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Weyl invariance

Scale transformations

locally the same as
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Weyl invariance

Dimensional analysis

Choose dimensionless coordinates, and h = ¢ = 1.

Invariance under

g = Vg, Va2 WPy, gi— Wig;

S(g,w,"tffalg,') — S(ng,um QW&"L/f’a|QW"gi)

fixes the weights w, = —d,, w; = —d;. Always true.

Invariance under global scale transformations

S(gﬂ-b’? "‘/"a|gf) = S(ngjw’? Qwafl,/"a|gi)

not always true, must be w; = 0.
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Weyl invariance

Weyl’s idea

Interpret global Weyl transformations as changes of the unit of
length. Allow choice of unit to depend on position.
Allow parallel transport to affect norm of vectors.

“It is evident that two rods side by side, stationary with respect to
each other, can be intercompared....this cannot be done for....rods

with either a space- or time-like separation”.
(Dicke 1962)

Physics must be formulated in a way that is invariant under local
changes of units, i.e. under local rescalings of the metric.
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Weyl invariance

Various routes to Weyl invariance

Global scale invariance is quite restrictive, local scale invariance
even more so.

Construct Weyl invariant theories from non-invariant ones.

@ Stuckelberg gauging - can be applied to any theory

@ Weyl gauging - can be applied to scale-invariant theories

@ Ricci gauging - can be applied in special cases
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Weyl invariance

Stiickelberg gauging (“Fake” Weyl invariance)

Turn dimensionful couplings into fields.

Minimal version: one “dilaton” y of weight —1:
%5 Iz
X — 277X

Write &, = X2gu.r,u Va = x"va 8 = x"gi

S(gﬂ,yq (/’a|g,) — S(gjtlla (7’8|§i) = §(gﬁb’= fl/",aa X|g-')

S is Weyl invariant by construction.

Eg:S= ] d4x\/§m2¢>2 — 5= [ d4x\/§rﬁ2'x2(/§2

There is a Weyl gauge where y = p (constant).
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Weyl invariance

Weyl calculus

Abelian gauge field transforming as b, ~— b, +Q710,Q.
For scalar field ¢ of weight w
D,¢ = 0,¢ — wb, ¢

More generally

r A A ?, A A
r,u, P = I—u, X (5“ b, — (5_:_/ b,n: 2 g,u,.ub

is invariant under local Weyl transformations, hence for a tensor of
weight w

is diffeomorphism and Weyl covariant.
Note Vg, = 2brg, but Dyg,, =0
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Weyl invariance

Weyl curvature

) - () a
[Dﬂﬂ DL/]V[ —_ R,defa'v

Ry po Ruvpo + (W — 1)Flugpo
+8.0(Vubs + b,bs) — gus (Vob, + by, b,)
—~8vp (Vyubs + bubs) + guo (Vub, + byby)
~ (8upBuo — Buoup) b°

= R+2(d — 1)V"b, — (d — 1)(d — 2)b?

’:“.,u — é)ﬂby P (:)y bﬂ'
Weyl gauge field is generally non-integrable.
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Weyl invariance

Weyl gauging

Starting from any globally scale invariant action S(g..,1.|gi)
(all g; dimensionless) replace V. — D and R — R.

Resulting action §(g,;,,,,,’¢‘a, b,.|gi) is Weyl invariant.
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Weyl invariance

Integrable Weyl gauging=Stiickelberg gauging

If F., =0 we can write
b,u, =4 1(‘7);1,'.)(',’

where the field y transforming as v — Qv can be identified with
the dilaton.

Starting from any action S(g,.., ¥a|gi),

replace gi — x% g, V — D and R — R.

Resulting action §(g{,“,,f¢*a, x|&;) agrees with Stiickelberg gauging.
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Weyl invariance
Ricci gauging

The Weyl variation of

1

R.”/ T ™ AN
M 2(n—1)

guvR

is the same as the Weyl variation of

1
7v”by - b‘u,by + Eg‘u,y b2

so if b, occurs in a Weyl-gauged action only in this combination, it
can be replaced by a combination of Ricci tensors.

Works when the starting theory is conformal
(A. lorio, L. O'Raifeartaigh, I. Sachs, C. Wiesendanger, Nucl. Phys.
B495 (1997) 433-450, arxiv:hep-th/9607110

K. Farnsworth, M.A. Luty, V. Prilepina, arXiv:1702.07079 [hep-th] )
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Anomaly?

Main question

Can Weyl invariance be preserved in quantum theory?

Can Weyl invariance be preserved by renormalization group flow?
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Anomaly?

Conformal anomaly

Regularization breaks Weyl invariance, but its effect can be offset

if dilaton is present

Englert, C. Truffin and R. Gastmans, Nucl. Phys. B117, 407 (1976)
R.Floreanini and R. P., Nucl. Phys. B436, 141 (1995)

M. Shaposhnikov and I. Tkachev, Phys. Lett. B675, 403 (2009)
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Anomaly?

Example: matter in background metric

1 [
S((b; g;w) - = / d4X g(Z)A(l/ﬁ)(/_‘) . A(I/G) S

2,

S(‘l/'};g,u.u) = /d4X\/§zﬁDl/1

1 . /
S(A;gf“") = Z / d4X\/§ F’('LLIFHL
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Anomaly?

Standard scalar measure and path integral

1

rl[g,u.u] = —log /(d(p)e [ d*x/Egpat/O¢ _ 5 log det
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Anomaly?

Trace anomaly

5G] = [ /B e(x)(THa) 1= A9

2 ort
T;;.J e i C2 E
< / > \/gg Og;w ¢ +a

E = Ryuwpo R™P7 — 4R, R + R?
C? = Clx,ypo Bl 5

& 5 (ns +6np + 12npy)

~ 120(47)

= 5 (ns + 11np + 62npy)

1
~360(47)
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Anomaly?

The Weyl-invariant scalar measure

In presence of dilaton can define

: . : )
Mg, x] = —log /(d(p)e Jd*x/gpA/O¢ _ . log det (){2A(1/6))

L 1
Q252 ASQ/S)(Q 1c’b) =1 (XzA(l/ﬁ)([))

eigenvalues are Weyl invariant = det (%;A(lfﬁ)) iIs Weyl invariant
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Anomaly?

Weyl invariant quantization

14 has been promoted to a field

dilaton acts as Stuckelberg field in the quantum effective action

Note: trace of energy-momentum tensor still nonzero:

5 11 ) 11
0 = (ScrII[gmn )(] / de ( : r (S(gf“; + (:_ (5 X)
X

e
7 o
/B () (T — %
Ol—“
(5)(

/ dx\/g €(x
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Anomaly?

Another point of view

rl(gﬁ}y) - rl(gﬂ.u) =~ rWZ(gjLU? )()

Wess-Zumino consistency condition:

rWZ(gfilﬂ XQ) s I—WZ(g,ELLM )() = _I_WZ(g’uyg Q)

where g = Q%g, x"' = Q7'x
If we identify (g, ) with T (g, x = p),

I_H(g,tw.a X) - rl(g;w) + rWZ(g,u.u.a X)
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Anomaly?

Summary so far

“Stuckelberg gauging commutes with RG quantization”

S(g,,,,,,, ’l/”3|gf) == I_(g,u,f./a ’¢’a|g1')
+ !

‘§(gﬂ-l-” X ’l/-"a|g.") = Iﬁ(gﬂ-w X> Va |§f)

If classical theory is Weyl invariant without a dilaton (e.g. Weyl
gauging with non-integrable Weyl field, Ricci gauging) it is
necessary to introduce a dilaton to have Weyl invariance in the
quantum theory.
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Anomaly?

Generalization

Generalization to arbitrary interacting theories

Use Functional Renormalization Group Equation
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Anomaly?

Exact Renormalization Group Equation

C. Wetterich, Phys. Lett. B 301 (1993) 90.
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Anomaly?

ERGE used to define the QFT

EAA [, defined formally from functional integral,
but ¢ is UV and IR finite.

Choose UV cutoff scale A and bare action ['A.
Integrate RG flow equation from k = A to k = 0 to obtain I'.

UV limit can be studied integrating the FRGE for A — o
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Anomaly?

Anomalous global scale invariance

General matter field in external metric with scale-invariant classical
action.
Scale invariance of [, broken for two reasons: the measure and the
cutoff.
One finds anomalous Ward identity

dly

(5(-_|_k — ./4((‘) -+ fkﬁ

(Sfl’k — .A(E)

d
(55._': = 0, — ckdk
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Anomaly?

The EAA in curved spacetime

ASi(d; guw) = / ddx\/g O Rk(A) ¢ .

R(B) = Kr(y);  y=24L/K

Under global scale transformations
0.QA = —2eA .

The cutoff term transforms as

1 dRy

2

(SFASk((}S;gHH) — E/ddx\/g(pkdk )
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Anomaly?

Anomalous global scale invariance

General matter field in external metric with scale-invariant classical
action.
Scale invariance of [, broken for two reasons: the measure and the
cutoff.
One finds anomalous Ward identity

dly

(5(-_|_k — ./4((‘) -+ fkﬁ

(Sfl’k — .A(E)

d
(55._': = 0, — ckdk

Pirsa: 17050050 Page 36/63



Anomaly?

Extension to local transformations

Assume there exists a dilaton field y.
S5(4, x, guv|8i) invariant under Weyl transformations

0c8uv = 26(X)gu 1 0% = —dye(x);  dex = —€(x)x

Measure can be made invariant.
Make also the cutoff invariant:

0ck = —€k

and transform A to a Weyl-covariant operator by V. — D
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Anomaly?

Construction of Weyl invariant flow

AS, = / dx./g ¢ k*r (kl?_a) j VEX: b uPr (32@) b

with

RG scale measured in units of dilaton:

u=k/x

u dimensionless, Weyl-invariant.

Note this is just Stuickelberg gauging of cutoff action.
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Anomaly?

Local ERGE
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Anomaly?

Note: where is the RG?

Assume u = k/x is constant. Think of the EAA as

rk(d’; Buvs X) = ru(d’; Buvs )(f)

It satisfies

u
du

521 b SR
Sl +RU) —

dpdw
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Anomaly?
Beta functional is Weyl invariant

Structure of ERGE:

dr, 1 dB
= - A ly—
Y du 2Tr ( . du)

5°(F, + AS,) B JAS;

S Yoo ’ YY)

If » has weight w and ', and AS,, are Weyl invariant, A and B are
Weyl covariant:

A= Q"AQ™ . B Q "BQ™".

= r.h.s. of ERGE is Weyl invariant.
RG flow preserves Weyl invariance.
If UV action is Weyl invariant, I is Weyl invariant.
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Anomaly?

Interpretation

1

In Weyl theory x~* interpreted as unit of length

In RG k1 used as unit of length

“Relational” form of RG depends only on invariant ratio u = k/x
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Gravity

Quantum gravity

Definition of EAA requires a quantum-background split, e.g.

Buv — g;.',u + h,tw

Two generalizations

@ “physical” scale transformation d.g,, = 2eg.

@ “background” scale transformations o0.g,, = 0
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Gravity

Background transformations

h,., behaves like a matter field coupled to external metric g,

Previous discussion carries over.

However, there is another important realization dictated by the
requirement of background independence.
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Gravity

Split symmetry

Since S = S(g),
Buv = g;w + h,u,u

S is invariant under

Og;w = €up 0 h,rw = —€uv -

but due to the presence of gauge and cutoff terms, the EAA
[«(h; g) is not.
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Gravity

Background-independence

@ Write the anomalous Ward identity for the split symmetry (or
a subgroup thereof)

@ Solve it to eliminate from the EAA a number of fields equal to
the number of parameters of the transformation

@ Write the flow equation for the EAA depending on the
remaining variables

This program still in early stages.
Global “background” scale transformations understood

B - -
Oc Euw = zég,uy

..B -
(5C hfi”.-" —zt.g!“j

(SfBgfLU = 0
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Unimodular gravity

Unimodular gravity

V| detg| = w .

Suc(g) = ! /ddwa.

167G .
Invariant under SDiff

Alternatively define
| det | e
Buv = Yuv | — 5

w2

S0) = 1ere [ @IV [RD]
C(d-1)(d-2)
4d2

Invariant under SDiff x Weyl

(WY - 2071 Vw)? |
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Unimodular gravity

Quantum UG

Classical UG equivalent to GR, except for different réle of
cosmological constant.

Do different formulations of classical UG lead to equivalent
quantum theories?

Are these quantum UG theories equivalent to quantum GR?
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Unimodular gravity

Constrained formulation

Simple way to impose unimodularity constraint is to parametrize
N T\” P
Euv = Bup (exp h ) - where V|detg| = w

and h' is traceless.
Using York decomposition

i - e L 1 -
hT — hTT = V,MEL/ o VUEH, = V;LVUU - _g;wv2a

v v

d

On Einstein background

Zy [ 1 2R
5(2) - TN/ ddX\/ElzhEJ? (AL2 . d) hTT;u,f

—wlxd”aawﬂ.

2d?
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Unimodular gravity
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Unimodular gravity

Gauge fixing

T! 1/ — (5!1 LIL’_}

Gauge fixing term

Sep = =X / dox V& F,, T"F,,

where

Fi=Volts
Using the York decomposition

2R
SGF—/ ddX g&,u (ALI - ) E“

' - R
Seh = /ddx z C, (Au - 27) Ck,

Ghost term
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Unimodular gravity
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Unimodular gravity

One loop effective action

1 2R

1 R\ 1
= S+§Tr|og (ALz — )+Tr|og (Ag)—=Trlog (ALl — )

2

2 2 d

whereas for GR

1 R 1 2R
[ =5+ '2—T1'|0g (ALQ - E) - ETT log (Au - d)
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Unimodular gravity

Final result for divergences

On Einstein background

Akd  Bkd=2 ke
R CLR2+Dy Ry, 00 RHP°
167d | 167(d — 2) T a2 O R +DiRu, )

= fend

L N
80(4r)2 * ' 60(4m)2

whereas for pure gravity (Christensen, Duff, N.P.B170, 480 (1980))

C1 =

58 53

L= T 80(4m)2 D1 = 45(47)2
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Unimodular gravity

Weyl gauged version, Exponential parametrization

S(y) = S(2%)
Use exponential split
Yur = Bup (exp(h))"

and decomposing fluctuation into h,,, = Bl 4 %gf,,,,,h. Then

v

th - - T P
.}[}'“’ = ed g[”’ . g‘,”_; = gﬂ,p exp(h ) v

det vy = det ge" = w?e”

5(v) =

| dxwrie]

we are back to the constrained formulation.

16G
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Unimodular gravity

Weyl gauged version, linear parametrization

L B bari: @ 5o Diw e
S — ZN/ddX \E th.uA2hf“-’ L EVN'hHvah,Uu . _hv“vyhf“_;

ik 1

d+ QhAQh B *R; (hﬂyh;w - 8,.'2)

442 2d

using York decomposition, leads to same Hessian as
the constrained formulation

Conclusion: all three formulations of quantum UG lead to the
same result, and it differs from quantum GR
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Conclusions

Summary

In the presence of dilaton, there is a way of quantizing the
theory such that Weyl invariance is preserved.

Presence of dilaton is natural in a relational theory.

In the variation of the EA, the anomaly of the trace is
cancelled by the contribution of the dilaton. The physical
effects of the trace anomaly are still present.

cutoff/renormalization scale will depend on position. A theory
with nonconstant cutoff is equivalent to a theory with
constant cutoff but a conformally related metric.

Most natural to discuss QFT in frame where cutoff is
constant. In other frames, it is equivalent but may look
contrived.

Unimodular gravity quantum inequivalent to GR
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