Title: Perturbative BV-BFV theories on manifolds with boundary Part 2

Date: May 09, 2017 09:00 AM

URL: http://pirsa.org/17050017

Abstract:

Pirsa: 17050017

The polarization

- Assume we have an involutive Lagrangian distribution \mathcal{P} on \mathcal{F}^{∂} , called a polarization, such that the restriction of α^{∂} to its leaves is zero. We may use gauge transformations to adapt α^{∂} .
- For simplicity we assume $\mathcal{B} := \mathcal{F}^{\partial}/\mathcal{P}$ to be smooth.
- The crucial assumption now is that we have a splitting

 $\mathcal{I} = \mathcal{Y} \times \mathcal{B}$

such that the BV form ω only has components along \Im and is constant on \Im . (A splitting is always possible locally; the crucial condition is on ω .)

Remark

In the infinite dimensional case (e.g., in field theory), it is possible to have a nondegenerate ω with this property. In the finite-dimensional case (e.g., in a discretized field theory), ω is then necessarily degenerate, but we still require it to be nondegenerate on \mathcal{Y} , which is enough to define BV integration.

Pirsa: 17050017 Page 2/65

Pirsa: 17050017 Page 3/65

Pirsa: 17050017 Page 4/65

Pirsa: 17050017 Page 5/65

Pirsa: 17050017 Page 6/65

Pirsa: 17050017 Page 7/65

Pirsa: 17050017

The polarization

- Assume we have an involutive Lagrangian distribution \mathcal{P} on \mathcal{F}^{∂} , called a polarization, such that the restriction of α^{∂} to its leaves is zero. We may use gauge transformations to adapt α^{∂} .
- For simplicity we assume $\mathcal{B} := \mathcal{F}^{\partial}/\mathcal{P}$ to be smooth.
- The crucial assumption now is that we have a splitting

$$\mathcal{F} = \mathcal{Y} \times \mathcal{B}$$

such that the BV form ω only has components along \mathcal{Y} and is constant on \mathcal{B} . (A splitting is always possible locally; the crucial condition is on ω .)

Remark

In the infinite dimensional case (e.g., in field theory), it is possible to have a nondegenerate ω with this property. In the finite-dimensional case (e.g., in a discretized field theory), ω is then necessarily degenerate, but we still require it to be nondegenerate on y, which is enough to define BV integration.

Pirsa: 17050017 Page 9/65

Pirsa: 17050017 Page 10/65

Pirsa: 17050017

Pirsa: 17050017

The modified quantum master equation I

Using the splitting, we rewrite the mCME as (we no longer write π^*)

$$\delta_{\mathcal{Y}}\mathcal{S} = \iota_{oldsymbol{Q}_{\mathcal{Y}}}\omega$$

$$\delta_{\mathcal{B}} \mathbf{S} = -\alpha^{\partial}$$

The two equations imply

$$\frac{1}{2}(S,S)_{\mathbb{N}} = \frac{1}{2}\iota_{Q_{\mathbb{N}}}\iota_{Q_{\mathbb{N}}}\omega = S^{\partial}$$
 (*)

Now assume we have adapted Darboux coordinates (b, p) on \mathfrak{F}^{∂} with b on \mathfrak{B} , p on the leaves and $\alpha^{\partial} = -\sum p\,\delta b$. Then the second equation implies

$$\frac{\delta S}{\delta b} - p$$
 (**)

This means that, in this splitting, S is linear in the b's

Pirsa: 17050017 Page 13/65

The modified quantum master equation I

Using the splitting, we rewrite the mCME as (we no longer write π^*)

$$\delta_{\mathcal{Y}}\mathcal{S} = \iota_{oldsymbol{Q}_{\mathcal{Y}}}\omega$$

$$\delta_{\mathcal{B}} \mathcal{S} = -\alpha^{\partial}$$

The two equations imply

$$\frac{1}{2}(S,S)_{y} = \frac{1}{2}\iota_{Q_{y}}\iota_{Q_{y}}\omega = S^{\partial}$$
 (*)

Now assume we have adapted Darboux coordinates (b, p) on \mathfrak{F}^{∂} with b on \mathfrak{B} , p on the leaves and $\alpha^{\partial} = -\sum p\,\delta b$. Then the second equation implies

$$\frac{\delta S}{\delta b} - \rho$$
 (**)

This means that, in this splitting, S is linear in the b's.

Pirsa: 17050017 Page 14/65

The modified quantum master equation I

Using the splitting, we rewrite the mCME as (we no longer write π^*)

$$\delta_{\mathcal{Y}} \mathcal{S} = \iota_{Q_{\mathcal{Y}}} \omega$$

$$\delta_{\mathcal{B}} \mathcal{S} = -\alpha^{\partial}$$

The two equations imply

$$\frac{1}{2}(S,S)_{\vartheta} = \frac{1}{2}\iota_{Q_{\vartheta}}\iota_{Q_{\vartheta}}\omega = S^{\partial}$$
 (*)

Now assume we have adapted Darboux coordinates (b, p) on \mathcal{F}^{∂} with b on \mathcal{B} , p on the leaves and $\alpha^{\partial} = -\sum p\,\delta b$. Then the second equation implies

$$\frac{\delta S}{\delta b} = p \qquad (**)$$

This means that, in this splitting, S is linear in the b's.

Pirsa: 17050017 Page 15/65

Pirsa: 17050017 Page 16/65

Pirsa: 17050017

The modified quantum master equation II

We now assume that S also solves the equation

$$\Delta_{\mathcal{Y}}S=0$$

Remark

Without boundary this means that we assume that S solves both the classical and the quantum master equation. With boundary, Δ makes sense only on the \mathcal{Y} -factor. We will return on this.

We then have

$$\Delta y e^{\frac{i}{\hbar}S} = \left(\frac{i}{\hbar}\right)^2 \frac{1}{2}(S, S) y e^{\frac{i}{\hbar}S}$$

and equation (*) implies

$$-h^2 \Delta_{\mathcal{Y}} e^{\frac{i}{h}S} = S^{\partial} e^{\frac{i}{h}S} \qquad (\dagger)$$

Pirsa: 17050017 Page 18/65

The modified quantum master equation II

We now assume that S also solves the equation

$$\Delta_{y}S = 0$$

Remark

Without boundary this means that we assume that S solves both the classical and the quantum master equation. With boundary, Δ makes sense only on the \mathcal{Y} -factor. We will return on this.

We then have

$$\Delta_{\mathcal{Y}} \mathrm{e}^{rac{\mathrm{i}}{\hbar}\mathcal{S}} = \left(rac{\mathrm{i}}{\hbar}
ight)^2 rac{1}{2} (\mathcal{S},\mathcal{S})_{\mathcal{Y}} \, \mathrm{e}^{rac{\mathrm{i}}{\hbar}\mathcal{S}}$$

and equation (*) implies

$$-\hbar^2 \Delta_{\mathcal{Y}} e^{\frac{i}{\hbar}S} = S^{\partial} e^{\frac{i}{\hbar}S} \qquad (\dagger)$$

Pirsa: 17050017 Page 19/65

The modified quantum master equation II

We now assume that S also solves the equation

$$\Delta_{y}S = 0$$

Remark

Without boundary this means that we assume that S solves both the classical and the quantum master equation. With boundary, Δ makes sense only on the \mathcal{Y} -factor. We will return on this.

We then have

$$\Delta_{\mathcal{Y}} \mathrm{e}^{rac{\mathrm{i}}{\hbar}\mathcal{S}} = \left(rac{\mathrm{i}}{\hbar}
ight)^2 rac{1}{2} (\mathcal{S},\mathcal{S})_{\mathcal{Y}} \, \mathrm{e}^{rac{\mathrm{i}}{\hbar}\mathcal{S}}$$

and equation (*) implies

$$-\hbar^2 \Delta_{\mathcal{Y}} e^{\frac{i}{\hbar}S} = S^{\partial} e^{\frac{i}{\hbar}S} \qquad (\dagger)$$

Pirsa: 17050017 Page 20/65

Pirsa: 17050017 Page 21/65

The modified quantum master equation III

We now move to the quantization. We take \mathcal{H} to be an appropriate space of functions on \mathcal{B} .

Equation (**) essentially says that

$$\hat{p}S = -\mathrm{i}\hbar p$$
 with $\hat{p} = -\mathrm{i}\hbar \frac{\delta}{\delta b}$

Remark

Here S is an element of \mathcal{H} parametrized by \mathcal{Y} . The p appearing in the equation is now an element of \mathcal{Y} .

If we quantize S^{∂} by the Schrödinger prescription

$$\Omega := \mathcal{S}^{\partial} \left(oldsymbol{b}, -\mathrm{i} \hbar rac{\delta}{\delta oldsymbol{b}}
ight)$$

with all derivatives placed to the right, we get

$$\Omega e^{\frac{i}{\hbar}S} = S^{\partial} e^{\frac{i}{\hbar}S} \qquad (\ddagger)$$

Pirsa: 17050017 Page 22/65

The modified quantum master equation III

We now move to the quantization. We take \mathcal{H} to be an appropriate space of functions on \mathcal{B} .

Equation (**) essentially says that

$$\hat{m{p}}m{S} = -\mathrm{i}\hbarm{p}$$
 with $\hat{m{p}} = -\mathrm{i}\hbarrac{\delta}{\deltam{b}}$

Remark

Here S is an element of \mathcal{H} parametrized by \mathcal{Y} . The p appearing in the equation is now an element of \mathcal{Y} .

If we quantize S^{∂} by the Schrödinger prescription

$$\Omega := \mathcal{S}^{\partial} \left(extbf{\emph{b}}, -\mathrm{i} \hbar rac{\delta}{\delta extbf{\emph{b}}}
ight)$$

with all derivatives placed to the right, we get

$$\Omega e^{\frac{i}{\hbar}S} = S^{\partial} e^{\frac{i}{\hbar}S} \qquad (\dagger)$$

Pirsa: 17050017 Page 23/65

The modified quantum master equation IV

Putting (†) and (‡) together we finally get the modified quantum master equation (mQME)

$$(\hbar^2 \Delta_{\mathcal{Y}} + \Omega) e^{\frac{i}{\hbar}S} = 0$$

Remark

The assumption $\Delta_{y}S = 0$ is not really necessary (and is often not justified). More generally, we have

$$\Delta_{\mathbb{Y}} \mathrm{e}^{rac{\mathrm{i}}{\hbar}S} = \left(\left(rac{\mathrm{i}}{\hbar}
ight) \Delta_{\mathbb{Y}}S + \left(rac{\mathrm{i}}{\hbar}
ight)^2 rac{1}{2}(S,S)_{\mathbb{Y}}
ight) \mathrm{e}^{rac{\mathrm{i}}{\hbar}S}$$

If we define

$$\mathcal{S}_{\hbar}^{\partial}:=rac{1}{2}(\mathcal{S},\mathcal{S})_{rac{\lambda}{2}}-\mathrm{i}\hbar\Delta_{rac{\lambda}{2}}\mathcal{S}=\mathcal{S}^{\partial}+\mathcal{O}(\hbar)$$

and Ω as the Schrödinger quantization of S_{\hbar}^{∂} , we recover the mQME

Pirsa: 17050017 Page 24/65

The modified quantum master equation IV

Putting (†) and (‡) together we finally get the modified quantum master equation (mQME)

$$(\hbar^2 \Delta_{\mathcal{Y}} + \Omega) e^{\frac{i}{\hbar}S} = 0$$

Remark

The assumption $\Delta_{\vartheta}S = 0$ is not really necessary (and is often not justified). More generally, we have

$$\Delta_{\mathcal{Y}} \mathrm{e}^{rac{\mathrm{i}}{\hbar}\mathcal{S}} = \left(\left(rac{\mathrm{i}}{\hbar}
ight) \Delta_{\mathcal{Y}} \mathcal{S} + \left(rac{\mathrm{i}}{\hbar}
ight)^2 rac{1}{2} (\mathcal{S},\mathcal{S})_{\mathcal{Y}}
ight) \mathrm{e}^{rac{\mathrm{i}}{\hbar}\mathcal{S}}$$

If we define

$$S_{\hbar}^{\partial}:=rac{1}{2}(S,S)_{rac{\lambda}{2}}-\mathrm{i}\hbar\Delta_{rac{\lambda}{2}}S=S^{\partial}+O(\hbar)$$

and Ω as the Schrödinger quantization of S_{\hbar}^{∂} , we recover the mQME.

Pirsa: 17050017 Page 25/65

Pirsa: 17050017

The modified quantum master equation V

By construction we have

$$\Delta_{y}^{2}=0 \qquad [\Delta_{y},\Omega]=0$$

The operator

$$\Omega_{y} := \hbar^{2} \Delta_{y} + \Omega$$

appearing in the mQME then squares to zero iff

$$\Omega^2 = 0$$

The existence of a splitting such that this holds is a fundamental condition (absence of anomalies) which allows passing to the Ω_{ϑ} -cohomology. Cohomology in degree zero describes ϑ -parametrized physical states.

Pirsa: 17050017 Page 27/65

Pirsa: 17050017 Page 28/65

Pirsa: 17050017 Page 29/65

The quantum state

Assume the mQME

$$\Omega_{\mathcal{Y}}e^{rac{i}{\hbar}\mathcal{S}}=0$$

- Suppose $y = y' \times y''$ (possibly y' a point).
- Pick a Lagrangian submanifold L of y".
- Define

$$\psi:=\int_{\mathcal{L}}\mathrm{e}^{rac{\mathrm{i}}{\hbar}\mathcal{S}}\in\mathcal{H}\otimes\mathcal{C}^{\infty}(\mathcal{Y}')$$

- Then
 - We have the induced mQME

$$\Omega_{\rm W}\psi=0$$

- Ohanging the "gauge fixing" \mathcal{L} changes ψ by an $\Omega_{y'}$ -exact term.
- Hence ψ defines a $\Omega_{\mathcal{Y}'}$ -cohomology class (of degree 0).
- We might iterate this procedure ("Wilson renormalization with boundary") and eventually arrive at \mathcal{Y}' a point. In this case, ψ will be an Ω -cohomology class of degree zero on \mathcal{H} : a physical state.

Pirsa: 17050017 Page 30/65

Pirsa: 17050017 Page 31/65

The quantum state

Assume the mQME

$$\Omega_{\mathcal{Y}}e^{rac{i}{\hbar}\mathcal{S}}=0$$

- Suppose $y = y' \times y''$ (possibly y' a point).
- Pick a Lagrangian submanifold L of y".
- Define

$$\psi:=\int_{\mathcal{L}}\mathrm{e}^{rac{\mathrm{i}}{\hbar}\mathcal{S}}\in\mathcal{H}\otimes\mathcal{C}^{\infty}(\mathcal{Y}')$$

- Then
 - We have the induced mQME

$$\Omega_{\mathtt{y}'}\psi=\mathbf{0}$$

- **2** Changing the "gauge fixing" \mathcal{L} changes ψ by an $\Omega_{y'}$ -exact term.
- Hence ψ defines a $\Omega_{y'}$ -cohomology class (of degree 0).
- We might iterate this procedure ("Wilson renormalization with boundary") and eventually arrive at \mathcal{Y}' a point. In this case, ψ will be an Ω -cohomology class of degree zero on \mathcal{H} : a physical state.

Pirsa: 17050017 Page 32/65

Axiomatics

Introduction

- To each (d-1)-manifold Σ we associate a complex $(\mathcal{H}_{\Sigma}, \Omega_{\Sigma})$.
- To each d-manifold M we as associate a state ψ_M satisfying the mQME.
- Plus functorial properties.

In particular, gluing is given by pairing states and doing a BV-pushforward

$$\mathfrak{P}'_{M_1}\times\mathfrak{P}'_{M_2}\to\mathfrak{P}'_{M_1\cup_{\Sigma}M_2}$$

This could provide some new insight for physical theories. In TFTs it yields a perturbative version of Atiyah's axioms.

The full power of this approach is as follows:

- Cut the original manifold M into topologically simple or metrically tiny pieces
- Do the perturbative quantization on the pieces
- Glue and reduce

Pirsa: 17050017 Page 33/65

Pirsa: 17050017 Page 34/65

Pirsa: 17050017 Page 35/65

Pirsa: 17050017 Page 36/65

Pirsa: 17050017 Page 37/65

Pirsa: 17050017 Page 38/65

Pirsa: 17050017 Page 39/65

Pirsa: 17050017 Page 40/65

Pirsa: 17050017 Page 41/65

Pirsa: 17050017 Page 42/65

Examples

Axiomatics

Introduction

- To each (d-1)-manifold Σ we associate a complex $(\mathcal{H}_{\Sigma}, \Omega_{\Sigma})$.
- To each d-manifold M we as associate a state ψ_M satisfying the mQME.
- Plus functorial properties.
 In particular, gluing is given by pairing states and doing a BV-pushforward

$$\mathcal{Y}'_{M_1} \times \mathcal{Y}'_{M_2} \rightarrow \mathcal{Y}'_{M_1 \cup_{\Sigma} M_2}$$

This could provide some new insight for physical theories. In TFTs it yields a perturbative version of Atiyah's axioms.

The full power of this approach is as follows:

- Cut the original manifold M into topologically simple or metrically tiny pieces
- On the perturbative quantization on the pieces
- Glue and reduce

Pirsa: 17050017 Page 43/65

Abelian BF theories: The classical and the BV formalism

Fix a dimension d. Then, for a d-manifold M, one defines

$$F_M = \Omega^1(M) \oplus \Omega^{d-2}(M) \ni (A_1, B_{d-2})$$

and

$$S_M^0 = \int_M B_{d-2} \, \mathrm{d}A$$

In the BV version

$$\mathcal{F}_M = \Omega^{\bullet}(M)[1] \oplus \Omega^{\bullet}(M)[d-2] \ni (A,B)$$

and

$$S_M = \int_M B \, dA$$

The convention means that

$$A = \sum_{i=0}^d A_i, \qquad B = \sum_{i=0}^d B_i$$

with A_i an i-form of ghost number 1 - i, and B_i an i-form of ghost number d - 2 - i. (This theory contains "ghosts for ghosts" if d > 3.)

Pirsa: 17050017 Page 44/65

Abelian BF theories: The classical and the BV formalism

Fix a dimension d. Then, for a d-manifold M, one defines

$$F_M = \Omega^1(M) \oplus \Omega^{d-2}(M) \ni (A_1, B_{d-2})$$

and

$$S_M^0 = \int_M B_{d-2} \, \mathrm{d}A_1$$

In the BV version

$$\mathcal{F}_M = \Omega^{\bullet}(M)[1] \oplus \Omega^{\bullet}(M)[d-2] \ni (A,B)$$

and

$$S_M = \int_M \mathsf{B} \, \mathrm{d} \mathsf{A}$$

The convention means that

$$A = \sum_{i=0}^d A_i, \qquad B = \sum_{i=0}^d B_i$$

with A_i an i-form of ghost number 1 - i, and B_i an i-form of ghost number d - 2 - i. (This theory contains "ghosts for ghosts" if d > 3.)

Pirsa: 17050017 Page 45/65

The quantum BV-BFV formalism

Abelian BF theories

Abelian BF theories: The classical and the BV formalism

Fix a dimension d. Then, for a d-manifold M, one defines

$$F_M = \Omega^1(M) \oplus \Omega^{d-2}(M) \ni (A_1, B_{d-2})$$

and

$$S_M^0 = \int_M B_{d-2} \, \mathrm{d}A_1$$

In the BV version

$$\mathcal{F}_{M} = \Omega^{\bullet}(M)[1] \oplus \Omega^{\bullet}(M)[d-2] \ni (A,B)$$

and

$$S_M = \int_M \mathsf{B} \, \mathrm{d} \mathsf{A}$$

The convention means that

$$A = \sum_{i=0}^d A_i, \qquad B = \sum_{i=0}^d B_i$$

with A_i an i-form of ghost number 1 - i, and B_i an i-form of ghost number d - 2 - i. (This theory contains "ghosts for ghosts" if d > 3.)

Pirsa: 17050017 Page 46/65

The BV-BFV structure

We have

$$Q_{M} = (-1)^{d} \int_{M} dB \frac{\delta}{\delta B} + dA \frac{\delta}{\delta A}$$

$$\mathcal{F}_{\partial M}^{\partial} = \Omega^{\bullet}(\partial M)[1] \oplus \Omega^{\bullet}(\partial M)[d-2] \ni (A, B)$$

$$\alpha_{\partial M}^{\partial} = (-1)^{d} \int_{\partial M} B \delta A$$

$$Q_{\partial M}^{\partial} = (-1)^{d} \int_{\partial M} dB \frac{\delta}{\delta B} + dA \frac{\delta}{\delta A}$$

$$S_{\partial M}^{\partial} = \int_{\partial M} B dA$$

Pirsa: 17050017 Page 47/65

Introduction The BV formalism The BV-BFV formalism The quantum BV-BFV formalism Examples

O○●○○○○○

Abelian BF theories

The polarization

- Write ∂M as a disjoint union $\partial_1 M \cup \partial_2 M$ (possibly empty).
- Choose the polarization \mathcal{P} given by the $\frac{\delta}{\delta B}$ -distribution on $\partial_1 M$ and by the $\frac{\delta}{\delta A}$ -distribution on $\partial_2 M$.
- To make this compatible with the boundary 1-form we make the gauge transformation generated by $f = (-1)^{d-1} \int_{\partial_2 M} BA$

$$lpha_{\partial M}^{\partial} \mapsto (-1)^d \int_{\partial_1 M} \mathsf{B} \, \delta \mathsf{A} - \int_{\partial_2 M} \delta \mathsf{B} \, \mathsf{A}$$
 $S_M \mapsto \int_M \mathsf{B} \, \mathsf{d} \mathsf{A} + (-1)^{d-1} \int_{\partial_2 M} \mathsf{B} \mathsf{A}$

We then have

$$\mathcal{B} = \Omega^{\bullet}(\frac{\partial_1 M}{\partial_1})[1] \oplus \Omega^{\bullet}(\frac{\partial_2 M}{\partial_2})[d-2] \ni (\mathbb{A}, \mathbb{B})$$

Pirsa: 17050017 Page 48/65

Pirsa: 17050017 Page 49/65

Pirsa: 17050017 Page 50/65

The splitting

We write

$$A = A + \hat{A},$$
 $B = B + \hat{B},$

where \mathbb{A} and \mathbb{B} now denote the extension by zero of \mathbb{A} and \mathbb{B} to the bulk, and \hat{A} and \hat{B} are the coordinates of \mathbb{A} ("the fluctuations").

- By construction, the restriction of \hat{A} to $\partial_1 M$ vanishes, and the restriction of \hat{B} to $\partial_2 M$ vanishes.
- After appropriately integrating by parts in order to avoid deriving the discontinuous fields A and B, we get

$$S_M = \int_M \hat{\mathsf{B}} \, \mathrm{d}\hat{\mathsf{A}} + (-1)^{d-1} \left(\int_{\partial_2 M} \mathbb{B} \hat{\mathsf{A}} - \int_{\partial_1 M} \hat{\mathsf{B}} \mathbb{A} \right)$$

This is now a Gaussian theory in \hat{A} and \hat{B} and linear sources on the boundary coupled to A and B. To "invert" d we have to separate cohomology and to fix the gauge.

Pirsa: 17050017 Page 51/65

The splitting

We write

$$A = A + \hat{A},$$
 $B = B + \hat{B},$

where \mathbb{A} and \mathbb{B} now denote the extension by zero of \mathbb{A} and \mathbb{B} to the bulk, and \hat{A} and \hat{B} are the coordinates of \mathcal{Y} ("the fluctuations").

- By construction, the restriction of \hat{A} to $\partial_1 M$ vanishes, and the restriction of \hat{B} to $\partial_2 M$ vanishes.
- After appropriately integrating by parts in order to avoid deriving the discontinuous fields \mathbb{A} and \mathbb{B} , we get

$$S_M = \int_M \hat{\mathsf{B}} \, \mathrm{d}\hat{\mathsf{A}} + (-1)^{d-1} \left(\int_{\partial_2 M} \mathbb{B} \hat{\mathsf{A}} - \int_{\partial_1 M} \hat{\mathsf{B}} \mathbb{A} \right)$$

This is now a Gaussian theory in \hat{A} and \hat{B} and linear sources on the boundary coupled to A and B. To "invert" d we have to separate cohomology and to fix the gauge.

Pirsa: 17050017 Page 52/65

The BV-BFV formalism

The quantum BV-BFV formalism

Examples

Abelian BF theories

Residual fields and gauge fixing

For this final step we choose a metric on M and write

$$\hat{\mathbf{A}} = \mathbf{a} + \alpha$$

$$\hat{B} = b + \beta$$

with a and b harmonic forms (with the appropriate boundary conditions) and α , β in the orthogonal complement:

$$(\mathsf{a},\mathsf{b})\in \mathcal{Y}'\simeq H^\bullet(M,\partial_1M)[1]\oplus H^\bullet(M,\partial_2M)[d-2],\quad (\alpha,\beta)\in \mathcal{Y}''=(\mathcal{Y}')^\perp$$

Notice that \mathcal{Y}' is a finite dimensional odd symplectic space (by pairing in cohomology).

As a gauge fixing we may choose $\mathcal{L} = \{ \operatorname{Im} d^* : \mathcal{Y}'' \to \mathcal{Y}'' \}.$

Remark: For the above to work, one has to assume the metric to be of a product form near the boundary.

Pirsa: 17050017 Page 53/65

Introduction The BV formalism

The BV-BFV formalism

The quantum BV-BFV formalism

Examples

Abelian BF theories

Residual fields and gauge fixing

For this final step we choose a metric on M and write

$$\hat{\mathbf{A}} = \mathbf{a} + \alpha$$

$$\hat{B} = b + \beta$$

with a and b harmonic forms (with the appropriate boundary conditions) and α , β in the orthogonal complement:

$$(\mathsf{a},\mathsf{b})\in \mathcal{Y}'\simeq H^\bullet(M,\partial_1M)[1]\oplus H^\bullet(M,\partial_2M)[d-2],\quad (\alpha,\beta)\in \mathcal{Y}''=(\mathcal{Y}')^\perp$$

Notice that \mathcal{Y}' is a finite dimensional odd symplectic space (by pairing in cohomology).

As a gauge fixing we may choose $\mathcal{L} = \{ \operatorname{Im} d^* : \mathcal{Y}'' \to \mathcal{Y}'' \}.$

Remark: For the above to work, one has to assume the metric to be of a product form near the boundary.

Pirsa: 17050017 Page 54/65

With the above choices, the state of abelian BF theory reads

$$\psi_{M} = T_{M} e^{\frac{i}{\hbar} S_{M}^{\text{eff}}}$$

where:

• $T_M = \xi \tau(M, \partial_1 M) = \xi \tau(M, \partial_2 M)$ with ξ a phase (which can be computed, e.g., by discretizing) and τ the Reidemeister torsion

2 $S_M^{\text{eff}} = (-1)^{d-1} \left(\int_{\partial_2 M} \mathbb{B} \mathbf{a} - \int_{\partial_1 M} \mathbf{b} \mathbb{A} \right) - \int_{\partial_2 M \times \partial_1 M} \pi_1^* \mathbb{B} \, \eta \, \pi_2^* \mathbb{A}$ where η is the propagator.

• It is not difficult to chek that ψ_M is Ω_Y -closed.

 Gluing along common boundaries works as a result of gluing formulae for torsion and Mayer–Vietoris.

Pirsa: 17050017 Page 55/65

With the above choices, the state of abelian BF theory reads

$$\psi_{M} = T_{M} e^{\frac{i}{\hbar} S_{M}^{\text{eff}}}$$

where:

• $T_M = \xi \tau(M, \partial_1 M) = \xi \tau(M, \partial_2 M)$ with ξ a phase (which can be computed, e.g., by discretizing) and τ the Reidemeister torsion

② $S_M^{\text{eff}} = (-1)^{d-1} \left(\int_{\partial_2 M} \mathbb{B} \mathbf{a} - \int_{\partial_1 M} \mathbf{b} \mathbb{A} \right) - \int_{\partial_2 M \times \partial_1 M} \pi_1^* \mathbb{B} \, \eta \, \pi_2^* \mathbb{A}$ where η is the propagator.

• It is not difficult to chek that ψ_M is Ω_y -closed.

 Gluing along common boundaries works as a result of gluing formulae for torsion and Mayer-Vietoris.

Pirsa: 17050017 Page 56/65

Pirsa: 17050017 Page 57/65

Pirsa: 17050017 Page 58/65

Gluing for propagators

The propagator for a glued manifold can be obtained from the propagators and the 1-point functions of the components.

$$\begin{vmatrix} 2 \\ 1 \end{vmatrix} = \begin{vmatrix} 2 \\ 1 \end{vmatrix} + \begin{vmatrix} 2 \\ 1 \end{vmatrix}$$

$$\begin{vmatrix} 2 \\ 1 \end{vmatrix} = \begin{vmatrix} 2 \\ 1 \end{vmatrix} + \begin{vmatrix} 2 \\ 1 \end{vmatrix}$$

$$\begin{array}{c|c} 2 & -2 \\ 1 & 1 \end{array}$$

Other examples

More on BF

 One can extend the previous construction to non-abelian BF theory:

$$S_M^0 = \int_M \left\langle B, \, \mathrm{d}A + rac{1}{2}[A,A]
ight
angle, \qquad A \in \Omega(M,\mathfrak{g}), \; B \in \Omega(M,\mathfrak{g}^*)$$

In perturbation theory we get

Figure: $\frac{\delta}{\delta B}$ -polarization on the left and $\frac{\delta}{\delta A}$ -polarization on the right

 One can also define an exact, discretized version of (non-abelian) BF theory.

- By perturbing BF theory, one can extend the above construction to other theories like
 - Quantum mechanics
 - Split Chern-Simons theory
 - Poisson sigma model
 - 2D Yang–Mills theory
- Other theories like scalar field, spinor field, Yang–Mills can be treated alike (but one has to take renormalization into account).
- GR (in the Einstein-Hilbert formulation) has a nice classical BV-BFV description if we restrict to metrics that do not have light like directions on the boundary.

Pirsa: 17050017 Page 61/65

Introduction The BV formalism The BV-BFV formalism The quantum BV-BFV formalism Examples Other examples Perturbation of BF theory • By perturbing *BF* theory, one can extend the above construction to other theories like Quantum mechanics Split Chern—Simons theory Poisson sigma model 2D Yang-Mills theory Other theories like scalar field, spinor field, Yang–Mills can be treated alike (but one has to take renormalization into account). • GR (in the Einstein-Hilbert formulation) has a nice classical BV-BFV description if we restrict to metrics that do not have light like directions on the boundary.

Pirsa: 17050017 Page 62/65

Main references:

- A. S. Cattaneo, P. Mnëv and N. Reshetikhin, "Classical and quantum Lagrangian field theories with boundary," PoS(CORFU2011)044
- A. S. Cattaneo, P. Mnëv and N. Reshetikhin, "Classical BV theories on manifolds with boundaries," Commun. Math. Phys. 332, 535–603 (2014)
- A. S. Cattaneo, P. Mnëv and N. Reshetikhin, "Perturbative quantum gauge theories on manifolds with boundary," arXiv:1507.01221, Commun. Math. Phys.

Thanks

Page 92 of 92

Pirsa: 17050017 Page 63/65

Pirsa: 17050017 Page 64/65

Pirsa: 17050017 Page 65/65