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Abstract: | will review the current status of our understanding of spherically symmetric compact solutions of Shape Dynamics, which have
nontrivial degrees of freedom when matter is present. | will show some new solutions of GR in a CMC foliation: a single thin spherical shell of
matter in equilibrium in a compact foliation of de Sitter, and the ssmplest possible model of a black hole or compact star. This is provided by a
universe with the topology of a 3-sphere with two thin spherical shells of dust. One of the shells models the “fixed stars&€™, or the “rest of the
universed€™, while the other shell models collapsing matter. Both are needed for atruly relational description of gravitational collapse. It turns out
that such a solution of GR cannot be evolved past a point at which the foliationceases to be admissible, but it still makes sense past that point as a
solution of Shape Dynamics, because the shape degrees of freedom seem to be unaffected. My conjecture is that we have found another example of
departure between GR and SD, and this departure happens whenever ordinary matter undergoes gravitational collapse.
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What | mean with Shape Dynamics

SHAPE DYNAMICS

RELATIVITY AND RELATIONALISM

OXFORD

F.M. “A Shape Dynamics Tutorial” arXiv: 1409.0105 v2
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What | mean with Shape Dynamics
e [heory of classical evolution of 3D conformal geometry.

e York's Hamiltonian gives one possible choice of such an evolution, which
Is equivalent to ADM in CMC foliation (= well constrained experimentally).
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Quantum construction principle: I'd like to study the class of 3D conformal
theories that are asymptotically safe, and see if York's belongs to it.

In the meantime, we need to learn to do (classical) physics with 3D con-
formal geometry: this is not trivial, because we have to renounce the as-
sumption of a smooth (modulo singularities) spacetime, and focus on the
continuity of the shape degrees of freedom,

This exercise delivers interesting results: we can continue cosmological
solutions through the Big Bang (see David's talk) - r.e. past the point
where the ADM evolution cannot be continued.

For black holes, | will show a similar failure of ADM evolution which does
not affect the shape degrees of freedom.
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Early attempts at SD black holes

x Henrique Gomes, “A Birkhoff theorem for Shape Dynamics,” CQG 31
(2014) 085008, arXiv:1305.0310.
Maximal foliation of Schwarzschild does not cover the singularity. Should
be interpreted as a wormhole?

e H. Gomes, Gabriel Herczeg, “A Rotating Black Hole Solution for Shape
Dynamics,” CQG 31 (2014) 175014, arXiv:1310.6095.
G. Herczegq, “Parity Horizons, Black Holes, and Chronology Protection in
Shape Dynamics,” CQG 33 (2016) 225002, arXiv:1508.06704.
F. M. Daniel Guariento, “Self-gravitating fluid solutions of Shape Dynam-
ics” PRD 94, (2016), arXiv:1606.01215
Extensions of = to charged/rotating/w.fluid cases.

e F. M., H. Gomes, Tim Koslowski, Andrea Napoletano, “Gravitational col-
lapse of thin shells of dust in asymptotically flat Shape Dynamics,” PRD
95 (2017) 044013, arXiv:1509.00833.

Generation of the solution of x as result of gravitational collapse of matter.

5
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e ALL THESE ISSUES SOLVED BY COMPACT BOUNDARY CONDITIONS:

— If topology of spatial slice is 53, no boundary charges and variational
problem well-posed.

— A can be arbitrary if we put some matter around the poles (and a pos-
itive cosmological constant) to ensure compact boundary conditions.

- A has interpretation of dilatational momentum. In a compact space this
has to be relational: if some matter expands, the rest of the universe
has to collapse around it.

arXiv: 1704.04196 - F.M. “Thin shells of dust in a compact universe”

~J
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Spherical symmetry in SD
arXiv: 1704.04196 - F.M. “Thin shells of dust in a compact universe”

ASSUMPTIONS:
e Spherical Symmetry = local conformal flatness (no metric shape DOFs)

ds® o dr? + sin?r(d6? + sin? 0d¢?) .

e Compactness (S3 topology) = no arbitrary boundary conditions

/ \/|q| A3z < 00 .

e Matter sources (to have dynamical DOFs). Simplest possibility:

infinitely thin shells of dust.
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Spherically Symmetric Ansatz

| iG
p?(r) 0 0 - w(r) 9 %
gij = 0 o(r) 0 , pY =sind 0 23(’") i 0
0 0 o(r)sin?e 5s(r)
' 0 0 sin2 0

Vacuum ADM-CMC constraints

H = (w"--’m; - ?)2)+\/§(2A—R-) , Hi=-2Vp);, C=p—(p)V9,

ay & .Ilpj'jl(}.,:jd?’;!.' “ . "
<p> = W York time”.
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Exact solution of the vacuum constraints

(o')?

+ (%(p) A-8 m.) Vo + 40— é (12 N\ — (]))2) o2

-
grr = p<(r) = .

.. sin@ [ A : ' A
100 = o(r) , = Ve + 1 . pP0 =siné (2, ),
900 (7) s 7 p (30) + \/U) I 5 | 5(p) 3 /

fwo integration constants:
e m = Misner-Sharp mass = Vg’ (1 - (4)9’“"8“(ﬁ)é?,_,(-\/E)) :

e A = "dilatational momentum”. Related to integral of radial momentum of
matter sources A « [ Prdr
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The fundamental polynomial

If we require the metric to be Euclidean (z2 > 0 and ¢ > 0), o(r) has to take
values where the denominator of the following is positive:

“2 - O’(O’l)z

A2 + (%(p) A - 8-m) 03 + 402 — é (12 N\ — (p)z) o3

making all quantities dimensionless by rescaling with the M-S mass:

Vo . A

z = il C = 53 T =|m|{p), A=m?A.

the denominator turns into the following polynomial:

Plz] = % (6(.;—Y -+ T523)2 —(£223) - %/\ 2° + 2%

where +1f m > 0and — if m < 0.
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The fundamental polynomial

N2
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The ‘forbidden region’

C=-o Z=+00

7=0

[==co [==co
-
/'//
A==1, m>0 1=0.1, m>0
z = T\,/,—?, C = 2—}12 S T = |m|(p), A=m?A.

Pirsa: 17050047 Page 16/34



=01 T =0.3 m >0
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Introduction of matter: thin shells of dust

=
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Sources for the Hamiltonian and Diffeomorphism constraints:

/' H dOdp+47 5(r — R) \/;,"" P°4+ M?=~0,
/‘ H. dOdd+4n " 5(r — R)P~ 0,

Imply two ‘jump conditions’:

im o'(r) — lim o/(r) = ~1/P? + M2y2(R),

r—Rt r—

16
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Single Shell

I.l m
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Single-shell universe - |l
We only have two regions, call them + (r > R) and - (r < R).
Regularity at the poles implies m4+ = A4+ = 0.
Then the diffeo jump condition Ay — A_ P =0 Kills P,

and the fundamental equation is identical on the two sides:

o . n
r < R
1 2
\/4:7—6(12/\—(;))‘)0‘
“"(T - ‘(:r!‘

1l >R

\/4(7—9(12/\—(]))‘)n‘

so to have p continuous:  [lim,__, py a(r)| = |lim,_, p- o(r)].
Only possibility: lim __ p4 ¢/'(r) = —lim,_, - /(7).
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Single-shell universe - Il

Exact solution of fundamental Eq. in isotropic gauge o = 2 sin?r:

n ) 2
1—k?2tan?Lt
1 - (ﬁz) for r< R
1+k<tan s,

36

o= X {7 ! :
~ \k24cot* L ta

n r _-—
n;,?,’_) for r>R

{12Ap))
1 =

o
=1

19
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Single-shell universe - IV

Four dynamical variables: (p), P, R and k and two constraints:

P~0 and h(Rk, (p)) =o' (R)| - %\/PQ + M?12(R),

Isotropic-gauge symplectic potential: § = | y)i'-erg,,-_J o~ —gl-f'é(p) — 4RO P,

)

k tan(%) (Jl—Fs:r"tan2

(A:Qtanz(g)+1)

(¥ fey

tan—1 {k:tan (g” - S

'he symplectic form can be calculated exactly:
{f,9} = dif w™ (R, k)Y 8,9, where

And the two constraints are first-class:

{h(R,k,(p)),P} = — COETR.

h(R,k,(p)) =0.

20
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Single-shell universe - V
4D phase space with 2 first-class constraints. One needs to be gauge-fixed
and the other generates dynamical evolution. An obvious gauge-fixing for

P ~ 0is R = R = const. Moreover h is first-class wrt this gauge-fixing.

Replacing P = 0 and R = R in the leftover Hamiltonian constraint A ~ O:

. " cosz (Az—cotz—g)
6\/12’\ 5 ( 5 2_48&/12/\—0’ N ot
2C0542 (A:Qtan23'+1) sin (A +cot? ,,')

the above equation has real roots only if

21
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Single-shell universe - VI

Plot of o (R) and the spatial volume V' vs. York time {p):

—arotan(A ")

M=0
My 12A =3
My T2A =6
MV T12A =9
MV 12A =12

M 124 =15
++++++ . MV 12A =18

——— R e — MV 12A =21

= N RS — £ e — MV 12A =23
o 7 — MYT2A =24
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Two Shells

‘l- 1!

23
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Twin Shell universe - Il

The following two jump conditions (a = S, N):

lim o'(r) — lim o'(r) = =3/ P2 + M242(Ra),

f—}l?j_ - "h”

together with the equation relating u?, o and o’ calculated at r = Ry,
give us two constraints:

15 +4A3 (Tp2 — 4) + MZpa (Tps — 4pa — 2X ) + 16X 2p2 ~ 0

where T = % (12/\ — (p)z), X = %(p);‘lg — 2mg and ;)2 =o(Ry).

24

Page 27/34



Twin Shell universe - Il

Rescaling everything with the Misner—Sharp mass of the ‘belt’ region:

A
C =8B , T=|mg|({p), A= mg Pe: 2=

pa
2mg |mpg|’

we get a polynomial equation similar to the ‘fundamental polynomial':
[Lf,l' . 2 123 o2
£ | w2z, [+4 = 207 - §23 (72 - 12)) — 42,]

634 [+C722 — C? (222

(1

- 3) - 3:;.},?} =0,

Its solutions can be represented in the same 3D space (z,C, 7) as the
forbidden region’. | call them the ‘on-shell surfaces’.

REMARKABLY, THE ON-SHELL SURFACES NEVER ENTER THE
‘FORBIDDEN REGION'.
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The on-shell surfaces

C=—0 Z=+c0

Mlm-B=0.01, /l=0.1, mpg>0 MImB=2, /l=0.1, mp>0

26
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The on-shell surfaces

=+c0

MImg=5, A=0.1, nz>0
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How to use the on-shell surface diagram - |

Mimg=0.01, A=0.1, mp>0

28
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How to use the on-shell surface diagram - |l

X §] |- exc
¢ X a(r) ]
Pu - \\
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i il Tt e Bt
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/ | |
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| |
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0 R ! R

e
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The on-shell surfaces

=+c0
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How to use the on-shell surface diagram - lll

e 0 oo
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