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Outline

@ Nonlocal games and synchronous correlations
© Classical, quantum, and nonsignaling strategies

© Bell inequalities for synchronous correlations

@ Categories of generalized functions
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Nonlocal games

Nonlocal games

Our goal is to generalize functions f : X — Y with nonlocal games.
@ Alice and Bob obtain inputs (x4, xp) € X2.
@ They produce output (y4,ys) € Y? (nondeterministically).

XA
We want “synchronous” games: ) l

if they get the same input, they "/
should produce the same output.

E.g. they preselect f € YX. | p(va,yB | xa,xB)

@ Alice outputs ya = f(xa), "
@ Bob outputs yg = f(xp). l l

In general a game is a “correlation” L Y8

p(ya,ys | xa, xg), with a winning condition V : X*> x Y? — {0,1}.

E.g. “quantum graph homomorphisms” have x4 ~ xp iff y4 ~ ya.
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Nonlocal games

Synchronous correlations

Formally, a synchronous correlation satisfies:
p(ya,ys | x,x) =0 whenever ys # yz.

Write Hom(X, Y) for synchronous correlations from X to Y.

Lemma

The space of synchronous correlations is a convex set.

Example. Consider X = {0}.
e Identify Y with Y% via y = £(0).
@ A general strategy is a probability distribution on Y2,
® A synchronous correlation has p(y1,y2) = 0 for y; # ys.
@ So Hom({0}, Y) is identified with probability distributions on Y.

6 of 31
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Nonlocal games

Example: functions as synchronous correlations

Consider the case X =Y = {0, 1}. A synchronous correlation has 4 x 4
(column) stochastic matrix

p(0,0[0,0) p(0,0[0,1) p(0,0{1,0) p(0,0]1,1)
0 p(0,1/0,1) p(0,1]1,0) 0
0 p(1,0[0,1) p(1,0]1,0) 0
p(1,100,0) p(1,1]0,1) p(1,1[1,0) p(1,1]1,1)

The four correlations corresponding to the four functions in YX are
1
0
0

Here, the synchronous correlations form an eight dimensional convex
polyhedron with 64 vertices (which include B, I, R, and T).

7 of 31
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Classical, quantum, and nonsignaling strategies

Hidden variables strategies

Definition

A local hidden variables, or simply classical, correlation is a conditional
probability distribution that takes the form

p(ya, yBlxa, xp) = Z p(w)pa(yalxa, w)ps(yslxs, w)

wel)

for some finite set () with a probability distribution p.

We will write Hompy (X, Y) for the synchronous hidden variables
strategies.
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Classical, quantum, and nonsignaling strategies

Synchronous hidden variables strategies

Theorem

The set of synchronous local hidden variables strategies on X — Y is
bijective to the set of probability distributions on Y*. Given such a
probability distribution the associated strategy is: Alice and Bob sample a
function f € YX according the specified distribution, and upon receiving
xa, xB they output ya = f(x4) and yg = f(xp).

Corollary

The extreme points of Hompv (X, Y) can be canonically identified with YX,

Corollary

Every synchronous classical strategy is symmetric.

Here symmetric means:

p(ya,yB | xa,xB) = p(yB, ya | XB, X4).
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Classical, quantum, and nonsignaling strategies
Example: | X| =3 and |Y| =2

For any p € Homyv ({0, 1, 2}, {0, 1}) we have

p(0,1|0,1) +p(0,11,2) +p(0,1/2,0) < 1.
Sketch of proof. Write

p(Ya, ys | xa, xp) = Z F O Liya=Fea) Liys=F o))
fe{O,l}{Dfl'z}

One verifies
p(0,110,1) = u(0,1,0)+ u(0,1,1),
p(0,111,2) =u(0,0,1)+ u(1,0,1),
p(0,112,0) = u(1,0,0)+ u(1,1,0).
Therefore

p(0,110,1) +p(0,1)1,2) +p(0,1]2,0) =1 - u(0,0,0) — u(1,1,1) < 1.
11 of 31
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Classical, quantum, and nonsignaling strategies

Quantum strategies

A quantum correlation is a strategy that takes the form
p(Ya,yslxa, xp) = tr(p(Ey} ® Fyp)),

where
@ p is a density operator on the Hilbert space $4 ® Hp, and

@ for each x € X we have {E;}yey and {F; }yey are POVMSs on $4 and
$Hp respectively.

We will write Homg(X, Y) for the synchronous quantum correlations.

12 of 31
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Classical, quantum, and nonsignaling strategies

Synchronous quantum correlations

Lemma

In any synchronous quantum correlation, the POV Ms {E; }yey and {F;}yey,
for x € X, are projection-valued measures.

Comment.
@ In general one may take {Ey" }yey and {F; lyey projection-valued by
enlarging $4 and Hp.
@ Synchronism implies they must projection-valued already.

Proposition

Suppose p(ya, yslxa, xg) = (Y|Ey; ® Fyp|) is any quantum correlation

with projection-valued measures. If the Schmidt coefficients of | ) are all
distinct then the strategy is classical.
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Classical, quantum, and nonsignaling strategies

Synchronous quantum correlations, contd

Every synchronous quantum correlation is convex combination of ones with
maximally entangled pure states. In particular, if

pya, ys | Xa,xp) = tr(p(Ey} ® Fyp))
is extremal, then we may take p = ) (Y| with |¢) maximally entangled.
Sketch of proof. Take p = [1) (1| with o; the Schmidt coefficients of [).
@ Then tra(|P)(Y|) = ;:1 0’,-1_[;-‘1.
@ This decomposes H4 = 3561 &) @;:1 im (1'[;-4).
@ Similarly for $p.
We can use this to write

4
p(ya,yBlxa, xp) = Z(fjﬁf)(l,ble;J ® Fy [Y))
j=1

where [1) ; is maximally entangled on im(l_lf) ® im(l'[),B)
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Classical, quantum, and nonsignaling strategies

Example

Returning to the example X = Y = {0, 1}, consider the quantum
correlation p(ya, yslxa, x8) = (Y|(Ey} ® E}2)|i) on C2 where:

® )= 7(|00> +11)),
® Ej =10)0| and EY = |1)(1], and
o Ej = |po){(¢ol and E} = [¢3)(¢p3| where

|po) = cos B]0) +¢'? sin O]1), and |¢py) = — sin 6]0) +€¥ cos 6]1).

The associated stochastic matrix for this strategy is
cos? @ cos? 0

sin? 0 sin? 0 cos 9 sin? 6
sin?@ sin? 0 (B+T)+ (I'+R).

cos? 0 cos? O

So we see this correlation is not extremal, and in fact is classical.
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Classical, quantum, and nonsignaling strategies

Further reductions

Theorem

Let X, Y be finite sets, and $ a d-dimensional Hilbert space. Suppose for
each x € X, we have a projection-valued measure {F; lyey. Then

X,

1 x
pya, yplxa, xp) = Str(FyiFy,)

defines a synchronous quantum correlation. Moreover, every synchronous
quantum correlation with maximally entangled pure state has this form.

Corollary

Synchronous quantum correlations are symmetric.
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Classical, quantum, and nonsignaling strategies

General nonsignaling strategies

A correlation is nonsignaling if it satisfies:

D (YA, yslxa, x8) = ) p(ya,yslxa, xy) for all ya, xa, xp, xp, and

YB VB

Z p(Ya,yBlxa, xg) = Z p(Ya,yslxy, xp) for all yg,xa, x4, xB.
ya YA

We will write Hompns (X, Y) for the synchronous nonsignaling
correlations.
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Classical, quantum, and nonsignaling strategies

Example: nonsignaling correlations when |X| = |Y| = 2

For X = Y = {0, 1}, the synchronous nonsignaling correlations have:

0+p(0,010,0) =p(0,0[0,1) + p(0,1]0,1),
p(0,0[1,0) +p(0,1|1,0) =p(0,0/1,1) + 0,
0+p(1,1]0,0) =p(1,0(0,1) +p(1,1]0,1),
p(1,0[1,0) +p(1,1|1,0) = p(1,1]|1,1) + 0,
0+p(0,0]0,0) =p(0,0[1,0) + p(1,0[1,0),
p(0,0[0,1) +p(1,0/0,1) =p(0,0]1,1) + 0,
0+p(1,110,0) =p(0,1]1,0) + p(1,1]1,0),
p(0,110,1) +p(1,1|0,1) = p(1,1]1,1) + 0.

With p(ya, yslxa, xg) > 0 and ZyA,yB p(ya,yBlxa, xg) =1, we get a four
dimensional polytope with six extreme points. Four of these vertices
are familiar: B, I, R, and T. The two additional ones are PR-boxes

PRy = % , and PR; =

Page 17/30



Bell inequalities

Outline

© Bell inequalities for synchronous correlations
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Bell inequalities

Nonsignaling correlations with two-point domain

Lemma

Let u =u(ya,yp) and v = v(ya,yp) be probabilities on Y2 with:
o Yyuyy)=2Xyvy, y) = 0(y) and

° Xy uly,y) =Ly vy y) = o).
Define

pWa,YBl0,0) = Ly, =5 O (ya)
PWa,ysl0,1) = u(ya,ys),
P(ya,ysl1,0) = v(ya,ys),
pPWa,yBl1, 1) = Liy,=ys P(YAa).

Then p is a synchronous nonsignaling correlation. Moreover, every
synchronous nonsignaling correlation from {0, 1} to Y arises this way.

The proof is straightforward.
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Bell inequalities

Hidden variables correlations with two-point domain

Lemma

Let u = u(ya, yg) be any probability distribution on Y? and set
O(y) = Xy uy,y') and ¢(y) = Xy u(y’,y). Define
p(ya,ysl0,0) = ]l{yA:yB}e(yA)
p(ya,y8l0,1) = u(ya,ys),
p(ya,ysl1,0) = u(ys, ya),
pPWa yBl1, 1) = Liy,s=ys P (YA)-

Then p is a synchronous classical correlation. Moreover, every synchronous
classical correlation. from {0,1} to Y arises this way.

Sketch of proof. The probability distribution on Y01} ig
1) = u(f(0),f(1)).
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Bell inequalities

No Bell inequalities with two-point domains

Corollary

A synchronous nonsignaling correlation from (0,1} to a set Y is classical if
and only if it is symmetric.

Proof. If p is a symmetric synchronous nonsignaling correlation, then
the u and v in the above lemma satisfy v(ya, ys) = u(ys,ya), and so
from this latter lemma p is classical. Conversely, every synchronous
classical correlation is symmetric and nonsignaling.

Corollary

Every synchronous quantum correlation from {0, 1} to a finite set Y is
classical.

Proof. Extremal synchronous quantum correlations are symmetric,
and hence classical by the previous corollary.
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Bell inequalities

Nonsignaling correlations with two-point range

Lemma

Suppose | X| > 2 and let w = w(x4, xp) be a nonnegative function on X2
such that for every xa,xp € X:

Q w(xa, xp) < w(xa,xa),

© w(xa,xp) < w(xp,xp), and

© w(xa,xs) +w(xg, xg) <1+ w(xa,xp).
Define

p(0,0|xa,xB) =1 +w(xa,xB) —w(xa,x4) — w(xp, XB)
p(0,1| x4, xg) =w(xp, xg) — w(xa,Xp),

p(1,0| xa, xp) = w(xa,xa) — w(xa,xp),
p(1,1]xa,xp) =w(xa,xs).

Then p is a synchronous nonsignaling correlation. Moreover, every

synchronous nonsignaling correlation from X to {0, 1} arises this way.
23 of 31
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Bell inequalities

Bell inequalities for | X| =3 and |Y| =2

The nonsignaling polytope

Consider nonsignaling correlations from {0, 1, 2} to {0, 1}.

@ The lemma shows there are 9 essential parameters, wy, . .., ws,
where

P(L, 11 YA, YB) = Waws4ys-
@ The conditions in the lemma form 24 linear inequalities

w1, w1
un, wp
w3, w3
ws, ws
We, We
wz, wy

wo, w
wo, wz
Wy, w2
wy, ws
ws, w3
ws, We

Wy, wo + Wy
wy, wo + wy
ws, wp + Wg
ws, wo + wg
wo, Wy + Wy
wo, wy + wg

1+wq,
1+w3,
1+ZU2,
1+w5,
1+ ws,
1+W7.

IA A IA A A TA
IA A A IA A TA
IA A IA A IATA

IA A IA A A IA

@ 0 < wy, wyg, wg are implicitly true.

These inequalities define a polytope in R?, which has 80 vertices. Any
point in this polytope describes a synchronous nonsignaling strategy.

24 o 31
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Bell inequalities

Bell inequalities for | X| =3 and |Y| =2

The hidden variables polytope

The hidden variables polytope is:
@ the convex hull of the 8 functions in {0, 1}10-1.2};

@ a 6 dimensional polytope with these 8 functions as vertices;
@ lives in the space defined by

w1 =ws, wr = We, ws = Wy.

These are exactly expressing the symmetry of classical strategies.
These equations reduces nonsignaling conditions to 12 inequalities.
However there are four additional inequalities that are required:

Jo=wo— w3+ w4 —we—wy+wsg <1,
J1 =wy — w3 —we +wy >0,

Jo = —w3 + wy + we — wy =0,

J3 = w3 —we — w7 + wg > 0.

Note: first of these, Jo < 1 is precisely the inequality we saw before. 553
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Nonsignaling violations for | X| =3 and |Y| = 2

Proposition

No synchronous nonsignaling correlation can violate more than one of the
inequalities o < 1 and J1, ]2, J3 2 0. The greatest possible violation among

these strategies is [7°* = 3, and [ = Jmin = min = _1,

Sketch of proof. Enumerate the vertices of the nonsignaling polytope.

@ Eight of these have

(1 —10111112113) = (_%’ %’ 21’ %) ’

@ Similarly eight each with (1 — Jo, J1, J2, J3) being

@ The other 48 do not violate any of the inequalities.
Conclude one J; is negative implies the others are nonnegative.
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Bell inequalities

Quantum violations for | X| =3 and |Y| = 2

Theorem

On H4 = Hp = C2 every synchronous quantum correlation satisfies |
and J1,]2,]3 = —%. Moreover these bounds are sharp, with each of |y =
fi= —}3, 2= —%, and [3 = —% realized by a unique (up to symmetry)
extremal synchronous quantum correlation.

E.g. the three measurement settings that achieve Jy = % have

FO = [1)(1], F} = |p1)(1], and F? = |2){¢ba|

where

1) = —%210) + L[1) and |¢hp) = 210) + 1[1).

This correlationhas |1 =], =]z = %.
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Categories

Outline

@ Categories of generalized functions
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Categories

Categories

Here we wish to extend the category FinSet of finite sets using larger
Hom-sets. We have already used the notation:

® Hompy (X, Y) for the synchronous hidden variables strategies,
@ Homg(X, Y) for the synchronous quantum correlations,

@ Homns(X, Y) for the synchronous nonsignaling strategies.

@ Hom(X, Y) for all synchronous correlations.

The composition rule is the obvious one.
@ This extends of composition of functions.
@ Each Hom-set is closed under composition.
@ Corresponds to multiplication of associated stochastic matrices.
@ The identity idy is the identity function in all cases.
Denote these FinSetpy, FinSetg, FinSetns, etc., for these categories.
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Categories

Notions of injective nonlocal games

In a general category C a morphism f € Hom®(A, B) is:
@ a section if there exists a g € Hom®(B, A) with g o f = id4,
@ a monomorphism if whenever ¢, h € Hom®(Z, A) satisfy

fog=fohtheng=h.
Theorem

In FinSetys, the sections are precisely the deterministic strategies
corresponding to a one-to-one functions.

Corollary

In each of FinSetyy and FinSet, the sections are precisely the deterministic
strategies corresponding to a one-to-one functions.

Proposition

In each of FinSetyy, FinSetq, and FinSetysg, the monomorphisms are

precisely those strategies whose stochastic maps have zero right nullspace. B o1
of
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Categories

Notions of surjective nonlocal games

In a general category C a morphism f € Hom®(A, B) is:
@ a retract if there exists a g € Hom®(B, A) with fog=idy,

@ an epimorphism if whenever g, h € Hom“(Z, A) satisfy gof =hof
then ¢ = h.

In FinSetys, epimorphisms are precisely those strategies whose stochastic
matrices have zero left nullspace.

@ The proof of this proposition relies on our characterization of
Homns (X, {0, 1}), which does not naturally extend to FinSety;y
and FinSetg.

@ Nonetheless in FinSetyy: an isomorphism is a deterministic

bijective functions, and a bimorphisms is synchronous
nonsignaling correlations whose stochastic matrix is nonsingular.

31 0f 31
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