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Abstract: Relationalism is the strict disentanglement of physical law from the definition of physical object. This can be formalized in the shape
dynamcis postulate that the objective evolution of the universe is described by an "equation of state of a curve in relational configuration space.”
The application of this postulate to General Relativity implies that gravity is described by an equation of state of a curve on conformal superspace. It
turns out that the naive quantization of these equations of state introduces an undesired preferred time parametrization. However, it turns out that
one can still describe the quantum evolution of the system as an equation of state of the Bohmian trajectory which remains manifestly
parametrization independent. These quantum systems generically develop quasi-isolated bound states (atoms) that can be used as reference systems.
It turns out that the system as a whole expands if described in units defined by these atoms. This produces phenomenological effects that are usually
ascribed to the presence of a cosmological constant. This "effective cosmological constant” is however unaffected by vacuum energy. | pesent the
formal argument for this statement and show this explicitly by remormalizing a scalar field coupled to shape dynamics.
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Pure Shape Dynamics:

The quantum equation of state of the universe produces a small cosmological constant
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Outline of the Argument

1. Identify relationalism as disentanglement of physical law from operational definition
= formalization of equation of state of geometry of curve in relational configuration (="shape”)
space
2. Simplest application to quantum systems:
Equation of state of geometric properties of Bohmian trajectory in shape space
3. Providing some technical background:
a. Classical equation of state for Newtonian N-body problem

b. Bohmian trajectories on shape space

c. Simple quantum models, atoms, emergence of units, apparent expansion
d. Well-defined Bohmian equations = Renormalization

e. Equation of state for ADM system

4. Cosmological model (Bianchi IX) with matter field (scalar field with local d.o.f.)
= renormalization of Bohmian e.o.m. on shape space leads constant term + curvature term
as opposed to vacuum term + curvature term (as in the ADM representation)
= vacuum energy does not gravitate in shape dynamics
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Relationalism = Disentanglement of Law from Definition

Problem: Phys. objects are defined by their phys. properties, while phys. laws specify phys. properties of systems.
= “What part of the physical laws are actual predictions?”

Simple example: Consider free particles and Newton’s first law
In an inertial system free particles move along straight lines at constant speed.

Required definitions:
1. Inertial system.: A system in which free particles move along straight lines.
2. Speed: requires a notion of intrinsic clock and rod

= conventions: O Coordinate origin = centre of mass
@ Frame = particle 1 defines direction x; orthog. comp. of particle 2 direction y
( use motion of particle 3 to define unit speed

(due to dynamical similarity there is no independent notion of ¢lock and rod)
= Once we have conventions for all undefined quantities, we obtain the “true physical predictions” of the physical law
A relational description extracts the true predictions of physics.
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Objective Dynamics = Geom. of curve of relational config.

“All physical objects (including the reference objects used in conventions) are contained in the universe” =
1. only relational configurations exist, but no absolute configurations
2. only change exists, but no time parametrization
Theoretical dynamics of the universe is the mathematical description of an un-parametrized curve in shape space

Equation of state of geometry of a pure (i.e. unparametrized) curve in shape space

Shape spy’"—“‘ma

——

point in shape space: ¢"
dircction in shape space: ¢4 = unit tangent vector: p®(¢)

i PN A 5 - )
ds (o™s) — Pgeo. (s),

deviation from kinematic geodesics: k* 1=

. . D
oxtrinsic curvature: k2 = gqp k% kY

complexity function: C'(q)

) Pure Shape Dynamics System

N i dq* = p*(q, 9)
k.lllt‘.II'ltL i metric: ga,;_,(qg 7 e _
kinematic arc-length: ds® := g]@/{iﬂ#’d@j d (z)A — (I)A (q’ (i)7 [{)
e e dr = K(q, o, r)
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Example: Newtonian N-body universe (I)

We start with Newton’s equation for N particles with Newtonian potential and E=0, (P=0, L=0):

dry 7w _ dm aVry _ _ i
it — ., (assuming equal masses) and 7t = gye (assuming homogeneity of deg. -1)

Coordinate change to decouple

size and duration from pre-shapes and their momenta: 7
A =2 b P _ i 'aqf.;_ -1
R .= Zif D: Zp T ¢ =L pa::( j) ﬂ}i
I ! R oy
Consider an intrinsic parametrization (e.g. arc-length param. In shape space):
ds* = ga(q) dq" dq”
—> The evolution of the shape becomes a kinematic statement
dg” a3 _ o ' , , ; : ;
s (¢)  unit tangent vector in direction ® . Pa(q,p) := direction defined through momenta  p,

—_—

—¢", ¢a Vocal coordinates on unit tangent bundle
=) The equations for the change of direction along the curve become

dpa _ si@lé«,(f;.p);“l,,_(q 4 )__f'_")q-",q(:q,p) 1 0V (R, q_r_))

q b AYa, Of J‘
oot L, @) (, @ +_.,‘ '
s dqt dp ('”’ s G ) »?_ 0q

[t
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Example: Newtonian N-body universe (II)

Using V(R q) = —aC(q)/Rk together with the dim.less  « :— ||«||/(a k) we find

doa O, by, (10C) 1 e
_(/)_i = = 4[(;, D) u(q, )+ J‘(q,cf)_) i 4 - —ghu.(,,(q)ub(q,gb)u (q, )
ds g Iy Kk dg* 2
and calculating the evolution of « := ||7||/(al?) using Newton’s equations
dk D aClg) s de,0C(q)
B 2 ol ,‘cl. : ?.‘ . - orkip 2 7] i
75 I T o ¢.¢) using E=0 we find -~ el (q,0) + &
) Equation of state of the curve in shape space:
dqu 5 .-
= u"(q, )
ds
oy D P, 1 9C (g 1 ; ;
— = W{(I ) ‘.'f”(q,(p)-{-(apj(q.__ ) (;" aq(j’) ~ Seal@) (4, 0)u"( (/)))
(20 C' (¢ ’
i = 2“5 (q) u(q, @) + K
ds e '

Interpretation in terms of extrinsic curvature K of the curve:

_ ab et '
-2 2 _ d,  N(yb b 9" CaCllp
I\ = ||vﬂ U'”_q = Yab (%(ru’a - u"zﬁu)(u’ - U_qeu)) = H'; :

Note: the scale and duration decouple due to homogeneity in dimension and energy conservation (always!)
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Example: Newtonian N-body universe (I)

We start with Newton’s equation for N particles with Newtonian potential and E=0, (P=0, L=0):

d.r-;t B _7751 _ ' ] d dﬂ'? B _(_} l'“.) _ ' } ' fd ]
dt == =, (assumlng cqua l'ﬂaSSCS) an dt (J]I’? (assummg 10mogCI]CIty (0] cg. - )

Coordinate change to decouple

size and duration from pre-shapes and their momenta:
; o i e
- - [ — P} ) [
= 7 = p.r ¢ 7 e
Ri=[> 7 D=3 7 ¢ = Pa :z( j) i
£ ] R ary :
Consider an intrinsic parametrization (e.g. arc-length param. In shape space):
ds* = ga(q) dq dq”
—> The evolution of the shape becomes a kinematic statement
dg” s _ L ' : : : ; :
T = u"(¢)  unit tangent vector in direction ¢ . ®Palg,p) := direction defined through momenta  p,

——

TT—{¢", éa Vocal coordinates on unit tangent bundle
=) The equations for the change of direction along the curve become

dpa  0P4(q.p) oD 4(q,p) 1 OV(R, q_))

"U-”'(fj, (‘/))____ (gbc_,a“b((b gb)"li-“((j. ga)) o e

ds dg® Ip, Pt Jg
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Quantum Theory of the Universe

Motivation for Shape Dynamics: Find relational foundations for Quantum Gravity

What is Quantum Gravity?

1. A well defined physical system (i.e. mathematical model with consistent physical interpretation)
2. Contains a classical limit that is well described by Einstein’s equations
3. The acquisition of information of one practically isolated subsystem about another practically isolated
subsystem by weak interactions 1s described by the quantum formalism
Problems:

I.  Technical: Quantization produces time parametrization anomaly ihd, W = H(t/h) ¥ = oy ¥ = H(\) ¥
2. Conceptual: Outcome problem of quantum mechanics (“‘measurement” problem)
3. Practical: How should the relational postulate be implemented in quantum theories?

= These problems can be solved by considering Bohmian trajectories on shape space as the history of the universe
(i..e. quantum mechanics and spacetime emerge as effective descriptions)

“Shape Dynamics Workshop™ at the Perimeter Institute for Theoretical Physics, May 15 -17, 2017

Pirsa: 17050044 Page 9/21




Bohmian Mechanics (complicated model)

Note: the curve has only a direction, while the gradient of the phase of the wave function has also a length!

Introduce Bohmian “shape of the universe” ()* in addition to wave function on shape space ¥(q) = R(q) ¢' 5@
to define " 7
dQ° — 97(Q)5pY) (guidance equation in arc-length param.)
VI (Q)S(Q)S4(Q)
_. H(Q, k; S)W(q)
dV(g) = — . > i :
Vi (Q)S . (Q)S(Q) (modified Schrodinger equation)
LS ._ .
dk = 2 (@) S ' (curvature equation)

V9(Q)Su(Q)Sp(Q)

This system traces out the same curve as the classical Newtonian N-body system on shape space if

1 ab ( S’{l ()Sr) () ~
~58 = ERIC }-;-( P e

: , o 1A, R(g
2. The gradient of the quantum potential Viuant(q) = — ]’2 (q;)q)

I.  the Hamiltonian is H(Q, : S) =

is negligible.
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Bohmian Mechanics (simple model)

Use standard Bohmian mechanics on shape space

Q" = g"(Q) S.(Q) (standard guidance equation)
—i¥(g) = (_§Aw = W)) W(q) (standard Schrodinger equation)

This system can be described as Q" = u"(Q. ¢)

'-)(I) y o 9(I)t C P fs : oy : éﬂ (
dd)\ . (,77,‘1'(1-”((%;)1 (,3) o ([71 qf:; (Q)'U-{,(Q, (,Fﬁ)"r‘r'{!((t)a (ﬂr)‘) o : ( 2)
()Ql’i'. ()ru}“ i K

di = 2’21.“((;2,_ (Tf:) (—‘ﬂ ((9) + Ko

9"(Q)S Q)
VI Q)S.(Q)Sq(Q)

using the effective directionu”(Q, &) =

and effective potential C'(q) = C'(q) + Viyant (¢)

This system expands apparently like R(t) = /R + I, 1*

it -1 ., Lx R o -y
whenever the longitudinal quantum forceo := T-f.;.“(_Q, é) (#) (@) 1s negligible.

W
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Simple Model (atoms define units)

Consider an isolated pair of particles, 1.e. |(¢',¢* ¢") — 7/2| < 1 with M("q?*__ ...¢""ybounded, then
_. 1 M, ...,¢N* il
("v(q) _ : , = — + (ql jff - ) :> + 1[ {]J\- 4)
Tergt + sfql(cg? + .5"3(]'3(.:3@5) Sq° Sq° sq ||‘ﬂ|
Hamiltonian becomes 1 — ;12;3‘7 Tl W| + Hyew + Hiy Where f7,, can be treated perturbatively

so the effective wave function Weyr(q) = V(G qrest = Qrear) satisfies Hydrogen Schrodinger equation with small perturb.

i i . 1
= effective unit of length by Bohr radius r, = -
aC
2

effective unit of time from Rhydberg ¢, = ! where LPum(t) =

Wy

o
/ (i"."('.'?lu]’]/nl_Mn/m‘ <T?-|Ha.-n.f(Qr('m'; t)l'””>
0

assume accessible Bohr radius (equilibrium position between quantum force and classical force)

= size of the universe in Bohr units 7 =r, | (/1)(Q*)? = r, R(q)
r<J

(this size evolves classically when the quantum force is negligible for the rest)
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Equation of state for ADM (1)

Start ADM equations of motion (analogous to Newtonian ecom) using metric ¢.»(«) and metric momenta 7*(x)

Dynamics on conformal Riemann (not conformal superspace) = Change of coordinates to separate

Local scale and expansion from conformal metric and momenta
i T : a s 1 . s &
o) = Vil 7(e) = gule)r(x) paacy = 7 ]7/ 2 W (m )03 = 30 geale ’) G
g h !
Impose: 1. “scale-decoupling” slicing condition j In(w(x,t)) = ft) = N(z)= \/%“)
: m(z

‘6! . T " J e i 2 C
2. “intrinsic” parametrization condition, e.g. (%) = / d*2 wo Parp® 0" ped
Decoupling: 1. Local part of w(z)decouples due to slicing condition = only V' (#) := / d*z \/|g|(z,t) remains

2. expansion 7(#) decouples completely due to local Hamilton constraint (%) = (6aio; — R(w, p)w? + matter) (x)

= equation of motion for conformal metric ;. (2) = N(p, w )/’f"_

where: 0j(«) ==

[ &3y
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Equation of state for ADM (11)

Use ADM equ. of motion with slicing and parametrization condition to derive a long equation of motion of the form

| d*zw(z)

doy(z) == ig[/’« w(t =0),6;K;2) where o

Decoupling (continued): and note that o(t=0) 1s not dynamical !

3. V() and o := /tf”#i" oj(@)oi(x) decouple b/c dimensional homogeneity and dynamical similarity

= Decoupled equations of motion: |

‘ Dhye: 7-:{-: (3' ; x
d papr) = “w((f)——ﬂ())

doi(x) == X8 p, w(t = 0),6; K;x)

ds = K[p,w,,0; k)
These equations describe the intrinsic equation of state of a curve of conformal metrics.
Note: equations are spatially covariant = equation of state of curve on conformal superspace
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Symmetry reduction = Bianchi IX model
use Misner anisotropy parameters¢" and direction in shape space u“(¢) = (sin ¢, cos ¢)

and ADM Hamiltonian 45y = 7° — (-_ETQ - QA) v? — 3 C(q)

= dq¢" = u(p)
oo Calq)

our(¢) 2k
[N " 1 i 1 & .
dr = "f-f-"(f.ﬁ) Calq) + 2 ko (where o is related to the “jerk™ of the curve, due to cosmological constant)

. 2
4l = (_ 3¢ (q)) (s0, o plays the same role as the longitudinal part of the quantum force)

NG

= Bohmian model: Q” = S,.(Q)
has Bianchi IX dynamics as semi-classical limit with cosmological constant given by longitudinal quantum force

e —u (Q, ) (A R) Q)
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Well defined Bohmian equations = Renormalization
5S[¢]

Consider Bohmian guidance equation for field a field theory ¢(;) = :
' O

—

p=
= 1s well defined on 1-particle Hilbert /, space when S1¢] = £ ({1, ®),.... (fu, ¢)) for n finite, F smooth and f in H

2 1 /95(d) 5S[¢ﬂ> B 1 © 5 0" Rl
B <5¢5(ﬂi‘)ﬁ, 0¢(2) pr;b[lgm 781 ) o b?é%”

-

for quadratic potential V[¢] = (¢|E”|¢) the two problems solve one another if one imposes

s 1
Rl¢] = G ({f1,0),.... (fm) D)) €XD (—§<’5|E|f">) and adds counter term %Tr{ﬁ') to the potential

this form of [y is then preserved by the radial part of the Schrodinger equation

oo JOR[B] dR[¢]\  R[¢] 5, 8°S[g]
Riel = <o‘q-f:<.-:r.-)'5(,-9(;?:)) / o0

Generally: use background field ansatz ®(x) = &(2) + F(x) and impose that fluctuation field #(«has well defined e.0.m.

= implement splitting symmetry (p(a), F(x)) = (¢p(2) — e(w), F(a) + e(2))
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Bohmian Renormalization (I1I)

&

1 : 52 i e o =
Free scalar field Hamiltonian H = — /(i xd’y é(x, U)—(Sd)( )M( ) e fd zo(x) (A +m?) d(x)

= expansion of potential to second order V[, f] = = / zé(z) (—A +m?) o) + / dxp(a) (—A+m?) f(x)+

1
oo (5
XP Az

2'/. z f(z) (=A +m?) f(x)

replace all coincidence limits with heat kernel 0(z.y) = lim Ha(z,y) = lim <-T

A—oo

;y> to regularize

identify quadratic term Q(r.y) = (z[Vm? — Aly)

e i |8 ds —sK+ Ly L ( _-)Lf_i) el
y & —_—— L= § —_ -_ ¥ = i —_— )
use lim l 5 m } Jim 5 (1-en) = lim 5 \/A + O( to calculate operator sq. root
. i . VK .
using / pei KT = 9 (V K A) K, (2T where K = m* — A
_ _ A _x 1 [ ds _(gusL
= regularized quadratic term @x = ¢ 27 — — / e g™ T IR
2 ar Jo &P

) AN _x 1 ® ds _iwop 1y _K 1 [ ds _ 1 K
= counter term potential Uy = Tr [;(e B 7€ (Ks+3i7) | = 2Ty ((-;— .ﬂ)_—. / e” 3% Tr (e7 )
& w 0 - y

2
T —— A h”) + O(AY)
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SD description of Bianchi IX with scalar field

This program can be applied to a scalar field coupled to gravity, e.g. an evolving Bianchi [X geometry.

- 4 1 on2 A2 2 : : :
= usually / d*z \/g (w + % P) + O(A") becomes a fine tuning problem, because the cosmological
; B constant (measured in Planck units) 1s incredibly small

However, in Shape dynamics, the perceived expansion is not due to a cosmological constant, but due to longitudinal

_J' [y A R ™ . . .
quantum force ¢ = ——u"(Q .)( 17 ) () which pretends a time-dependent cosmological constant.

2o

= How is the perceived expansion affected by the renormalization of the SD system?

. . - . 82 UE 1 3 .~ (52 v 1 1 JIR : 2 / d
Quantum SD Hamiltonian H = — (d( i}2 d(ff 3¥ )_ﬁ / &2y (qb(:r).)ﬁ(-- (_q“)+§‘/ B’z (Mm? — Ay) ¢

= semi-classical limit 1s Bianchi IX with scalar field and effective cosmological constant

(t}')) + O(AY)
flrrcazazey] quan}umﬁ)u.e
= Vacuum energy does not affect SD equations of motion!
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Symmetry reduction = Bianchi IX model
use Misner anisotropy parameters¢" and direction in shape space u“(¢) = (sin ¢, cos ¢)

and ADM Hamiltonian 45y = 7° — (-_ETQ - QA) v? — 3 C(q)

= dq¢" = u(p)
oo Calq)

our(¢) 2k
[N " 1 i 1 & .
dr = "f-f-"(f.ﬁ) Calq) + 2 ko (where o is related to the “jerk™ of the curve, due to cosmological constant)

. 2
4l = (_ 3¢ (q)) (s0, o plays the same role as the longitudinal part of the quantum force)

NG

= Bohmian model: Q” = S,.(Q)
has Bianchi IX dynamics as semi-classical limit with cosmological constant given by longitudinal quantum force

e —u (Q, ) (A R) Q)
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Conclusions

1. Relational considerations require that the universe is described as
an equation of geometry of state of an (unparametrized) curve on shape space
2. One can find Pure Shape Dynamics systems that are empirically indistinguishable
from General Relativity
Relational principles of shape dynamics can be applied to Bohmian trajectories
Bohmian equations require renormalization
Bohmian systems “expand” due to existence of length of gradient of phase
This expansion is not affected by vacuum energy
There is a rigorous quantization program for shape dynamics

SHLOR TN 9

“SD=An equation of state of the geometry of the curve on shape space”
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Thank you !
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