Title: Self-gravitating fluid solutions of Shape Dynamics

Date: May 15, 2017 04:45 PM

URL: http://pirsa.org/17050080

Abstract: Shape Dynamics possesses a large set of solutions in common with General Relativity. Upon close inspection, these solutions behave in surprising ways, so in order to probe the fitness of Shape Dynamics as a viable alternative to General Relativity one must understand increasingly complex solutions, on which to base perturbative studies and numerical analyses. We show that a class of time-dependent exact solutions of Shape Dynamics exists from first principles, representing a central inhomogeneity in an evolving cosmological environment. By assuming only a perfect fluid source in a spherically symmetric geometry, we show that this solution satisfies in all generality the Hamiltonian structure of Shape Dynamics. The solutions are characterized by shear-free flow of the fluid and admit an interpretation as cosmological black holes.

Statement of the problem	
Solving the system Particular solution Conclusion	 Shape Dynamics has potentially many solutions in common with GR Identical to GR in ADM formulation, provided:
	 Compact 3-space CMC foliation
	Important difference with respect to GR
	□ No spacetime: <i>No causal structure</i>
	Exact solutions
	 Black holes in the presence of self-gravitating matter Time-dependent solutions
	 Global differences with respect to GR counterparts
D.C. Guariento	SD Workshop 2017 - 2
D. O. Guariento	SD Workshop 2017 - 2

PERIMETER

:

D. C. Guariento

Solving the equations of motion

The momentum equation can be integrated in t

$$\mu'' - 2\frac{\mu'^2}{\mu} - \mu'\frac{R'}{R} = \chi(r)$$

Exact solutions of χ : *Kustaanheimo–Qvist* class (Kustaanheimo & Qvist, 1947)

 \Box CMC foliation, perfect fluid, spherical symmetry \Rightarrow Shear-free

□ Physically interesting subcases

- Wyman subclass: $p(\rho)$
- Scalar field and k-essence sources

Constantly rediscovered in literature, with rich causal structure

(Sussman, 1988)

SD Workshop 2017 - 7

The Hawking–Hayward mass

D. C. Guariento

Fixing the Misner–Sharp mass

Statement of the Weyl part of the Misner-Sharp mass problem Solving the system $M_{\rm W} = \frac{R^3}{3}\chi$ Particular solution Misner-Sharp mass Metric functions $GR \times SD$ Desired properties of the particular solution Conclusion Central singularity \Rightarrow Divergence of the Weyl tensor at r = 0□ Asymptotically FLRW \Rightarrow Smooth Weyl at the antipode $r = \pi$ Simple Ansatz: define $w(r) \equiv 2R(r/2)$, so that $\chi = 3m\frac{w^{\prime 2}}{w^3} = \begin{cases} 3\frac{m}{r^3} & k = 0\\ 3m\frac{\cos^2(r/2)}{2\sin^3(r/2)} & k = 1 \end{cases}$

SD Workshop 2017 - 9

