Title: Positive Representations of Split Real Quantum Groups

Date: May 01, 2017 02:00 PM

URL: http://pirsa.org/17050032

Abstract: The notion of Positive Representations is a new research program devoted to the representation theory of split real quantum groups, initiated in a joint work with Igor Frenkel. It is a generalization of the special class of representations considered by J. Teschner for Uq(sl(2,R)) in Liouville theory, where it exhibits a strong parallel to the finite-dimensional representation theory of compact quantum groups, but at the same time also serves some new properties that are not available in the compact case. In this talk, I will survey the recent developments and describe some of its relations to other areas of mathematics.

Pirsa: 17050032 Page 1/40

Introduction

Motivation

Motivation

[Drinfeld, Jimbo (1985)]

Simple Lie algebra $\mathfrak{g} \leadsto \operatorname{quantum\ group\ } \mathcal{U}_q(\mathfrak{g})$

• Search for solutions to Yang-Baxter equation

Finite dimensional representation theory \longrightarrow many applications!

- Knot and 3-manifolds invariant: Reshetikhin-Turaev's TQFT, braided tensor category
- Categorification: Khovanov homology, Nakajima's quiver variety...
- Kazhdan-Lusztig theory: $Rep(\widehat{\mathfrak{g}}) \longleftrightarrow Rep(\mathcal{U}_q(\mathfrak{g}))$
- Lusztig's Canonical basis / Kashiwara's Crystal basis
- Many more...

Ivan Ip (Kyoto University)

Introduction

Motivation

Motivation

[Drinfeld, Jimbo (1985)]

Simple Lie algebra $\mathfrak{g} \leadsto \text{quantum group } \mathcal{U}_q(\mathfrak{g})$

• Search for solutions to Yang-Baxter equation

Finite dimensional representation theory \longrightarrow many applications!

- Knot and 3-manifolds invariant: Reshetikhin-Turaev's TQFT, braided tensor category
- Categorification: Khovanov homology, Nakajima's quiver variety...
- Kazhdan-Lusztig theory: $Rep(\widehat{\mathfrak{g}}) \longleftrightarrow Rep(\mathcal{U}_q(\mathfrak{g}))$
- Lusztig's Canonical basis / Kashiwara's Crystal basis
- Many more...

₩

(마시네카 스쿨게 스쿨게

3 / 42

Ivan Ip (Kyoto University)

Pirsa: 17050032

Motivation

Motivation

Classical Lie theory: two important real forms: \mathfrak{g}_c and $\mathfrak{g}_{\mathbb{R}}$

 $\mathfrak{g}_c \longleftrightarrow \text{compact groups (e.g. } SU(n), SO(2n))$

- Finite dimensional representation theory is well-behaved
 - Highest weight representations $V_{\lambda}: \lambda \in P^+$
 - Closure under tensor product:

$$V_{\lambda} \otimes V_{\mu} \simeq \bigoplus_{
u} c^{
u}_{\lambda\mu} V_{
u}$$

• Peter-Weyl's Theorem:

$$\mathbb{C}[G] \simeq \bigoplus_{\lambda} V_{\lambda} \otimes V_{\lambda}^{*}$$

- Generalized nicely to corresponding quantum groups $\mathcal{U}_q(\mathfrak{g}_c)$
 - Universal R matrix: Braiding: $V_{\lambda} \otimes V_{\mu} \simeq V_{\mu} \otimes V_{\lambda}$

→ Braided Tensor Category

Ivan Ip (Kyoto University)

*

May 1st, 2017

4

Motivation

Motivation

 $\mathfrak{g}_{\mathbb{R}} \longleftrightarrow \text{split real groups (e.g. } SL(n,\mathbb{R}), SO(n,n))$

• Much more complicated [Harish-Chandra]

Ex: $G=SL(2,\mathbb{R})$:

- Principal series P_{λ}^{ϵ} , discrete series, complementary series
- Tensor product:

$$P_{\lambda} \otimes P_{\mu} \simeq \int_{\mathbb{R}^+}^{\oplus} P_{\nu} d\mu(\nu) \bigoplus \text{ (discrete part)}$$

• Peter-Weyl's Theorem:

$$L^2(SL(2,\mathbb{R})) \simeq \int_{\mathbb{R}^+}^{\oplus} P_{\lambda} \otimes P_{\lambda}^* d\mu(\lambda) \bigoplus \text{ (discrete part)}$$

- Quantum group level involving self-adjoint operators
- Largely open due to analytic difficulties and spectral properties (non-compactness, unbounded operators etc.)
- Foundation work from Physics by Faddeev, Kashaev, Volkov,

Ivan Ip (Kyoto University)

Positive Representations

May 1st, 2017

Motivation

Representation theory of $\mathcal{U}_q(\mathfrak{sl}(2,\mathbb{R}))$

Simplest case: $\mathcal{U}_q(\mathfrak{sl}(2,\mathbb{R}))$

Some special class of representations $\mathcal{P}_{\lambda} = \text{GOOD}!$

Studied by Teschner et al. from quantum Liouville theory:

- Parameterized by $\lambda \in \mathbb{R}_{\geq 0}$
- Generators = positive self-adjoint operators on $L^2(\mathbb{R})$
- Integrable representations in the sense of [Schmüdgen (1999)].
- No classical limit $q \longrightarrow 1$

Ivan Ip (Kyoto University)

Positive Representations

May 1st, 2017

Representation theory of $\mathcal{U}_q(\mathfrak{sl}(2,\mathbb{R}))$

Parallel to representation theory of compact case!!

• (Continuous) Braided tensor category structure [Ponsot-Teschner, Bytsko-Teschner]:

$$\mathcal{P}_{lpha}\otimes\mathcal{P}_{eta}\simeq\int_{\mathbb{R}_{+}}^{\oplus}\mathcal{P}_{\gamma}d\mu(\gamma) \ \mathcal{P}_{lpha}\otimes\mathcal{P}_{eta}\simeq\mathcal{P}_{eta}\otimes\mathcal{P}_{lpha}$$

Motivation

• Harmonic analysis gives Peter-Weyl type theorem [Ip (2013)]:

$$L^2(SL_q^+(2,\mathbb{R})) \simeq \int_{\mathbb{R}_+}^{\oplus} \mathcal{P}_{\gamma} \otimes \mathcal{P}_{\gamma}^* d\mu(\gamma)$$

Ivan Ip (Kyoto University)

Positive Representations

May 1st, 2017

Introduction

Motivation

Positive Representations of $\mathcal{U}_q(\mathfrak{g}_{\mathbb{R}})$

New research program started in [Frenkel-Ip]

- Generalization of Teschner's representations to higher rank
- Generators = positive self-adjoint operators on $L^2(\mathbb{R}^N)$

Many new phenomena not present in compact case:

- Faddeev's modular double and quantum dilogarithm
- Langlands duality as simple analytic relations
- Theory of multiplier Hopf algebra and locally compact quantum group from C^* -algebra
- Discriminant variety for Positive Casimirs
- Connection to quantum Teichmüller theory and cluster algebra

We expect many applications of finite dimensional representation theory of $\mathcal{U}_q(\mathfrak{g}_c)$ can be generalized to $\mathcal{U}_q(\mathfrak{g}_{\mathbb{R}})$.

Ivan Ip (Kyoto University)

Positive Representations

May 1st. 2017

Positive Representations

Definition

Definition of $\mathcal{U}_q(\mathfrak{sl}(2,\mathbb{R}))$

 $q = e^{\pi i b^2}$ not root of unity, $0 < b^2 < 1$.

Definition [Drinfeld-Jimbo]

 $\mathcal{U}_q(\mathfrak{sl}(2,\mathbb{R})) = Hopf^{-*} \ algebra \ \langle E,F,K^{\pm 1} \rangle \ \ such \ \ that$

$$KE = q^2 E K, \qquad KF = q^{-2} F K, \qquad [E, F] = rac{K - K^{-1}}{q - q^{-1}}$$

Coproduct:

$$\Delta(K) = K \otimes K, \quad \Delta(E) = E \otimes K + 1 \otimes E, \quad \Delta(F) = F \otimes 1 + K^{-1} \otimes F$$
Real form:

$$K^* = K, \qquad E^* = E, \qquad F^* = F$$

(Also counit ϵ , antipode S)

For higher rank, also Serre relations, $K_i E_j = q_i^{a_{ij}} E_j K_i$ etc.

Ivan Ip (Kyoto University)

Positive Representations

May 1st, 2017

Integrable Representations of Quantum Plane

For $q = e^{\pi i b^2}$, there is a canonical representation for the relation

$$UV = q^2 VU$$

where U, V are positive self adjoint operators:

$$U = e^{2\pi bx}, \qquad V = e^{2\pi bp} \qquad (i.e.(Vf)(x) = f(x - ib))$$

unbounded operators on $L^2(\mathbb{R})$, where $p = \frac{1}{2\pi i} \frac{d}{dx}$

- Acting on common dense core: $\mathcal{W} := \{e^{-\alpha x^2 + \beta x} P(x)\}_{Re(\alpha) > 0, \beta \in \mathbb{C}}$
- Integrable representation [Schmüdgen]:

$$U^{is}V^{it} = q^{-2st}V^{it}U^{is}, \quad \forall s, t \in \mathbb{R}$$

as unitary operators.

Ivan Ip (Kyoto University)

Positive Representations

May 1st, 2017

Faddeev's Modular Double

Recall $UV = q^2VU$,

$$q = e^{\pi i b^2}, \qquad U = e^{2\pi b x}, \qquad V = e^{2\pi b p}$$

Define

$$\widetilde{q}:=e^{\pi i b^{-2}}, \qquad \widetilde{U}:=U^{\frac{1}{b^2}}, \qquad \widetilde{V}:=V^{\frac{1}{b^2}}$$

i.e. replacing b by b^{-1} . Then

- $\bullet \ \widetilde{U}\widetilde{V} = \widetilde{q}^2\widetilde{V}\widetilde{U}$
- $\{U, V\}$ commute (weakly) with $\{\widetilde{U}, \widetilde{V}\}$

Together $\langle U, V, \widetilde{U}, \widetilde{V} \rangle$ generates the Modular Double.

- Faddeev's Idea: should extend to quantum group level.
- Liouville theory: $q = e^{\pi i b^2} \longleftrightarrow c = 1 + 6(b + b^{-1})^2$

Representations of $\mathcal{U}_q(\mathfrak{sl}(2,\mathbb{R}))$

Ponsot-Teschner's representation

- $b \longleftrightarrow b^{-1}$ gives $\{\widetilde{E}, \widetilde{F}, \widetilde{K}\}$ a representation of $\mathcal{U}_{\widetilde{q}}(\mathfrak{sl}(2, \mathbb{R}))$.
- $\{E, F, K\}$ commute (weakly) with $\{\widetilde{E}, \widetilde{F}, \widetilde{K}\}$
- Define

$$\mathbf{e} := \left(\frac{i}{q-q^{-1}}\right)^{-1} E, \quad \mathbf{f} := \left(\frac{i}{q-q^{-1}}\right)^{-1} F,$$

we have

$$\mathbf{e}^{rac{1}{b^2}} = \widetilde{\mathbf{e}}, \qquad \mathbf{f}^{rac{1}{b^2}} = \widetilde{\mathbf{f}}, \qquad K^{rac{1}{b^2}} = \widetilde{K},$$

called the "transcendental relations".

Hence \mathcal{P}_{λ} is a representation of the Modular Double

$$\mathcal{U}_{q\widetilde{q}}(\mathfrak{sl}(2,\mathbb{R})):=\mathcal{U}_{q}(\mathfrak{sl}(2,\mathbb{R}))\otimes\mathcal{U}_{\widetilde{q}}(\mathfrak{sl}(2,\mathbb{R})).$$

Ivan Ip (Kyoto University)

Positive Representations

May 1st, 2017

Properties

Properties

Existence of universal R operator $(K =: q^H)$:

Theorem [Bytsko-Teschner (2003)]

$$R = q^{rac{H \otimes H}{4}} g_b(\mathbf{e} \otimes \mathbf{f}) q^{rac{H \otimes H}{4}}$$

$$R\Delta = \Delta^{op}R$$

- R is a unitary operator on $L^2(\mathbb{R}) \otimes L^2(\mathbb{R})$.
- R is invariant under $b \longleftrightarrow b^{-1}$.

Here $g_b(x)$ is called the quantum dilogarithm.

• non-compact version of $\operatorname{Exp}_q(x)$ and $\Gamma_q(x)$.

Ivan Ip (Kyoto University)

Positive Representations

May 1st, 2017

Higher Rank

Positive Representations of $\mathcal{U}_q(\mathfrak{g}_{\mathbb{R}})$

New research program started in [Frenkel-Ip]

• Generalization of Teschner's representations to higher rank

Positive representations

• = "Quantization of minimal principal series representations"

Construction:

- Induced rep. of $\mathcal{U}(\mathfrak{g})$ on $L^2(U^+)$ by differential operators
- Lusztig's total positive space $L^2(U_{>0}^+) \simeq L^2(\mathbb{R}^{N=\dim U^+}_{>0})$
- Mellin transformation: $L^2(\mathbb{R}^N_{>0}) \simeq L^2(\mathbb{R}^N)$
- $\mathcal{U}(\mathfrak{g})$ differential operator \leadsto finite difference operator
- Quantization+"Wick rotation" \Longrightarrow positive operators $\mathbf{e}_i, \mathbf{f}_i, K_i \in \mathcal{U}_q(\mathfrak{g}_{\mathbb{R}})$

Ivan Ip (Kyoto University)

Positive Representations

May 1st, 2017

Positive Representations of $\mathcal{U}_q(\mathfrak{g}_{\mathbb{R}})$

Theorem [Ip (2012)]

There exists a family of irreducible representations \mathcal{P}_{λ} of $\mathcal{U}_{q}(\mathfrak{g}_{\mathbb{R}})$:

- $\lambda \in \mathbb{R}_{\geq 0} P_+ \subset \mathfrak{h}_{\mathbb{R}}^*$ of classical $\mathfrak{g}_{\mathbb{R}} \ (\iff \lambda \in \mathbb{R}_{\geq 0}^{n=rank\mathfrak{g}})$.
- Positivity: $\{E_i, F_i, K_i\}$ are represented by positive, essentially self-adjoint (unbounded) operators on $L^2(\mathbb{R}^{N=\dim U^+})$
- Transcendental relations: Define

$$\widetilde{\mathbf{e}} := \mathbf{e}^{rac{1}{b^2}}, \quad \widetilde{\mathbf{f}} := \mathbf{f}^{rac{1}{b^2}} \quad \widetilde{K} := K^{rac{1}{b^2}}$$

- simply-laced: $\{\widetilde{E}_i, \widetilde{F}_i, \widetilde{K}_i\}$ interchange $b \longleftrightarrow b^{-1}$
- non-simply-laced: $\{\widetilde{E}_i, \widetilde{F}_i, \widetilde{K}_i\}$ generates the Langlands dual $\mathcal{U}_{\widetilde{q}}(^L \mathfrak{g}_{\mathbb{R}})$
- $\{E_i, F_i, K_i\}$ commute weakly with $\{\widetilde{E_i}, \widetilde{F_i}, \widetilde{K_i}\}$ up to a sign.
- Does not depend on choice of reduced expression of w_0

□▶ ←□▶ ←臺▶ ←臺▶ 臺 → ⑨♀(

Ivan Ip (Kyoto University)

Positive Representations

May 1st, 2017

Higher Rank

Positive Representations of $\mathcal{U}_{q\widetilde{q}}(\mathfrak{g}_{\mathbb{R}})$

Theorem [Ip (2012) cont'd]

Let

$$U_k = e^{2\pi bx_k}, V_k = e^{2\pi bp_k}$$

generate the quantum planes:

$$U_k V_k = q^2 V_k U_k.$$

Then $\{\mathbf{e}_i, \mathbf{f}_i, K_i\}_{i=1}^n = Laurent polynomials in \{U_k, V_k\}_{k=1}^N$.

- Positive coefficients $\in \mathbb{Z}_{\geq 0}[q, q^{-1}]$
- $K_i = multiplication operators.$

(Ignoring *-structure:)

Extends the Feigin map of $\mathcal{U}_q(\mathfrak{b}) \hookrightarrow \mathbb{C}\langle \mathbb{T}^N \rangle$ to the whole $\mathcal{U}_q(\mathfrak{g})$.

|ロト 4回 × 4 差 × 4 差 × 1 差 | 40 q G

Ivan Ip (Kyoto University)

Positive Representations

May 1st, 2017

Pirsa: 17050032 Page 17/40

Multiplier Hopf Algebra

Multiplier Hopf Algebra

G compact, $\Delta: C[G] \longrightarrow C[G] \otimes C[G]$:

$$\Delta f(g_1, g_2) = f(g_1 g_2)$$

G locally compact: $\Delta: C_0(G) \nrightarrow C_0(G) \otimes C_0(G)!$

Definition

Multiplier algebra M(A) of a C^* -algebra $A \subset \mathcal{B}(\mathcal{H})$ is the C^* -algebra

$$M(\mathcal{A}) = \{b \in \mathcal{B}(\mathcal{H}) : b\mathcal{A} \subset \mathcal{A}, \mathcal{A}b \subset \mathcal{A}\}$$

Example

$$\mathcal{A} = C_0(G), M(\mathcal{A}) = C_b(G), \ \Delta : \mathcal{A} \longrightarrow M(\mathcal{A} \otimes \mathcal{A})$$

Definition

Multiplier Hopf algebra $A: \Delta, \epsilon, S$ extends to homomorphisms of M(A)

Ivan Ip (Kyoto University)

Positive Representations

May 1st, 2017

Multiplier Hopf Algebra

• Idea: work with bounded operators

$$U, V$$
 (positive unbounded operators)

 $V \mapsto U^{is}, V^{it}$ (unitary operators)

 $V \mapsto \iint_{\mathbb{R} \times \mathbb{R}} f(s, t) U^{is} V^{it} ds dt$ (bounded operators generated by U, V)

• Non-simple root:

$$T_i(\mathbf{e}_j) := \mathbf{e}_{ij} := rac{q^{rac{1}{2}}\mathbf{e}_j\mathbf{e}_i - q^{-rac{1}{2}}\mathbf{e}_i\mathbf{e}_j}{q - q^{-1}}$$

Also positive self-adjoint in \mathcal{P}_{λ} !

• Continuous PBW basis:

$$\prod_{\alpha \in \Delta_+} E_{\alpha}^{k_{\alpha}} \leadsto \prod_{\alpha \in \Delta_+} \mathbf{e}_{\alpha}^{it_{\alpha}}$$

Ivan Ip (Kyoto University)

Positive Representations

May 1st, 2017

Multiplier Hopf Algebra

Drinfeld-Jimbo quantum groups in C^* -algebra!

Techniques from C^* -algebra and Non-Commutative Geometry:

- Multiplier Hopf algebra [van Daele]
- Locally compact quantum groups [Kustermans-Vaes]
- Multiplicative unitary W [Woronowicz]:

$$\Delta(x) = W(x \otimes 1)W^*, \quad x \in \mathcal{A}$$

• Gelfand-Naimark-Segal (GNS) representations

Theorem [Ip (2013)]

Peter-Weyl theorem:

$$L^2(SL_{q\widetilde{q}}^+(2,\mathbb{R})) \simeq \int_{\mathbb{R}_+}^{\oplus} \mathcal{P}_{\gamma} \otimes \mathcal{P}_{\gamma}^* d\mu(\gamma)$$

as regular $\mathcal{U}_{q\widetilde{q}}(\mathfrak{sl}(2,\mathbb{R}))$ representation. (GNS representation + Drinfeld Double + Hopf pairing)

Ivan Ip (Kyoto University)

Positive Representations

May 1st, 2017

25 / 42

Pirsa: 17050032 Page 20/40

Positive Casimirs

- Center of $\mathcal{U}(\mathfrak{sl}_2)$: $C = FE + \frac{1}{2}(H+1)$
- Center of $\mathcal{U}_q(\mathfrak{sl}_2)$: $C = FE + \left[\frac{1}{2}(H+1)\right]_q^2$

$$= FE + \frac{qK + q^{-1}K^{-1}}{(q - q^{-1})^2} + const$$

• Rescale by $(\frac{i}{q-q^{-1}})^2$:

$$C = \mathbf{fe} - qK - q^{-1}K^{-1}$$

• $C \curvearrowright \mathcal{P}_{\lambda}$ as positive scalar:

$$C = e^{2\pi b\lambda} + e^{-2\pi b\lambda} > 0$$

Spectral decomposition of $\Delta(C)$ on $\mathcal{P}_{\lambda} \otimes \mathcal{P}_{\mu}$

⇒ Tensor product decomposition!

Ivan Ip (Kyoto University)

Positive Representations

May 1st, 2017

Positive Casimirs

- Center of $\mathcal{U}(\mathfrak{sl}_2)$: $C = FE + \frac{1}{2}(H+1)$
- Center of $\mathcal{U}_q(\mathfrak{sl}_2)$: $C = FE + \left[\frac{1}{2}(H+1)\right]_q^2$

$$= FE + \frac{qK + q^{-1}K^{-1}}{(q - q^{-1})^2} + const$$

• Rescale by $(\frac{i}{q-q^{-1}})^2$:

$$C = \mathbf{fe} - qK - q^{-1}K^{-1}$$

• $C \curvearrowright \mathcal{P}_{\lambda}$ as positive scalar:

$$C = e^{2\pi b\lambda} + e^{-2\pi b\lambda} > 0$$

Spectral decomposition of $\Delta(C)$ on $\mathcal{P}_{\lambda} \otimes \mathcal{P}_{\mu}$

⇒ Tensor product decomposition!

4 D > 4 B > 4 E > 4 E > E 9 Q Q

Ivan Ip (Kyoto University)

Positive Representations

May 1st, 2017

Positive Casimirs

Center of $\mathcal{U}_q(\mathfrak{g})$ generated by $n = \text{rank } \mathfrak{g}$ Casimir elements

• [Zhang-Gould-Bracken]

$$C_k := (Tr_q|_{V_k})(R_{21}R), \qquad k = 1, ..., n$$

• $V_k = k$ th fundamental representation of $\mathcal{U}_q(\mathfrak{g})$

Theorem [Ip (2016)]

Each C_k acts on \mathcal{P}_{λ} as positive scalar $C_k(\overrightarrow{\lambda})$

$$C_k(\overrightarrow{\lambda}) = \sum_{V_k^{\mu} \subset V_k} e^{-4\pi b\mu(\overrightarrow{\lambda} \cdot \overrightarrow{W})} \ge \dim V_k$$

where $\mu = weight of V_k^{\mu}$, $\overrightarrow{W} = fundamental coweight$.

Idea: virtual highest weights \longleftrightarrow "analytic continuation" from $\mathcal{U}_q(\mathfrak{g})!$

Ivan Ip (Kyoto University)

Positive Representations

May 1st, 2017

Positive Casimirs

Center of $\mathcal{U}_q(\mathfrak{g})$ generated by $n = \text{rank } \mathfrak{g}$ Casimir elements

• [Zhang-Gould-Bracken]

$$C_k := (Tr_q|_{V_k})(R_{21}R), \qquad k = 1, ..., n$$

• $V_k = k$ th fundamental representation of $\mathcal{U}_q(\mathfrak{g})$

Theorem [Ip (2016)]

Each C_k acts on \mathcal{P}_{λ} as positive scalar $C_k(\overrightarrow{\lambda})$

$$C_k(\overrightarrow{\lambda}) = \sum_{V_k^{\mu} \subset V_k} e^{-4\pi b\mu(\overrightarrow{\lambda} \cdot \overrightarrow{W})} \ge \dim V_k$$

where $\mu = weight of V_k^{\mu}$, $\overrightarrow{W} = fundamental coweight$.

Idea: virtual highest weights \longleftrightarrow "analytic continuation" from $\mathcal{U}_q(\mathfrak{g})!$

Ivan Ip (Kyoto University)

Positive Representations

May 1st, 2017

Example: Type A_2

Center of $\mathcal{U}_q(\mathfrak{sl}_3)$ generated by C_1 and C_2 :

$$C_{1} = K_{1}^{\frac{1}{3}} K_{2}^{-\frac{1}{3}} (q^{-2} K_{1} K_{2} + K_{1}^{-1} K_{2} + q^{2} K_{1}^{-1} K_{2}^{-1} - q^{-1} K_{2} \mathbf{e}_{1} \mathbf{f}_{1} - q K_{1}^{-1} \mathbf{e}_{2} \mathbf{f}_{2} + \mathbf{e}_{21} \mathbf{f}_{12})$$

$$C_{2} = K_{1}^{-\frac{1}{3}} K_{2}^{\frac{1}{3}} (q^{-2} K_{1} K_{2} + K_{1} K_{2}^{-1} + q^{2} K_{1}^{-1} K_{2}^{-1} - q K_{2}^{-1} \mathbf{e}_{1} \mathbf{f}_{1} - q^{-1} K_{1} \mathbf{e}_{2} \mathbf{f}_{2} + \mathbf{e}_{12} \mathbf{f}_{21})$$

On \mathcal{P}_{λ} , each C_k reduced from 35 terms to positive scalar:

$$C_{1} \curvearrowright \mathcal{P}_{\lambda} = e^{\frac{8\pi b\lambda_{1}}{3} + \frac{4\pi b\lambda_{2}}{3}} + e^{-\frac{4\pi b\lambda_{1}}{3} + \frac{4\pi b\lambda_{2}}{3}} + e^{-\frac{4\pi b\lambda_{1}}{3} - \frac{8\pi b\lambda_{2}}{3}} \ge 3$$

$$C_{2} \curvearrowright \mathcal{P}_{\lambda} = e^{\frac{4\pi b\lambda_{1}}{3} + \frac{8\pi b\lambda_{2}}{3}} + e^{\frac{4\pi b\lambda_{1}}{3} - \frac{4\pi b\lambda_{2}}{3}} + e^{-\frac{8\pi b\lambda_{1}}{3} - \frac{4\pi b\lambda_{2}}{3}} \ge 3$$

Figure: Type A_2 Region

Ivan Ip (Kyoto University)

Positive Representations

May 1st, 2017

Example: Type A_2

Center of $\mathcal{U}_q(\mathfrak{sl}_3)$ generated by C_1 and C_2 :

$$C_{1} = K_{1}^{\frac{1}{3}} K_{2}^{-\frac{1}{3}} (q^{-2} K_{1} K_{2} + K_{1}^{-1} K_{2} + q^{2} K_{1}^{-1} K_{2}^{-1} - q^{-1} K_{2} \mathbf{e}_{1} \mathbf{f}_{1} - q K_{1}^{-1} \mathbf{e}_{2} \mathbf{f}_{2} + \mathbf{e}_{21} \mathbf{f}_{12})$$

$$C_{2} = K_{1}^{-\frac{1}{3}} K_{2}^{\frac{1}{3}} (q^{-2} K_{1} K_{2} + K_{1} K_{2}^{-1} + q^{2} K_{1}^{-1} K_{2}^{-1} - q K_{2}^{-1} \mathbf{e}_{1} \mathbf{f}_{1} - q^{-1} K_{1} \mathbf{e}_{2} \mathbf{f}_{2} + \mathbf{e}_{12} \mathbf{f}_{21})$$

On \mathcal{P}_{λ} , each C_k reduced from 35 terms to positive scalar:

$$C_{1} \curvearrowright \mathcal{P}_{\lambda} = e^{\frac{8\pi b\lambda_{1}}{3} + \frac{4\pi b\lambda_{2}}{3}} + e^{-\frac{4\pi b\lambda_{1}}{3} + \frac{4\pi b\lambda_{2}}{3}} + e^{-\frac{4\pi b\lambda_{1}}{3} - \frac{8\pi b\lambda_{2}}{3}} \ge 3$$

$$C_{2} \curvearrowright \mathcal{P}_{\lambda} = e^{\frac{4\pi b\lambda_{1}}{3} + \frac{8\pi b\lambda_{2}}{3}} + e^{\frac{4\pi b\lambda_{1}}{3} - \frac{4\pi b\lambda_{2}}{3}} + e^{-\frac{8\pi b\lambda_{1}}{3} - \frac{4\pi b\lambda_{2}}{3}} \ge 3$$

Figure: Type A_2 Region

Ivan Ip (Kyoto University)

Positive Representations

May 1st, 2017

Discriminant Variety

Region in \mathbb{R}^n defined by $\Phi: (\lambda_1, ..., \lambda_n) \mapsto (C_1(\overrightarrow{\lambda}), ..., C_n(\overrightarrow{\lambda}))$

- Singularity at $\Phi(0,...,0)$
- Boundary described by discriminant of some polynomial

Example of type A_2 :

• Boundary:

$$(XY+9)^2 = 4(X^3 + Y^3 + 27)$$

 $\iff \operatorname{Disc}_z(z^3 + Xz^2 + Yz + 1) = 0$

• Type A_2 singularity

Relation to simple (du Val) singularity theory?

Ivan Ip (Kyoto University)

Positive Representations

May 1st, 2017

Frenkel-Kim's Construction

Quantum Teichmüller Theory

Given S = surface with punctures

- \bullet \mathcal{T}_S = Teichmüller space with Weil-Petersson Poisson structure
- Mapping class group $MCG(S) \curvearrowright \mathcal{T}_S$
- Quantization \mathcal{T}_S^q represented on space of states $\mathbf{H} = \otimes_{\tau \in \Delta} \mathcal{H}$
- $g \in MCG(S) \leadsto \text{unitary operator } \rho(g) \curvearrowright \mathbf{H}$
- Goal: Projective unitary representations of MCG(S)

Remark

 $m{H} \simeq Space \ of \ conformal \ blocks \ in \ Liouville \ CFT$

Ivan Ip (Kyoto University)

Positive Representations

May 1st, 2017

30 / 42

Pirsa: 17050032

Frenkel-Kim's Construction

Quantum Teichmüller Theory

The pentagon equation for ${\bf T}$

Ivan Ip (Kyoto University)

Positive Representations

May 1st, 2017

Frenkel-Kim's Construction

Quantum Teichmüller Theory

Two main approaches based on triangulations of S:

- Kashaev's coordinate: (x, p) on each Δ \Longrightarrow Kashaev's groupid $\{\mathbf{T}_{jk}, \mathbf{A}_j\}_{j,k\in\Delta}$ associated to change of dotted ideal triangulations Δ
- Thurston's shear coordinate (Penner's lambda length) $\lambda_a, \lambda_b, \lambda_c$ on each edge \Longrightarrow Fock-Goncharov cluster varieties $\mathcal{X}_{PSL(2,\mathbb{R}),S}$

4 D > 4 P > 4 E > 4 E > E 999

Ivan Ip (Kyoto University)

Positive Representations

May 1st, 2017

Higher Rank Construction

Quantum plane = Borel part of $\mathcal{U}_{q\widetilde{q}}(\mathfrak{sl}(2,\mathbb{R}))!$

• Replace \mathcal{H} by $\mathcal{P}_{\lambda}^{\mathfrak{b}}$, the restriction of \mathcal{P}_{λ} from $\mathcal{U}_{q\widetilde{q}}(\mathfrak{g}_{\mathbb{R}})$ to $\mathcal{U}_{q\widetilde{q}}(\mathfrak{b}_{\mathbb{R}})$

Higher rank

• $\mathcal{P}^{\mathfrak{b}} := \mathcal{P}^{\mathfrak{b}}_{\lambda}$ does not depend on λ

Theorem

 $\mathcal{P}^{\mathfrak{b}}$ is closed under tensor product:

$$\mathcal{P}^{\mathfrak{b}} \otimes \mathcal{P}^{\mathfrak{b}} \simeq \mathcal{P}^{\mathfrak{b}} \otimes M$$

 \implies gives quantum mutation operators T.

(Ongoing) Construct Kashaev's A operators by dual representations.

- ⇒ Candidate for quantum higher Teichmüller theory
- \implies New projective unitary representations of MCG(S).
- (?) Relation to Fock-Goncharov's cluster varieties

<ロト <問 > < 意 > < 意 > ・ 意 ● 9 9 G

Ivan Ip (Kyoto University)

Positive Representations

May 1st, 2017

Higher Rank Construction

Quantum plane = Borel part of $\mathcal{U}_{q\widetilde{q}}(\mathfrak{sl}(2,\mathbb{R}))!$

• Replace \mathcal{H} by $\mathcal{P}_{\lambda}^{\mathfrak{b}}$, the restriction of \mathcal{P}_{λ} from $\mathcal{U}_{q\widetilde{q}}(\mathfrak{g}_{\mathbb{R}})$ to $\mathcal{U}_{q\widetilde{q}}(\mathfrak{b}_{\mathbb{R}})$

Higher rank

• $\mathcal{P}^{\mathfrak{b}} := \mathcal{P}^{\mathfrak{b}}_{\lambda}$ does not depend on λ

Theorem

 $\mathcal{P}^{\mathfrak{b}}$ is closed under tensor product:

$$\mathcal{P}^{\mathfrak{b}} \otimes \mathcal{P}^{\mathfrak{b}} \simeq \mathcal{P}^{\mathfrak{b}} \otimes M$$

 \implies gives quantum mutation operators T.

(Ongoing) Construct Kashaev's A operators by dual representations.

- ⇒ Candidate for quantum higher Teichmüller theory
- \implies New projective unitary representations of MCG(S).
- (?) Relation to Fock-Goncharov's cluster varieties

<ロト <問 > < 意 > < 意 > ・ 意 ● 9 9 G

Ivan Ip (Kyoto University)

Positive Representations

May 1st, 2017

Higher rank

Cluster realization of $\mathcal{U}_q(\mathfrak{g})$

- Teichmüller theory \longleftrightarrow "Moduli space of $PSL(2,\mathbb{R})$ -local system"
- "Higher Teichmüller theory" \longleftrightarrow "Moduli space of G-local system"

Fock-Goncharov's cluster varieties $\mathcal{X}_{G,S}$ on surface S

- Poisson structure on $\mathcal{X}_{G,S}$: described by quivers on Δ
- \rightsquigarrow Quantum torus algebra $\mathcal{X}_{G,S}^q$

Example

 $\mathcal{X}^q_{\mathfrak{sl}_4,\Delta}$ -quiver:

Ivan Ip (Kyoto University)

Positive Representations

May 1st, 2017

Higher rank

Cluster realization of $\mathcal{U}_q(\mathfrak{g})$

Positive Representations \Longrightarrow

Theorem [Schrader-Shapiro, Ip (2016)]

There is embedding for \mathfrak{g} of any simple type:

$$\mathcal{U}_q(\mathfrak{g})\hookrightarrow \mathcal{X}^q_{G,S}/\sim$$

 $S = disk \ with \ 1 \ puncture \ and \ 2 \ marked \ points$

Theorem [Schrader-Shapiro, Ip (2016)]

 $Universal\ R\ matrix \longleftrightarrow Quiver\ mutations\ giving\ half-Dehn\ twist$

Ivan Ip (Kyoto University)

Positive Representations

May 1st, 2017

Higher rank

The quantum cluster algebra $\mathcal{X}^q_{\mathfrak{sl}_4,S}$:

Pirsa: 17050032 Page 35/40

The quantum cluster algebra $\mathcal{X}^q_{\mathfrak{sl}_4,S}$:

Higher rank

Embedding of $F_i \in \mathcal{U}_q(\mathfrak{sl}_4) \longrightarrow \mathcal{X}^q_{\mathfrak{sl}_4,S}$ [Schrader-Shapiro (2016)]

Ivan Ip (Kyoto University)

Positive Representations

May 1st, 2017

Pirsa: 17050032 Page 37/40

Superalgebra

Modular Double of $\mathcal{U}_q(\mathfrak{osp}(1|2))$

 $Cl_2 =$ Clifford algebra $\langle \xi, \eta \rangle$ such that

$$\xi^2 = \eta^2 = 1, \qquad \eta \xi + \xi \eta = 1$$

Spinor trick: $Rep(\mathcal{U}_q(\mathfrak{sl}(2,\mathbb{R})) \longrightarrow Rep(\mathcal{U}_q(\mathfrak{osp}(1|2)))$

Theorem [Ip-Zeitlin (2013)]

Let $q_* = iq$. Given a representation of $\mathcal{U}_{q_*}(\mathfrak{sl}(2,\mathbb{R}))$, there exists a representation of $\mathcal{U}_q(\mathfrak{osp}(1|2)) = \langle \mathcal{E}, \mathcal{F}, \mathcal{K}^{\pm 1} \rangle$ by

$$\mathcal{E} = \alpha E \xi, \qquad \mathcal{F} = F \eta, \qquad \mathcal{K} = K i \eta \xi$$

where $\alpha = i \frac{q + q^{-1}}{q - q^{-1}} > 0$.

In particular, induces Modular Double structure:

$$\mathcal{U}_{q_*,\widetilde{q_*}}(\mathfrak{sl}(2,\mathbb{R})) \Longrightarrow \mathcal{U}_{q, au(q)}(\mathfrak{osp}(1|2)), \qquad au(q) = -i\widetilde{q_*}$$

(□) (□) (Ξ) (Ξ) (Ξ) (Ξ) (Ω(

Ivan Ip (Kyoto University)

Positive Representations

May 1st, 2017

Pirsa: 17050032 Page 39/40

Pirsa: 17050032