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Abstract: On the path towards quantum gravity we find friction between temporal relations in quantum mechanics (QM) (where they are fixed and
field-independent), and in genera relativity (where they are field-dependent and dynamic). In thistalk, | will erase that distinction. | encode gravity,
along with other types of interactions, in the timeless configuration space of spatial fields, with dynamics obtained through a path integral
formulation. The framework demands that boundary conditions for this path integral be uniquely given. Such uniqueness arises if a reduced
configuration space can be defined and if it has a profoundly asymmetric fundamental structure. These requirements place strong restrictions on the
field and symmetry content of theories encompassed here. When these constraints are met, the emerging theory has no non-unitary measurement
process, the Born rule is given merely by a particular volume element built from the path integral in (reduced) configuration space. Time, including
space-time, emerges as an effective concept; valid for certain curves in configuration space but not assumed from the start. When some notion of
time becomes available, conservation of (positive) probability currents ensues. | will show that, in the appropriate limits, a Schroedinger equation
dictates the evolution of weakly coupled source fields on a classical gravitational background. Due to the asymmetry of reduced configuration space,
these probabilities and currents avoid a known difficulty of standard WKB approximations for Wheeler DeWitt in minisuperspace: the selection of a
unique Hamilton-Jacobi solution to serve as background. | illustrate these constructions with a simple example of a quantum gravitational theory for
which the formalism is applicable, and give a formula for calculating gravitational semi-classical relative probabilities in it. Although this ssmple
model gives the same likelihood for the evolution of al TT gravitational modes, there is evidence that a slightly more complicated model would
favor modes with the smallest eigenvalues of the Laplacian and thus drive towards homogeneity.
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Timeless quantum gravity: bubbles in shape space. 2/ 24

Prelude: the Mott bubble chamber.
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The Wave Mechanios of «-Ray Tracks.
By N. F. Morr, 8t. John's College, Cambridge.

(Communicated by C. (. Darwin, F.R.8.—Received October 21, 1929).

The present note is suggested by a recent paper by Prof. Darwin,* and is
intended to show how one of the most typically particle-like properties of
matter can be derived from the wave mechanics. In the theory of radioactive
disintegration, as presented by Gamow, the «-particle is represented by a
spherical wave which slowly leaks out of the nucleus. On the other hand, the
a-particle, once emerged, has particle-like properties, the most striking being
the ray tracks that it forms in a Wilson cloud chamber. It is a little difficult
to picture how it is that an outgoing spherieal wave can produce a straight
track ; we think intuitively that it should ionise atoms at random throughout
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Question: why do spherically symmetric wave-functions produce
collinear rays? Let's see.
(Ho + AH,,. — E)|¢p) = 0. Two-state detectors: |0), |1)

with H,, = Z}-j_o fi(q)(a; + a'), and fi(q) is localized.

We can solve perturbatively:"™! |y) = 5. Aljap(1))

with [9©@) = [9)]0y---10), [y = S | i)« i)

Jx={0,1}
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Timeless quantum gravity: bubbles in shape space.

In the end, obtain (for n detectors registering):

(qf|¥n) o< | dgn- - dqifa(qn)W(qr, qn) - - - f2(92) W(q2, g1)v(q1)
where (H, — E)W = 1.7

In a WKB semi-classical approximation:

W(qi,q;) = AI/Q(QI j)e *(49) and

pj = Vq:5(4qj,qi), pi = —V4.5(gj,gi). Now we get:
Jdan - dar [T, Al/ (qk+1, q) fi(qi) exp (7 D k—1 S(qk+1, qk)) (1)
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In the end, obtain (for n detectors registering):

(qf|¥n) o< | dgn- - dqifa(qn)W(qr, qn) - - - f2(92) W(q2, g1)v(q1)
where (H, — E)W = 1.7

In a WKB semi-classical approximation:

W(qi,q;) = AI/Q(QI j)e *(49) and

pj = Vq:5(4qj,qi), pi = —V4.5(gj,gi). Now we get:
Jdan - dar [T, Al/ (qk+1, q) fi(qi) exp (7 D k—1 S(qk+1, qk)) (1)

Stationarity means: V4 .5(q;, gi) + V4,5(qj,9i) = 0.
So g; lies on the classical path from q;_1 to gj1.
Integral will be larger when f, have support along classical path.

* Importantly, one needs boundary conditions.
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Can Mott be a starting point to solve main conceptual problems in

QG?*
Analogy has been made before [Barbour, Halliwell, Kiefer, etc]
New considerations: shape space, and its topology.

*Here are some of the problems that keep me up at night: The
quantum mechanical properties of

la) the quantum superposition principle

2a) the non-locality of instantaneous measurements;

clash with the general relativistic properties of
1b) a fixed causal structure
2b) space-time covariance

Still leaves out the measurement problem in the foundations of
quantum mechanics (which | will address), and the relational
philosophy of shape dynamics.
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Like in Tim's talk:

@ Want a separation between law and the objects the law act on
(separation between causal and acausal)

@ Relational access to such objects. Shape space. Or rather

The reduced configuration space (under local symmetries).

Conceptual and technical obstructions to applying this to
refoliation invariant theories.

Unlike Tim:

@ In the semi-classical approximation, | want the dynamics in
each path to be expressible locally (in some gauge).
Not Bohmian.

@ No evolution parameter in-built. Only emergent order (and
then emergent duration).
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Timeless quantum gravity: bubbles in shape space.

In this talk | will:

Construct a theory which has no non-unitary measurement
process.

Uniquely construct the Born rule as a volume element in
reduced configuration space.

Time, including space-time, will emerge as an effective
concept; valid for certain curves in configuration space but
not assumed from the start.

Show conservation of (positive) probability currents, in the
appropriate limits. A Schroedinger equation dictates the
evolution of weakly coupled source fields on a classical
gravitational background.

Illustrate these constructions with a simple example of a
quantum gravitational theory for which the formalism is
applicable.
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Pre-requisites

Let M be a closed topological manifold encoding a weak notion of
locality (neighborhoods). E.g.: M = S3,

Given a configuration space Q. E.g.:
Q = Riem := {g € C(T*"M ®s T*M)} | will require

@ Local gauge group G: has to act locally in M, and pointwise
on configuration space: G x Q — Q.1 and be such that

o There exists a unique orbit [g,] € Q/G corresponding
to the "most homogeneous element”. (i.e. the one
with the highest dimensional isotropy subgroup of G).

'For metric variables, already very restrictive!
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Also allows one to have a gauge-connection 1-form:
TqQ ~ Hy @ Vg. (not necessarily a global gauge section).

For v: 1 — Q, have 4 — H(%) =: 44. (analogous to Julian’s
‘best-matching’. It is a lifting prescription).
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The static wavefunction

Given an action functional on curves on Q, S(7), respecting the
given gauge symmetry group G. Defines S([v]), for [y] : | — Q/G.

-y
-

Can define a propagator. e.g.: for Q = Riem, and G = Diff x C,

[&2]
W (g1, [g2]) ::A/ D[v]Df exp [iS[vn(g1, f*82)]/K]

v 81

Measure is projected Liouville,®vinsk 911 with Jacobian for H.
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The static wavefunction

Given an action functional on curves on Q, S(7), respecting the
given gauge symmetry group G. Defines S([v]), for [y] : | — Q/G.

-y
-

Can define a propagator. e.g.: for Q = Riem, and G = Diff x C,

[&2]
W (g1, [g2]) ::A/ D[v]Df exp [iS[vn(g1, f*82)]/K]

v E1
Using element 2, define static volume-form in Q/G, P([q])d"[q]:
P([q]) = F(W(qo,[q])) : Q/G — Ry

Where [g,] is “most homogeneous configuration” "¢ 1l

Go =Arg(Supgeo dim(Iso,(G))
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The fundamental asymmetry of gravitational shape
space.

[go] is unique for M = S3 and G = Diff x C. Namely, g, = dQ23.

Start off from g, and follow a horizontal curve (g?°g., = 0).
Volume-form doesn’t change, det g can't go to zero. =
degenerate metrics are not reachable from Q/C.

Apart from degenerate metrics, round spheres have the largest
isotropy subgroup of Diff(S3).

In fact, Q/DiffxC is a ‘stratified’, or nested, union of manifolds of
increasing dimension, like a cube. Here there is a unique least
dimensional corner. | take this as the ‘origin” of shape space.

(Relation to “a complexity functional”? The Yamabe invariant’s
unique saddle point also dQ3.)
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Semi-classical approx. for oscillatory path integrals

For extremum paths ~, between g;, g, the Van Vleck
determinant is:

(525 .t'\'(Q'.q,") N 1
o Bl = dqr
N det( F ™ ) = det (5% )

Semi-classical approximation is then:?

Wa(ai, gr) zn:(Af-‘f)l/2 exp (" SW‘é}'(qJ'a QF)/H‘)

S“f“' Sw’_’
Wal2 = T, Aa+2) ., |8a40, ”2‘205(% )

Interference effects

(although haven't yet justified taking F(z) = |z|?)

2 . .
For field space version see [Barvinsky'93]
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We are trying to find the form of F : C — R,..

Van-Vleck relates initial infinitesimal volume around g;, and final
L?

volume around gy, as transported by classical paths: A, = vy

For p, = 1, if there is a single classical curve between q,, gr,

A(\‘ e i

F(W(qo, qr)) =: pr = A = [Wa|?

which establishes that on some region, F(z) =~ |z|>. But
F(z)= > -apz2|' , thus

F(ziz2) = > ; ai(z120212,)"  (*) and,

F(21)F(z) = 3 ai(z1z1)' 35; aj(z222) (%)

Only diagonal terms of (*) can match the polynomials of (**) .
Thus a; = ao0;;, and a= 1.

By the semi-classical limit above, ip =1 = F(z) = |z|2. O
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Extremal coarse-grainings and ‘(pre-)records’.

Assume many extremal paths between g, and g, but they all go
through g,:

Then, can show: W.(qo,q) =~ W.(q0, 9-)Wa(qr, q)
thus P(q) = P(q,)P(qlg,) where P(q|q,) = |W(q,,q)|.
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For multiple such records,

For first 3 cases: P(qo,q) = P(qo, q})P(q}, QE)
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Timeless quantum gravity: bubbles in shape space. 15/ 24

For multiple such records,

For first 3 cases: P(qo,q) = P(qo, q})P(q}, QE)

Like in Mott!
P(40,91) . P(qr.q1)

Also n i :
so note: srz"23 = e )
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Here there is no time, but we still want to define ‘conservation of
probability’.

Problem: for one g, there can be many redundant record relations.
Define a ‘screen’ in shape space:

By constant action-distance (arc-length for a Jacobi metric).

Possible to show that ‘flux’ through g, greater than through S,).
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For a Jacobi action functional of the form:

Sly] = [ dt (V(q)G®®4a¥p) /2, can show that path integral
satisfies:

Y2

2 (Gab(, (‘72) ~V(q)¥(q) =0
0gq20q

(not WdW, hidden integration in a, b). For metric + source:

p

where V2 := [ d®x d3y (Gabcd(xaY)dgab(x{)igcd(y))

with ansatz:

V(g,») = exp(im;S[g])Alglylg, ] + O(m,?)
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We obtain:

[l 0S5 oY lg.p
/ .I d3X d3y Gade(Xﬁ Y) (ignb[t(gl) {Sgc[f(;)] — mat(ga )l/ [ga Vf]

and defining:

S i)
dT = [ d3X d3y Gabcd(x y)hgab[ﬁ]f) hg('c:(y)

we get: iz7Y[g, ¥] = Hux(g, ©)¥lg, ¢l

. 5 oS|[o
Since (dT) b(x) — V:[lg] r5gar}€)1)

and Jeg(x) = [ & Gasea(x,y) (2L A2[g] )

0gab(
infinitesimal flux through constant T screen dT - J~ A2,

None of this can be derived if e.g.: V(g, p) ~
exp (im;S1(g])A[g]vnlg, ¢ + exp (im3Sa[g])Az[glv2[g, ]
Big problem for WdW! we are safe because of go.

Pirsa: 17050056 Page 24/31



Timeless quantum gravity: bubbles in shape space.

Quick remark

Like Hartle-Hawking:

@ Impose (there controversial) boundary conditions in
superspace.

@ Derives space-times from WKB approx IN minisuperspace.

Unlike Hartle-Hawking:

@ There is a reduced config space outside of minisuperspace
approx.

@ Has natural boundary conditions on shape space, which
naturally correspond to a most homogeneous state (which is
also a corner of reduced configuration space).
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Geometrical toy model (‘free-particle in Riem’)

For now only with G =Diff(M), but still g, = dQ3.

1/2
Slg] = /dﬂg»@;ﬁ) = /df(/d3xgabgacgbdgcd\@>

Horizontal lift given by orthogonality wrt fibers (not a
ga uge,_section)_[Vilkowisky ‘77, DeWitt ‘94, HG ‘10]

Freed, Groisser ‘89; Michor, Medrano '91]

Geodesics explicit, in closed form.!
Super-Riemman curvature:

R(hi, ho)hs = —%[[h1, hy), h3] + 3 (trg(hihs)hy — trg(hzhs)hy)

For h.,g?? = 0 (otherwise zero).

Geodesics don't reconverge = no interference terms in
semi-classical approximation.
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Timeless quantum gravity: bubbles in shape space.

For finite-dimensions and geodesic action, can calculate a

geometrica| Van Vleck:[Visser 93]

. 1 ia ;
Art oyl =1% E(Raw Y2 S[y]2 + O(S[))?)

Long story about how to translate this to infinite-d.[Michor et al ‘0%, HG 110]

Requires regularization.

For two different ranges of initial transverse traceless initial
directions, Hy, H, at d3, s.t. [Hl Dhl = [Hz Dh?

Juy DhtJrr(g°)P(g(e))
Ju, Ph?J17(8°)P(8(€))
1 IH; "th(_[' d*x /8" habgg"ggdhcd)—.[}{l "Dhl(_[' dix /&6 hasgas g hc:d) O .

Z VH - « .o

= 1+

Relative probability for two screens defined by same arc-length

distance.

Pirsa: 17050056 Page 27/31



Timeless quantum gravity: bubbles in shape space.

For finite-dimensions and geodesic action, can calculate a

geometrica| Van Vleck:[Visser 93]

. 1 ia ;
Art oyl =1% E(Raw Y2 S[y]2 + O(S[))?)

Long story about how to translate this to infinite-d.[Michor et al ‘0%, HG 110]

Requires regularization.

For two different ranges of initial transverse traceless initial
directions, Hy, H, at d3, s.t. [Hl Dhl = [Hz Dh?

Juy DhtJrr(g°)P(g(e))
Ju, Ph?J17(8°)P(8(€))
1 IH; "th(_[' d*x /8" habgg"ggdhcd)—.[}{l "Dhl(_[' dix /&6 hasgas g hc:d) O .

Z VH - « .o

= 1+

Relative probability for two screens defined by same arc-length

distance.

Pirsa: 17050056 Page 28/31



Timeless quantum gravity: bubbles in shape space.

For finite-dimensions and geodesic action, can calculate a

geometrica| Van Vleck:[Visser 93]

. 1 ia ;
Art oyl =1% E(Raw Y2 S[y]2 + O(S[))?)

Long story about how to translate this to infinite-d.[Michor et al ‘0%, HG 110]

Requires regularization.

For two different ranges of initial transverse traceless initial
directions, Hy, H, at d3, s.t. [Hl Dhl = [Hz Dh?

Juy DhtJrr(g°)P(g(e))
Ju, Ph?J17(8°)P(8(€))
1 IH; "th(_[' d*x /8" habgg"ggdhcd)—.[}{l "Dhl(_[' dix /&6 hasgas g hc:d) O .

Z VH - « .o

= 1+

Relative probability for two screens defined by same arc-length

distance.

Pirsa: 17050056 Page 29/31



Timeless quantum gravity: bubbles in shape space.

Using orthonormal eigenbasis of TT tensors on g,

dhii(x) — 1127, dA\”. But then:

X ] n=] 7]

Jis D= f1; Dh = [, DR (f &*x VVE® hrangeh?hea) =

o DhY ([ d3x \/g° h1apgigl%hcq ). |.e., the measure does not
.le ! g 80 8

care about the eigenvalues of the TT-modes. But
/2
Slel = [ dt(g, &) =

: i i 1/2
[ dt (f By F(R)E) (| d*% gab £* &°9 £ca/E)"!
changes terms in VV, e.g.: h12p8385% heg — h1ap83 82V hey

In such case, higher eigenvalues of H; in comparison to H,, mean
its relative probability flux is smaller.

This would mean indeed that more homogeneous modes would be
favored.3

’Eigenvalues of TT in S° are Yf’z-ré-")
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How did we fare?

Mix better:

@ Quantum mechanical notions

@ No collapse of the wavefunction (static prob density).
@ True (fake) evolution in the semi-classical approx.
© Quantum superposition principle.

@ Conformal geometrodynamics

@ Refoliation not fundamental (recovered relationally).

© A Hamiltonian which separates local gauge symmetries and
global evolution.

© Causal structures corresponding to different extremal curves
(can interfere).

Challenge: recover standard GR.
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