Title: Quasi-Topological Quantum Error Correction Codes
Date: May 31, 2017 04:00 PM
URL.: http://pirsa.org/17050099

Abstract: <p>EXxisting proposals for topological quantum computation have encountered<br>
difficultiesin recent years in the form of severa " obstructing” results.<br>
These are not actually no-go theorems but they do present some serious<br>
obstacles. A further aggravation is the fact that the known topological<br>

error correction codes only really work well in spatial dimensions higher<br>
than three. In thistalk | will present a method for modifying a higher<br>
dimensional topological error correction code into one that can be embedded<br>
into two (or three) dimensions. These projected codes retain at least some<br>

of their higher-dimensional topological properties. The resulting subsystem<br>
codes are not discrete analogs of TQFTs and as such they evade the usual <br>
obstruction results. Instead they obey a discrete analog of a conformal<br>
symmetry. Nevertheless, there are real systems which have these features,<br>
and if time permits I'll discuss some of these. Many of them exhibit<br>

strange low temperature behaviours that might even be helpful for<br>
establishing finite temperature fault tolerance thresholds.<br>

<br>

Thisresearch is still very much awork in progress... As such it has<br>
numerous loose ends and open questions for further investigation. These<br>
constructions could aso be of interest to quantum condensed matter<br>
theorists and may even be of interest to people who like weird-and-wonderful <br>
spin models in general .</p>
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Outline

Introduction and motivation

A geometrical trick

Features of the error correction code

What might this allow us to do?
Mimicking higher dimensional topological behaviours

Finite temperature thresholds and naturally occurring systems
...which can have some unexpected properties: toric bosons?!

Summary and open questions
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Introduction and motivation

Z
Topological error correction codes EHZ

Known problems with these

Dimensionality

Thermally stable in 4D (Dennis et al, IMP 2002)

Entanglement percolation transition in 5-6D
(Hastings et al, PRL 2014)

Gate errors

Beverland et al., JIMP 2016
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A geometrical trick, |

Note how the Quantum Monte Carlo simulations saw data
collapse at about L=3,
for D=5-6 e © o o o

Use a “cut and project”
at an irrational angle.

@ @ @ @
Rational slope (3/2)
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These are generally
defined to be one lattice
spacing wide...

(but they don’t have to be!) Macia, Rep. Prog. Phys. 2005
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A geometrical trick, I

If we starting from a 5D hypercubic lattice
and project to 2D, we get a Penrose tiling:
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A geometrical trick, Il

Penrose tilings obey a discrete version of a conformal symmetry,
known as deflation rules:

7\ £

Tiling Is neither translation nor

rotation invariant, so does not
respect Lorentz symmetry
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A geometrical trick, 1V

If we had started from 6D and projected down into 3D, we would
have obtained an icosahedral tiling:

»
I [ 4 4.
£ o e ) ¢ >
]
w L ’ ; @
4 L
) <, S
g
-

In fact we can construct a Penrose tiling starting from a 4D
hypercubic lattice, provided we switch to a face-centred lattice,
also known as the A, “root lattice”

Put lattice sites in the middle of all the faces: o N\ T,
A
< A
Then pick a 4D code if you can find one that fits... /% /—./
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Discrete Conformal vs. Lorentz symmetry

A fact about fundamental groups

m1[SO(p, ¢)] = m[SO(p)] x m1[SO(q)]

Conformal symmetry group IS SO(n + 1, 2)

m1(SO*(p,q)) | p=1 | p=2 p=3 n

qg=1 o 7 C> Lorentz

q=2 Z ZxZ | ZxCGCy Conformal

q=3 G Gy X .Z @ FE
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Choosing the code |

Will assume (for now) that we need to start with either a 5D simple
hypercubic lattice, or a 4D face-centred hypercubic lattice.

(We are not guaranteed to get a Penrose tiling just because we

started out with 5 dimensions and then projected down to 2 at
the correct angle!)

There are several candidates. Look at more than one, as some
Have potential problems...

1. The 4D toric code from (Dennis et al., JMP 2002)

The qubits are located at the centres of the faces of a hypercubic

lattice. (However the corners are empty, which could complicate
things later...)

Pros: low generator weight (6 and 6) and has a thermal stability
proof in 4D (but that may not survive the projection step)

= 0s0CONS: doesn’t occupy the corners in the A, lattice



Choosing the code Il

2. Some 5D toric code (e.g. 5D X-star, 4D Z-plaquette)
Pros: occupies all the edges in the 5D hypercubic lattice

Cons: ridiculously high generator weight:

X-star: 10, Z-plaquette: 32

(may lose some of that at the projection step, but see later)
Don’t know If it's thermally stable at finite T.

3. Some “A," code (that | just made up)

Z-plaquettes are 3-cubes with qubits at the centre of all the
faces and at all the corners (weight = 6+8 = 14)

X-stars are 4 orthogonal intersecting 2x2 planes with qubits
at the centre of all the faces and one at the centre, but none
on the edges of the planes (weight = 4x4+1 = 17)

Pros: occupies all the nodes in the A, lattice

e mossee CONS: NIgh generator weight; don’t know about thresholds:.. ..



___code. (That’s actually a good thing for fault tolerance!)

Logic operators after the projection step

Both the natively 4D codes have logic operators that are surfaces
In the original space. Think of the code as living on a higher
dimensional torus: the logic operators have non-trivial winding.

(If the code is unwrapped, need to follow the boundary rules.)

(*The 5D toric code will need its logical-X to be a volume.)

Will be left with the intersection of the operator and the
remaining surface.

Can choose these to be stripes and patches for the 4D codes.
(The 5D toric code might need a full surface for one of its Xs.)

Stripe-like logic operators are what you want to see (string-like
ones cause problems for thermal stability).

Patches don’t look so good: those qubits are more vulnerable to
noise. They are now “gauge” qubits, and our code is a Subsystem
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An unexpected subtlety...

Let’s play hunt the plaquette!

FIG. 1. Two allowed overlappings of decagonal clusters and
corresponding tiles. A portion of the decagonal network hosting
the atoms is shown. Circles, Al; squares, transition metal; open

Pirsa: 47050099 .
symbols, z =0; solid symbols, z =c/2 layer.
ICE Riirkknyvy DB 1Q021

AI65C920C015 and
Al Ni Co,,
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Too many hypercubes!

There are intact
hypercubes

with edge-lengths
1/3 and 2/3

the edge-length of
the smallest
Penrose tiling!

FIG. 1. Two allowed overlappings of decagonal clusters and
corresponding tiles. A portion of the decagonal network hosting
the atoms is shown. Circles, Al; squares, transition metal; open
reyrboks, z =0; solid symbols, z =¢/2 layer.
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First put your lattice on a torus, then...

A lot of the standard results start with this step!

What happens if we try anyway?
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5-fold topological phenomena!

If we drag these things around each other, we're going to
Pick up phases that are multiples of /5

Breaking the bi-coloring may make those phases non-Abelian....

...we might start seeing braiding matrices like this:

—14m /5 0
et37/5

E
o1 = 0

0i37/5

/ _re—in/5 \/;e—i3w/5 \
gy = F~ g F = J/Te i3/ -
\ 6@'37?/5
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The Khatyrka meteorite

- @ntained (metastable) decagonal quasicrystal AL, NI, Fe, e



