit the lifetime of spatial quantum superpositions and,
as a result, breaking the unitary evolution of the wavefunction
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INTRODUCTION . coronm secommen
for Gravitational decoherence)
(Kafri et.al. arXiv:1401.0946
NJP - 2013)

A classical channel model for gravitational decoherence.

D. Kafri, J.M. Taylor' and G. J. Milburn?
Abstract

We show that, by treating the gravitational interaction between two mechanical resonators as
a classical measurement channel, a gravitational decoherence model results that is equivalent to
a model first proposed by Diosi. The resulting decoherence model implies that the classically
mediated gravitational interaction between two gravitationally coupled resonators cannot create
entanglement. The gravitational decoherence rate ( and the complementary heating rate) is of the

order of the gravitationally induced normal mode splitting of the two resonators.
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D. Kafri, J.M. Taylor! and G. J. Milburn?

This approach is motivated by the fact that gravity cannot be shielded and therefore any observer can in
principle gain information about the quantum state sourcing gravity
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CO_SMOLO_GY [Review]

1 _
e EINSTEIN EQUATIONS Rap = 5 Rgap = 871G Ty

® METRIC ds® = —dt* + a*(t) ( ] dr?® + 7‘3(.1523)

k?"i"“"

e ENERGY-MOMENTUM TENSOR 7wy = (p + P)uaup + Pgab

‘ y 8¢ e i
| g2y b _8C ¢ _ 1 ap) H="
i‘ a“ 3 a 3 / a

e EQUATION OF STATE w(t) —— P =w(t)p

; A C w > -1/3 — decelerating
| - = ~p(1 + 3w(t))

Lu, 3 w < —1/3 — accelerating

naltamirano@pitp.ca

Pirsa: 17060029 Page 24/43



MODEL

Class. Quantum Grav. 34 (2017) 115007 (19pp)

Emergent dark energy via decoherence
in quantum interactions

Natacha Altamirano''?, Paulina Corona-Ugalde?®?,
Kiran E Khosla*?, Gerard J Milburn*> and Robert B Mann!+?

Abstract

In this work we consider a recent proposal that gravitational interactions
are mediated via classical information and apply it to a relativistic context.
We study a toy model of a quantized Friedman—Robertson-Walker (FRW)
universe with the assumption that any test particles must feel a classical
metric. We show that such a model results in decoherence in the FRW state
that manifests itself as a dark energy fluid that fills the spacetime. Analysis of
the resulting fluid, shows the equation of state asymptotically oscillates around
the value w = —1/3, regardless of the spatial curvature, which provides the
bound between accelerating and decelerating expanding FRW cosmologies.
Motivated with quantum-classical interactions this model is yet another
example of theories with violation of energy-momentum conservation whose
signature could have significant consequences for the observable universe.
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UNITARY Classical Channel Gravity
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UNITARY Classical Channel Gravity
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Emergent dark energy fluid from

C 0 —S M 0 L O_G Y quantum decoherence

(Altamirano et.al. arXiv:1605.05980
CQG-34,11 (2017))
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Emergent dark energy fluid from

COSMOLO_GY quantum decoherence

(Altamirano et.al. arXiv:1605.05980
CQG-34,11 (2017))
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Emergent dark energy fluid from

C 0 —S M 0 L O_G Y quantum decoherence

(Altamirano et.al. CQG-34,11 (2017)
arXiv:1605.05980)
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Emergent dark energy fluid from

COSMOLO_GY quantum decoherence

(Altamirano et.al. CQG-34,11 (2017)
arXiv:1605.05980)
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COSMOLOGY

Hilbert Space
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Emergent dark energy fluid from
quantum decoherence

(Altamirano et.al. CQG-34,11 (2017)
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Emergent dark energy fluid from
COSMOLOGY auartum deconerence
r—— —_— (Altamirano et.al. CQG-34,11 (2017)
arXiv:1605.05980)

K=1

T T T v T T

20 Y =40

= 10|
naltamirano@pitp.ca ”:ﬁﬁ:“"f =
0 5 10 15 20

Pirsa: 17060029

Page 36/43



Emergent dark energy fluid from

C O_SM 0 LO_G Y quantum decoherence

(Altamirano et.al. CQG-34,11 (2017)
arXiv:1605.05980)
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Emergent dark energy fluid from

C O_SM O LO_G Y quantum decoherence

(Altamirano et.al. CQG-34,11 (2017)
arXiv:1605.05980)
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