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Abstract: Quantum relative entropy is a measure of the indistinguishability of two quantum states in the same
Hilbert space. | will discuss the relative entropy between a state with periodic boundary conditions and

one with twisted boundary conditions for afree 1+1 CFT with c=1. | will also highlight the unresolved
discrepancy between analytic and numeric results.
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Introduction and motivation

Z
Topological error correction codes z z
. Z X
Known problems with these x 1
X

Dimensionality

Thermally stable in 4D (Dennis et al, JMP 2002)

Entanglement percolation transition in 5-6D
(Hastings et al, PRL 2014)

Gate errors

Beverland et al., JMP 2016
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A geometrical trick, I

Note how the Quantum Monte Carlo simulations saw data
collapse at about L=3,
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These are generally

defined to be one lattice §§\\

spacing wide...

(bUt they don’t have to be!) Macia, Rep. Prog. Phys. 2005
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A geometrical trick, II KRGS,
If we starting from a 5D hypercubic lattice y :":':;_;f:h:"\'h':ij' g.
and project to 2D, we get a Penrose tiling:
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http://www.ams.org/samplings/feature-column/fcarc-penrose
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Choosing the code |

Will assume (for now) that we need to start with either a 5D simple
hypercubic lattice, or a 4D face-centred hypercubic lattice.

(We are not guaranteed to get a Penrose tiling just because we
started out with 5 dimensions and then projected down to 2 at
the correct angle!)

There are several candidates. Look at more than one, as some
Have potential problems...

1. The 4D toric code from (Dennis et al., JMP 2002)

The qubits are located at the centres of the faces of a hypercubic
lattice. (However the corners are empty, which could complicate
things later...)

Pros: low generator weight (6 and 6) and has a thermal stability
proof in 4D (but that may not survive the projection step)

Cons: doesn’t occupy the corners in the A, lattice
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Choosing the code II
2. Some 5D toric code (e.g. 5D X-star, 4D Z-plaquette)
Pros: occupies all the edges in the 5D hypercubic lattice

Cons: ridiculously high generator weight:

X-star: 10, Z-plaquette: 32

(may lose some of that at the projection step, but see later)
Don’t know if 1t’s thermally stable at finite T.

3. Some “A,” code (that I just made up)

Z-plaquettes are 3-cubes with qubits at the centre of all the
faces and at all the corners (weight = 6+8 = 14)

X-stars are 4 orthogonal intersecting 2x2 planes with qubits
at the centre of all the faces and one at the centre, but none
on the edges of the planes (weight = 4x4+1 = 17)

Pros: occupies all the nodes in the A | lattice

Cons: high generator weight; don’t know about thresholds
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Twisted BCs

Periodic field ¢,,.(x + L) = ¢,,.(x) subject to a constant gauge
field A, (z) = A,
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Twisted BCs
We eliminate A, with a field redefinition
Bz) = e 1l ¥, (2)
The PBC translate to
eiqA"’(‘rJ“L)(b(:I: ap L) — (:’.iqA""Egb(.’L‘)
so the new field has twisted BCs

bla+ L) = e 4L g(z) = e (z)
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Q: How does the entanglement entropy depend
on a twist 6?
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Entanglement entropy

EE is defined as

1
S(pa) = —Tr(palogps) = lim -Tr (p%)

a—11 o

f’lﬁ
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Real time method

Write density matrix as

i :
PA = N(t‘, Hy, H, = E q_.a,i:a,k

k

So the EE is

S(pa) = —Trpy ( Z EA:G'I@A: i 103"N)

k

From Bose-Einstein statistics, (aLak) = (e — 1)~ ! and

Neo= (L —eree)~
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Real time method continued

For Hamiltonians for the form
1| 5 1 o
= Zyr_,; s Z¢_.,.A_U¢j
? 2,]

we can directly compute the eigenvalues €, of H,, from

correlation functions

X = <(/)?I(/).f> = ; (K é)_U.

L
P = <7T.,-7I"-,'> D) (Ag)?"j

The effect of twisted boundary conditions is to change Ky 1., K1, ;
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Entanglement entropy

Restrict the correlation matricies X, P to the region A and define
Cyq=+X4Py
The eigenvalues Ay of U4 are related to €; of H,
1 7)
Ay = - coth =
2 2

The EE in terms of Ay is

R () M )}

k
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Real time method continued

For Hamiltonians for the form
1| 5 1 o
= Zyr_,; s Z¢_.,.A_U¢j
? 2,]

we can directly compute the eigenvalues €, of H,, from

correlation functions

X = <(/)?I(/).f> = ; (K é)_U.

L
P = <7T.,-7I"-,'> D) (Ag)?"j

The effect of twisted boundary conditions is to change Ky 1., K1, ;
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Results: Entanglement entropy
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Results: EE

e Entanglement grows as @ — 0

e Reasonable since S(pg) ~ — logm

£/L
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Results

e Different functional form

* S(pa) = 51In ("; sin "T‘F) + (non-universal) only for 8 =0

7N

0.2 0.4 0.6 0.8 1.0
0L

S(pg) adjusted
w w g
o w o
)
o
(=

N
wun

N
o

=
o

Pirsa: 17060017 Page 22/34



Pirsa: 17060017

Analytic formula

In 2017 Shiba (arxiv:1701.00688) derived the EE for these twists,

S%(po) Zhl UA/n (0)o, L/n( )UH/ZN(I)OI 9,/zw(00)>

with |z sin "‘qu and

I'(1 — v)T'(k/n)

(14 f-'_;‘"n = o (1 r*,kfn, 1, 2) o Fy(1 - v, J’.tf-"-n, l+k/n—v,1-3)

msinw(k/n — v) oF (1= v k/n,1,2) oFy(1 = v, k/n,1,%)

B e —
sin(mwhk/n) sin(7)
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Q: How is p4(0) different from p4(0)?
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Background: Relative Entropy

Given two reduced density matrices p and o on a region A, the

relative entropy is defined as
S(plle) = Tr(plogp — plogo)

This has useful properties such as

* Non-negative, S(p||o) > 0
e Monotonically decreases under CPTP operations

e (Monotonically increases under increasing volume of A)

* Jointly convex function of p, o
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Modified real time approach

Use

1 ~ _opt
LA‘ (‘;.f bi.‘ b;\: o ;1 — €

p;’l — e ]
N,

so the second term in the relative entropy becomes

Tr(pglogos) ~ Tr|py Z e“ZaLak + const
k

So we need to compute Tr (pg a‘lﬂ'k)
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Transformation
Take a linear combination

aj = Mi;b] + Nijb;
aj = N ;iib;- + M;;b;
expanding T'r (PA (LI(Lj) gives

M M ;; Tr (p‘,-lbizbg) + Ny Ny Tr (/);114-.!)}') +0+0
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Transformation ...

For a free theory, you can already write ¢, 7 in terms of creation-

annihilation operators

T = ;(m{ﬂ) 'l (”’I — (Li) = ;(Bji) l (bj = b’?)

Solving for al, @ in terms of b1, b give the M, N matrices

1 ) 1 o
Mjy, = **(Uf_ja')_lﬁm t-aji(Bir) |
2 2
= , 1
N = 5(%‘:‘) 1Bir — 5%‘1(5%) .

The a, 8 matrices can be found from X 4, Py.

Page 28/34



Results: Relative entropy
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Aside: what to expect

Relative entropy for an state excited by a vertex operator V,, = €'@?
(Lashkari, arxiv:1404.3216)

15.0

S(Vapollpo)

[ -
v N o N
(@] w o u

N
w

085 02 04 06 08 L0

. Sr(‘/clﬂ(]Hp()) — 0 as F/L > 0
o S(Vﬁ)()”[’)n) — OO as E/L > 1
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Relative Entropy

0.0 0.2 0.4 0.6 0.8
(L

Surprising features

e Non-zero A(6,0) = S(pa||po)

,asl/L — 0
e Gap diverges with mass A(8,0) ~ — log(m)

{

e |nflection point

1.0
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More than just a @ = 0 problem

e Between two angles, €, 6, there is still a gap

e Relative entropy vanishes if 81 = 05

0.20
0.151
Y ~ corma
= 0.10
<
<]
Ll — 6, =0.21
61 =0.6n
0.00 ' :
0.0 0.2 0.4 0.6 0.8 1.0

62!”
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Finite-size scaling

How does A(8, 0) scale with L?

10

A(0.3,0)
a4}
¥

TR A e

Without a proper finite-size scaling prediction it's ambiguous is the

gap vanishes or not

-6.0
logl/L

-5.5

-5.0

-4.5
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Final Remarks

e Entanglement entropy depends non-trivially on 6

 Gap at S(pyl|po) ‘E, , means py depends on some information
about the BCs

e Can'texpandin @ as pg = pg + Adp

e Unknown finite-size scaling of relative entropy for twisted BCs

Thanks for listening!
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