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Abstract: <p>Over the past severa years, our understanding of topological electronic phases of matter has advanced dramatically.& nbsp;& nbsp; A
paradigm that has emerged is that insulating electronic states with an energy gap fall into distinct topological classes.& nbsp;& nbsp; Interfaces
between different topological phases exhibit gapless conducting states that are protected topologicaly and are impossible to get rid
of.&nbsp;&nbsp; In this talk we will discuss the application of this idea to the quantum Hall effect, topological insulators,& nbsp; topological
superconductors and the quest for Mg orana fermions in condensed matter.& nbsp;& nbsp; We will then show that similar ideas arise in a completely
different class of problems.& nbsp;& nbsp;&nbsp; Isostatic lattices are arrays of masses and springs that are at the verge of mechanical
instability.& nbsp;& nbsp; They play an important role in our understanding of granular matter, glasses and other 'soft' systems.& nbsp; Depending on
their geometry, they can exhibit zero-frequency 'floppy’ modes localized on their boundaries that are insensitive to local perturbations.& nbsp;& nbsp;
The mathematical relation between this classical system and quantum electronic systems reveals an unexpected connection between theories of hard
and soft matter.</p>
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Organizing Principles for Understanding Matter

Symmetry

What operations leave a system
invariant?

Distinguish phases of matter
by symmetries

Topology

What stays the same when a
system is deformed?

Distinguish topological phases
of matter
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Topological Boundary Modes from
Quantum Electronics to Classical Mechanics

. Quantum Electronic Topological Phases : btk on Eand
Topological Band Theory E | !

- Quantum Hall Effect
- Topological Insulators valence band
- Topological Superconductors

n/a

[l Classical Mechanical Modes in
Isostatic Lattices

- Floppy Modes and Maxwell’s counting rule
- Topological boundary modes.

1. Synthesis

Kane, Lubensky Nat. Phys. 10, 39 (2014)

Thanks to: Gene Mele, Liang Fu, Jeffrey Teo, Fan Zhang, Ben Wieder,
Saad Zaheer, Andrew Rappe, Steve Young, Youngkuk Kim, Tom Lubensky
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The Insulating State

Characterized by energy gap: absence of low energy electronic excitations

Atomic Insulator

Covalent Insulator The vacuum

e.g. intrinsic semiconductor e.g. solid Argon
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The Insulating State

Characterized by energy gap: absence of low energy electronic excitations

Covalent Insulator Atomic Insulator The vacuum
e.g. intrinsic semiconductor e.g. solid Argon
e—e "o oy (05 (o5
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Iol — |.| — |.| o5 (o (o

A
electron
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Energy Gap: Vacuum
A~10eV
A =2 myC?
~000000= 3p ~10° eV
\. B
positron ~ ‘hole’
Silicon k v
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Topology and Adiabatic Continuity

Insulators are topologically equivalent if they can be continuously
deformed into one another without closing the energy gap

~
genus =0

Are there “topological phases” that are not adiabatically connected

to the trivial insulator (ie the vacuum) 7
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Topological Phases in 1D: Su Schrieffer Heeger Model

Polyacetylene: A 1D conducting polymer

H
* Undimerized : & . = Conductor
: ‘_
Gap A=0

* Dimerized : u =+ u,

u<0 «— E ;8
San i /.\ /.\ /.\ /. c.b.
R o —.»/ oZ oZ i Insulator
oF A
u>0—» i Gap A~|ul#0
i @ [ ] @ a v.b.
“B phase” : u>0 RN TN S N
. & . : v
A and B phases are topologically distinct A=0: Topological Quantum
Critical Point
= A#0 A# 0
* Separated by a quantum phase transition < A phase PS B phase >
0 u

¢ Distinguished by integer* topological invariant

N,, = winding number characterizing
valence band

* Assuming band theory with ‘particle-hole’ symmetry

Pirsa: 17050065 Page 9/35



Topological Boundary Modes st teeaer 7

o A P é B é A tconductlon band
ZZ S L N N =
0 1 E=0 2610 mode
u(x)
ay - R
¥ valence band

Bulk Boundary Correspondence :

At the boundary between topologically
distinct insulating phases, there exist
topologically protected low energy states.
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Roman Jackiw Robert Schrieffer

Pirsa: 17050065 Page 10/35



Integer Quantum Hall Effect

2D Cyclotron Motion, Landau Levels

Gy iy &y E I‘Egap=l‘&1(1)E

L] .F_.

A
'S
‘4,

David Thouless

Energy gap, but not insulator

2 f » hle?
€ | os

Quantized Hall conductivity : o, = n-h- by = 1y I‘.‘
Topological invariant : 77 € Z : “Chern number” o l’ '| O
Ny e

Thouless, Kohomoto, Nightengale and den Nijs ‘84 7_*;.;}‘_(.“‘1 Il:l J|1 J’ i

Edge States : Topologically protected 1D chiral Dirac fermions
E conduction band
Vacuum : n=0

SN 0 SN E;
QHE state : n=1 valence band

-nt/a 0 k, m/a
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Z, Topological Insulator

Insulators in 2D and 3D with time reversal symmetry have two topological classes.
Distinguished by Z, topological invariant v =0, 1

- - . : i Kane and Mele '05
Two Dimensions: Quantum spin Hall insulator Baredi and 2hana 05
L conductilon band
) < == Conducting E
T_’_’_ edge l T
QSHl Insulating
‘—- T . .
interior
valence band
Experiment . HgTe/CdTe quantum wells 1

Bernevig, Hughes, Zhang ‘06 ; Konig et al. (Molenkamp) ‘07 -1t/a 0 n/a

Three Dimensions: 3D TI Fu & Kane '06; Moore & Balents '06: Roy ‘06

Angle Resolved Photoemission

=

Insulating
|_—{ interior
kx

< Conducting
surface

3D

Experiment : Bi,Sb,,, Bi,Se;,
Hsieh et al. (Hasan) ‘08

“Surface Dirac Cone”
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Topological Superconductivity
Key ingredients of BCS model of superconductivity :

3 r
® Similar to insulator: energy gap 9
for quasparticle excitations A —

B
same slate <
® Intrinsic Particle — Hole symmetry vb. v.b.

1D Topological Superconductor (kitaev 2000

® Two topological classes

® Protected zero energy END 1D superconductor

end state
“

Majorana Fermion
® Particle = Anti-Particle

® Application to quantum information : (itaev)

- 2 Majorana bound states store 1 qubit
of quantum information nonlocally

Immune from local sources of decoherence

F

Ettore Majorana

Braiding” can perform quantum operations 1906-19387

Alexei Kitaev
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Quest for Majorana in Condensed Matter

Superconducting Proximity Effect: Use ordinary superconductors and topological materials
to engineer topological superconductivity

Superconductor - Topological Insulator Devices

Expt: Hart, ... Yacoby ‘14 (HgTe);

Theory: Fu, Kane ‘07, '08 Pribiag, Kouwenhoven ‘14 (InAs/GasSh)

Majorana Boundary Mode

Quantum Spin Hall Insulator

magnetic / s-wave : b 159
insulator Ye! superconductor QSHI i o 1
——— > Ik - 1

— e €l oo S0 alt Jk
ﬁ =t ﬁ ; g .

Ty
Two slit” Interference pattern in a
Demonstrates edge superconductivity

> Josephson Junction

Superconductor - Semiconductor Nanowire Devices el
Theory ) S /
Lutchyn, Sau , Das Sarma ‘10 B /\\ o
Oreg, Refael, von Oppen 10 A \,,—2 J
InSb /‘,//
Expt: Mourik, ...Kouwenhoven ‘12 SC nanowire Majorana —

end mode

Ferromagnetic Atomic Chains
on Superconductors

Nadj-Perg, ..., Yazdani '14 (Fe on Pb)

Majorana
end mode

topography
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Maxwell Problem
JC Maxwell 1865

Is a “frame” or configuration of masses
and springs mechanically stable ?

@ v @ i @ v @

Maxwell Counting Rule:
@ , mn @ mmnn: @ me > d ns - nb

% % § % ng = # sites

, T , T , T , n, =#bonds, d = dimension

§ g g g N;, = # zero frequency “floppy modes”
. T . T . T .
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@ v @ e @ v @
>

Maxwell Problem
JC Maxwell 1865

Is a “frame” or configuration of masses
and springs mechanically stable ?

2 Maxwell Counting Rule:
@ v @ v @ v @ me > d ns - nb

g g‘: § § n, = # sites

. T . T . T . e T O

= = = g b i i

= . H - N, = # zero frequency “floppy modes”

. nm . T . T .
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Maxwell Problem
JC Maxwell 1865

Is a “frame” or configuration of masses
and springs mechanically stable ?

@ v @
e 4

= N = > = 4 N
: % I 9 i %

E V%, E % E &y

= N % = N % = %
= ¢ 4 = b =S %
@ v @ s @)
= 4 S = 4 & = 4 N
= -~ = N = N
7y 2% E &
= ® I ® I %

E M & My E &

= N % = N % = %
=9 4 =8 5 =& %,
@ o @ s @)
= 4 S = 4 & = 4 N
= -~ N = N
£ 7 & £ 4 & E 7 &
E ® : ® : @

S ™ 2 W I

E g = &9 = &Y
2SS BEF HBEF Y
@ o @ s @) v

Maxwell Counting Rule:

N 2 dns'nb

fm

n, = # sites

n, = # bonds, d =dimension

Ny, = # zero frequency “floppy modes”
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Maxwell Problem
JC Maxwell 1865

Is a “frame” or configuration of masses
and springs mechanically stable ?

@ v @ i @ v @
2, E, 7, & F Maxwell * Counting Rule: ine
= 7 N : ¢/ = ¢/ - = O =11E -
= ’//,9\\\\‘ £ "/,,&\\x\‘ 2 9 = g . (Calladine '78)
E M F N O N 3
Y% = & 2 & E
=S BES HES Y E
o -
@ v @ st @ mwmn: @ me = NSS =d s -
= % R N =4 N =
=y MYy MY & =
= T = W = W =
= N S N, HS N, H = ;
= N = Y = NN = n, = # sites
= 2= e =i L= N
> ~
mmn @ v @ v @ a o ok :
@ - - n, = # bonds, d =dimension
- N = A N - " - -
$ Y &S| E o/ & E
F T F A E ’f@\‘ = : 5
= 7 = 7 = (7 = o— = s
S &y £ MMy = % = N;,, = # zero frequency “floppy modes
E N = N = M = fm
=y B2 1= %=
@ v @ mnfun @ v @

N.. = # states of self-stress

State of self-stress
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Maxwell Problem
JC Maxwell 1865

Is a “frame” or configuration of masses
and springs mechanically stable ?

@ v @ i @ v @
2, E, 7, & F Maxwell * Counting Rule: ine
= 7 N : ¢/ = ¢/ - = O =11E -
= ’//,9\\\\‘ £ "/,,&\\x\‘ 2 9 = g . (Calladine '78)
E M F N O N 3
Y% = & 2 & E
=S BES HES Y E
o -
@ v @ st @ mwmn: @ me = NSS =d s -
= % R N =4 N =
=y MYy MY & =
= T = W = W =
= N S N, HS N, H = ;
= N = Y = NN = n, = # sites
= 2= e =i L= N
> ~
mmn @ v @ v @ a o ok :
@ - - n, = # bonds, d =dimension
- N = A N - " - -
$ Y &S| E o/ & E
F T F A E ’f@\‘ = : 5
= 7 = 7 = (7 = o— = s
S &y £ MMy = % = N;,, = # zero frequency “floppy modes
E N = N = M = fm
=y B2 1= %=
@ v @ mnfun @ v @

N.. = # states of self-stress

State of self-stress
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Periodic Isostatic Lattice

A periodic structure with dng—n, =0
On the verge of

Coordination number (# neighbors): z = 2d mechanical instability

d=2 square lattice (z=4) d=2 kagome lattice (z=4) d=3 pyrochlore (z=6)

A model system for problems in soft matter and statistical physics
* Rigidity percolation

* Random closed packing, Jamming Isostatic on

the average
* Network glasses
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Kagome Lattice MOdel Sun, Souslov, Mao and Lubensky 2012

Untwisted

A A A A A A
floppy — TIOPPY MOdaes
mode (fm) A‘A,AQAQAQAQA x o(k) =0
il OO0
) A AghghghyheA

Twisted

twisting eliminates
K< both FM and SS
> (except at k=0)

R
X RXX XXX
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Kagome Lattice MOdel Sun, Souslov, Mao and Lubensky 2012

Untwisted

A A A A A A
floppy — TIOPPY MOdaes
mode (fm) A‘A,AQAQAQAQA x o(k) =0
il OO0
) A AghghghyheA

Twisted

twisting eliminates
K< both FM and SS
> (except at k=0)

R
X RXX XXX
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Floppy Modes on a Free Boundary

For twisted Kagome, floppy modes required by Maxwell's count are localized on boundary

Strip Geometry Normal Mode Spectrum

Fixed Boundary

PP
descceeee.

Free Boundary

zero frequency mode bulk acoustic
localized at boundary modes
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2012 Tom: Are my boundary modes related
to your boundary modes?

CLK: | don’t think so

_ 2013 Tom: Are you sure ?
Tom Lubensky
Schrodinger Equation Newton’s Laws
ihy, = H,y, miu; =—Du,
15t order in time 2" order in time
Hamiltonian H has positive Dynamical matrix D has only
or negative eigenvalues E positive eigenvalues mm?
\ly’ 0
K
¥ -« »
Topologically classify valence band No “valence band”
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Solvay 1927
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Solvay 1927

Niels Bohr :
What are you
working on
Mr. Dirac ?
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Solvay 1927

Niels Bohr :
What are you
working on

Mr. Dirac ?

Paul Dirac :
I’'m trying to take
the square root
of something.

Dirac’s Square Root predicted

y Ty e Tl the anti-electron (= positron)
A /"... g | P ip, m 2 p, m C
- M
+m°) = p o +p o, +mo, e’ 76\
XX YD z
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Square Root of Dynamical Matrix

Elastic Energy :

1 Ly _la,
U =§1!-D'H =§k2x; =§H'QQT u

“‘Supersymmetric partners”

D= QQT D and D have same

eigenvalues: @;

n

[j — QFQ except zero modes

Equivalent “Quantum Hamiltonian”

0 O . o
g 5 ; T i — 42
O 0 0

Symmetries

Time reversal ( H=H") .
Particle — Hole (H tz = -1z H) Class “BDI

d n, x n,, “equilibrium matrix” Q

Extensionof » — QTH. Displacement
n ‘ni b

spring n of site i
Force on f — Q ! Tension in
site | v 1 mon spring n

D-u=0 floppy mode

~

)g=1) state of self stress
0 eigenvalues of H :
b= Lo

0'0

e

(same as SSH model)
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New Topological Phases and Domain Walls

Z x Z topological invariant: Ry =n;a; +n,a, (lattice vector)

“Deformed” Kagome lattice model can have: R;#0

¢ A AP ; -

wivyy
SyTovy
CPA P4

0.
o ¥
e %
o ¥
St

4+

o,
9,
4
P
9,
{2
@,

4 ¢

s%e
e
3 4..

&S
“3

4
$4
44
$4
=44
$4
$4
44

Sededa
CHOOE D .
AL E
Rr=0 L

—
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Index Theorem

A “local” generalization of Maxwell's counting rule

Variant of a famous theorem in mathematics ~ Z!ahandsnaer 5
allias, Bott and Seeley ‘78

# floppy modes and

states of self stress j'\[fS N = V] =L V[
in region S
“Local count” of sites o \) = S Depgndg on edge
and bonds in S Vv, = dfl nb termination

d 1 S
“Topological count” on e " : f”\l R Depends on topological
boundary of S S class(es) of bulk

ceII

Ry’ Ry
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Boundary modes for different edge terminations
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Mechanical Analog of SSH Model

(A \) (7 - 8
2, ™%, !
%, N %, 1 '
“ 1 -~ %, "2 .
% S %, : gy '
7, ~ ?, (7]
%, N %, 1 /
v, ~ ?, W
“”, N 2, W
7 N [ 7 \\) J
%, a» ) %
% | S 2 “ J
AN %, ’
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Mechanical Analog of SSH Model
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A model of the model

B. Chen, N. Upadhyaya, V. Vitelli, PNAS 111, 13004 (2014).

Vincenzo Vitelli Bryan Chen

University of Leiden
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Conclusion

Topological boundary modes are an elegant consequence of a
mathematical structure that has applications in diverse areas

* Topological Electronic Phases
* Mechanical Modes of isostatic systems
Much more to do:
®* New materials and experiments on electronic systems
* Experiments on metamaterials?
- mechanical systems

- optical, electronic, plasmonic systems?

®* Role of interactions and nonlinearities
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