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Abstract: Most practical studiesin Shape Dynamics involve an N-body Newtonian interaction which is described by a homogeneous potential. This
property allows one to proof several interesting features like the emergence of an arrow of time. However, more generic interactions are not
described by these kind of potentials and introduce additional dimensionful coupling constants. Thus, it is an open question whether more generic
interactions can be written in afully relational manner. By studying the concrete example of the gravitational Weber interaction which is, in a sense,
a more redlistic theory of gravity, we show that it is possible translate non-Newtonian interactions, which have inhomogeneous potentials and
additional coupling constants, into arelational language. This opens the door to study other interactions and may shed light into the relationalization
of gravity as described by genera relativity.
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Questions:
e 'Relationalise’ an interaction with an extra coupling constant?

e Does it add a shape space dimension?

B

Pirsa: 17050046 Page 3/23



Pirsa: 17050046

Weber electrodynamics

Example: Weber electrodynamics (1846).

No fields, forces and (charged) particles.

Describes Coulomb, Ampere, Faraday,
radiation.

First link of light (¢) and electrodynamics
Initially Maxwell thought it was correct.
It has been falsified.

Wilhelm Eduard Weber
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Weber gravity

The force on particle 1 by particle 2 is

— . —Gmm 3F2 OrioF
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T = : drio , | dro : d°r
A2=n—nR, n2=|A2, h2= = Tl | =2

Completely relational (only relative dist/vel/accel).

e On a Newtonian spacetime.

Additional dimensional object: ¢ = speed of light.

Homogeneous (invariant under rescalings of r"and t)?
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Weber gravity

The force on particle 1 by particle 2 is
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Invariant under global rotations and translations =
N particles in 3 spatial dimensions, 3N — 6 indep. r;;.

e 1o = —Fsq, central, and conservative = P, L, E conserved.

GR phenomena: perihelion precession, “radiation,” UFF,

Newtonian limit: ¢ — oc.

Falsifiable: it does not affect light = toy model.

Pirsa: 17050046 Page 6/23



Weber gravity

The force on particle 1 by particle 2 is

— & —Gml mo 3!’12 6!’125&2
FiE——— | 1= F—= |
1 ¢ c
T = . driz , |dn> i d’r
En=h mels BssE el e

Invariant under global rotations and translations =
N particles in 3 spatial dimensions, 3N — 6 indep. r;;.

e 1o = —Fsq, central, and conservative = P, L, E conserved.

GR phenomena: perihelion precession, “radiation,” UFF,

Newtonian limit: ¢ — oc.

Falsifiable: it does not affect light = toy model.

Pirsa: 17050046 Page 7/23



Getting relational: the algorithm

Basic steps (that minimize the calculations):

1. Lagrangian/Hamiltonian
(First order) EOM and configuration space metric
Length scale and intrinsic parametrization
EOM for intrinsic parameter
Normalization (dimensionless coordinates)
Choose an extra dimensionless variable

Find EOM for this quantity, check if system closes

collee L LB

If not, promote its derivative as a new DOF and return to 7
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Weber Lagrangian and metric

e Weber Lagrangian

1 5 ~G —~ mimj 377
L:§ZNTirf'_U, UZT T (1+C2 :
, NITES

e In term of the Newtonian potential Ux (and o, 3 = 1,2, 3):

1 o
L= 23 gias(x)ix - Un(x)

".7_" 9()"”8
6 Gm;my 3 :
_ : o v [ 8
Biaif = Midap + E ———(x¥ — x)(xF — xp),
c2ri
k|k#i ik
6Gm;m
— J . ¥ B B . :
Biajg — —C2r3(va — X_} )(X’. — Xj ), / #_[.

® giajs 15 not homogeneous!
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Weber Lagrangian and metric

e For simplicity, all particles have mass m.
e More general: m average mass; relative weights in g,p.

e The Lagrangian can be written as (a, b config. space indices)

L=T- Un, T = I;gab(x)*a*ba

and Uy is the total Newtonian potential.
e g.p Is dimensionless.

e Formally, trivial to get the Hamiltonian (no constraints)

1, L
H = Q—mga (x)papb + Un;, Pa = Frrk

e The energy E = H[x, p(x,x)] = T + U is conserved.
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Equations of motion

e As expected, the EOM are

a [ [ [
)-(-a + ra )-(b)-(c o F_ a 71 ad ()gbd ()gdc o ()gbc
bec - ) bc — Yoo 2o b Nod )
m 2 Ox Ox Ox
Fa — _gab o Un
Oxb’
e Let v = x?, then
Fa
ca a .;b..c
v:h = —lpv v + o
x* = v
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Length scale and intrinsic parametrization

e Length scale: R? = g,px?x?.

e Dimensionless parameter:
R?ds® = gabdxadxb = gy vPdt?.

then

dt R
; lv| = V gapvavPh.

dv:|v

where sign is chosen s.t. s grows in the direction t does.

e |n terms of s

av? R R
ds w(bc” Tm )
dx? ve

- = R—.

ds lv|’
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Normalization

e Let v? = v?/|v| and ¢? = x?/R, then

du?® RF? u? d|v|
- = — _ _RP b, c _ vl Ll 7y
ds m|v|2 bet & lv| ds

dg" _ . _T a7

ds R ds

e Is the g? equation purely kinematical?

e Need another dimensionless quantity.
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Additional dimensionless variable

e The new dimensionless quantity must be a quotient of

G, m, c, E, R, |v|.

Convenient not to use R and |v| at the same time (we have
dR/ds and d|v|/ds). We use R.

e We do not use E to single out the E = 0 case.

Use the ratio of gravitational and rest energies.

Let Kk = Gm/Rc2, then

de _ GmdR _ rdR
ds ~  R2c2 ds R ds’
e Explicitly
1 dR
Eg = 8da Rrbcqaqbuc EE gabq U
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Still need to deal with d|v|/ds and RI'¢

ab’

Since gip = 0ab + K0gap(q), then

RISe = 5735(9)-

V = V/(q) dimensionless and s.t.

B —Gm?V

Un = = —kmc®V = RF? = kmc*f3(q).

Using T = m|v|?/2:

2T  2(E + kmc?V)

v[? = :
m m
iM o -1 dUN o gabf""ub
lv| ds  m|v|2 ds  2[(E/kmc?)+ V]

V(q), f?(q) and v<,(q) are known and dimensionless.
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EOM: Does the system close?

du? _ fb(f5§, - gbcuauc) - h".")fa ubuc

ds 2[(E/kmc2) + V] T 'PC ’

dqa b(ca a,c 8 .8.0.C..d
7o = (0~ 8bcq°q") — KgbeVcaq q g U",
drk

oo = 18 U’ — Kgaxpcq U,

The system closes!!!

No need additional variables.

Same number of DOFs than the Newtonian case.

DOFs: {q, p,x} minus 2 constraints |g| = 1 = |u|.
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EOM: Further comments

du? fb(ﬁg — Gpcu?uc) P

ds  2[(E/kmc?)+ v] bt H

dqa - brca a a,.b_c d

de u (ab Bbcqd q ) f‘gbeﬂcdq qqu

C:,:" = —Kgabq U’ — K2Buah. G q°u°.
e Nothing special when E = 0.
e The first terms in the u? and g? equations have projectors.
e The last terms in these equations keep the normalization.
o After all, the g? equation is purely kinematical.
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essons

e There is an algorithm to put (pre-relational) theories in a
relational language.

e The effects of ¢ can be described in a fully relational way.

e New dimensional coupling constant do not change the
relational equations structure.

e In fact, having ¢ was useful (s definition).

e Other interactions may be studied, e.g., a relational MOND.

PATIONSHLE
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