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Abstract: <p>We apply the recently suggested strategy to lift state spaces and operators for (2+1)-dimensional topological quantum field theories to
state spaces and operators for a (3+1)-dimensional TQFT with defects. We start from the (2+1)-dimensional Turaev-Viro theory and obtain a state
space, consistent with the state space expected from the Crane-Y etter model with line defects. This work has important applications for quantum
gravity aswell asthe theory of topological phasesin (3+1) dimensions.</p>
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Part |: Motivation and Main Results
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Recent developments

[BD, Steinhaus 2013: From TQFT to quantum geometry]
[BD, Geiller 2016]

We constructed a (2+1)D quantum geometry based on Turaev-Viro TQFT:
Vacuum stated peaked on homogeneously curved geometries.
Curvature excitations described by defects.

How to generalize this construction to (3+1) D?

Key problem: braiding relations are central for the (2+1)D theory.

[Delcamp, BD 2016], relations to [Haggard, Han, Kaminski, Riello 14-15], Maerenz, Barrett 2016]
We developed a strategy. canonical quantization canonical formulation,

including defects

Lift (2+1)D TQFT to (3+1)D theory with line defects.

[BD arxiv: 1701.02037 [hep-th]]

Applied this strategy to Turev-Viro TQFT.
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Results

® Rigorous implementation of quantum group structure into (3+1)D LQG.
Strong evidence that this facilitates implementation of positive cosmological constant.

[Smolin, Major, Noui, Perez, Pranzetti, Dupuis, Girelli, Bonzom,

quantum group structure Livine, Haggard, Han, Kaminski, Riello, Rovelli,Vidotto, ...]
67

= m [Smolin, Major]
P

SU(2)x  where k

® A new family of (3+1)D quantum geometry realizations
based on vacuum peaked on homogeneously curved geometry: Crane-Yetter TQFT.

® Finiteness properties:
® Hilbert spaces (associated to fixed triangulations/ graphs) are finite dimensional.
® |mportant for (numerical) coarse graining efforts.
® All (graph preserving) geometric operators have discrete and bounded spectra.
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Strategy: from (2+1)D TQFT to a (3+1)D theory

with line defects

(+1)D TQFT

o T=

assigns degrees of freedom
to non-contractible curves
on a surface

[Delcamp, BD: JMP 2017]

(3+1)D TQFT: 3-sphere with
one-skeleton of (tetrahedral)
triangulation removed

. curves around the
curves around triangles
0 . edges of the

are contractible in . :
triangulation are

3-sphere .
not contractible

v/

want to assign degrees of
freedofn

to curves around edges of
triangulation

\//

Use (2+1) D theory to assign state space to a 3D triangulation.
But impose (contractibility/ flatness) constraints associated to curves

around triangles.
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Heegaard splitting and diagrams

Compact 3D manifold

. Handlebody 2
Handlebody | / (e.g. 3;5phere) \ ‘_ ~
= f

— [~ |
\

Handlebody | | Handlebody 2 inside outside

tetrahedron
tetrahedron

Handlebody | [ Handlebody 2

Heegaard surface

two-handle cycle:

contractible in handlebody 2 : one-handle cycle: |
contractible in handlebody |

A Heegaard diagram is a Heegaard surface decorated with
generating basis of one-handle cycles and two-handle cycles.

Heegaard diagrams encode uniquely topology of 3D manifold.
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Heegaard diagrams

Heegaard diagrams can be constructed from a triangulation of the 3D manifold.

Set of cycles around triangles generates (over-completely) all curves that are contractible even
if we do take out the one-skeleton of the triangulation.

Thus it is sufficient to impose flatness constraints for the cycles around the triangles.

Heegaard surface

two-handle cycle:

contractible in handlebody 2 one-handle cycle:

contractible in handlebody |
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Strategy

I. Hilbert space, operators and bases for a closed surface.
2. Apply this to a Heegaard surface constructed via a triangulation.

3. Impose constraints for 2-handle cycles and find operators and bases
consistent with these constraints.
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Remark: fixed triangulation

Remark:

This talk is mostly focussed on describing Hilbert space and operators
for a fixed triangulation.

Refinements implementing a vacuum based on the Crane-Yetter TQFT
can be defined. The operators that we will discuss here are consistent
with respect to these refinements.

Open possibility: refinements implementing an Ashtekar-Lewandowski
type vacuum and finding operators consistent with these refinements.

refinement
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Hilbert space for
(2+1)D Turaev-Viro TQFT
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Hilbert space for (2+1)D Turaev-Viro TQFT

here: for surfaces without punctures

[Levin,Wen; Koenig, Kuperberg, Reichardt; Kirillov; BD, Geiller]
Kinematical (but gauge invariant) Hilbert space:

States based on spin-labelled three-valent graphs with SU(2)y coupling rules imposed on the
nodes.

1 k
"2

Admissible spins: j=0, 5 1,...

labelling undirected edges of the graph.

Coupling rules: i<j+k,  j<itk, k<Litj, it+j+keN, i+j+k<k

N
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Hilbert space for (2+1)D Turaev-Viro TQFT

Physical Hilbert space - impose ‘flatness’ constraints:

Flatness constraint are imposed as equivalence relations between graph states:

Strands can be (isotopically) deformed. Strands with trivial spin can be omitted.

b —

2-2 Pachner move. Involving the F-symbol. 3-1 Pachner move. Involving the F-symbol.

. , i i i
UmUn rvigh
= 1#1” m , m n = P Fr::?rr Wl
E : kin ' U
n ]

k
RN

Rather involved now:

Finding a basis of independent states and operators consistent with equivalence relations.

We need a) braiding and b) vacuum strands to define these.
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a) Braiding

Strands can cross each other. Such crossings can be resolved using the R-matrix of SU(2)x.

J
i e = Y R (my
‘ 4 ~ Vivj * '

We can thus define the so-called s-matrix as the evaluation of the Hopf link.

(Planar graphs are equivalent to a number times the empty graph.This number is called the
evaluation of the planar graph.)

sin (k:'_2(2j +1)(2k + 1))
Sij = @” gives 8jk = (—1)#+%
sin (kiz)

I

An important identity:
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b) Vacuum strands

Vacuum strands are defined as weighted sum over strands labelled by admissible spins:
v = (-1)\/d
D \/Z -,,‘;% total quantum
J

dimension

A vacuum loop is similar to a §(g) function. Wilson lines (strands) can be deformed across a region
enclosed by a vacuum loop.

Sliding property:

I

Killing property:
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Hilbert space for (2+1)D: Bases

[ Kohno 1992; Alagic et al 2010]

For the torus:

Basis states parametrized by two spins (ju, Jjo)
labelling an under- and over-crossing strand.

We will see that this basis diagonalizes

over- and under-crossing Wilsonloops
parallel to the vacuum loop.

S-transformation (generalized Fourier transformation):

=3 Sjuukok, <A

ku,‘ﬁw.

S 1
juj-rukuk'u. - Dz bjukubjuk‘u.
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Hilbert space for (2+1)D: Bases

[ Kohno 1992; Alagic et al 2010]

For g>| surface:

To each pant decomposition of the surface we can associate a basis.

These bases states include a
* set of vacuum loops (Juy Jo)
* over-crossing graph (dual to vacuum loops)
* under-crossing graph (dual to vacuum loops).
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Hilbert space for (2+1)D: Operators

Operators consistent with equivalence relation:
Insertion of under- and over-crossing Wilson loops.

Ribbon operators: parallel under- and over-crossing loop, labelled by (ju,Jo) .
For classical group: ribbon operators combine holonomy and (integrated) flux operators.

Wilson loops parallel to vacuum loops in basis states act diagonally:

— Sjr)ku S,’fl'r!k'r!
02 2
U_?u ’L’J“

Over- and under-crossing graphs and Wilson loops decouple.
Eigenvalues of Wilson loops determined by s-matrix.
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Hilbert space for (2+1)D: Bases

[ Kohno 1992; Alagic et al 2010]

For the torus:

Basis states parametrized by two spins (ju, Jjo)
labelling an under- and over-crossing strand.

We will see that this basis diagonalizes

over- and under-crossing Wilsonloops
parallel to the vacuum loop.

S-transformation (generalized Fourier transformation):

=3 Sjuukok, <A

ku,‘ﬁw.

S 1
juj-rukuk'u. - Dz bjukubjuk‘u.
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From (2+1)D to (3+1)D

We discussed:
* choice of basis for (2+1)D Hilbert space
* consistent operators: under- and over-crossing Wilson loops.

For these constructions braiding relations play a very important role.
Using the encoding of a 3D manifold into a Heegaard surface we can export these
braiding relations to the (3+1)D theory.

To proceed:

a) Construct bases for Heegaard surface.
b) Impose constraints.

c) Find operators preserving constraints.
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Example: defect loop in 3-sphere

The corresponding Heegaard surface: a torus.
Flatness constraint along equator of this torus.

flatness constraint (over-crossing vacuum loop)
along equator

The flatness
constraints surpress
the over-crossing

graph copy.

property property
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Example: defect loop in 3-sphere

Here over-crossing
graph copy given
by vacuum loop.

Curvature
basis:

based on graph
along curvature
defects

Spin network

basis: <(quantum group)
based on graph Fourier transform
dual to curvature

defects.

I
Diagonalizes (under-crossing) Diagonalizes (under-crossing)
Wilson loop around equator. Wilson loops around meridian.

l l

Measure area Measures curvature
(of surface spanned by curvature defect). (of curvature defect).
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Spin network basis for general 3D triangulation

® Heegaard surface from thickening of one-skeleton of triangulation.
® Flatness constraints: (over-crossing) vacuum loops along triangle boundaries.

-

-
+

outside
tetrahedron

Tk LRI

inside
tetrahedron

® Basis determined by pant-decomposition. Choose one adjusted to the dual graph.

® Flatness constraints surpress over-crossing graph copy:

Left with under-crossing graph dual to triangulation: I
£ J2 N
)

(quantum deformed) spin network basis.
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Curvature basis for general 3D triangulation

® Choose pant-decomposition adjusted to the one-skeleton of the triangulation

e After imposing flatness constraints: curvature basis.

Under-crossing graph along one-skeleton of triangulation which
can be freely labelled by spins: labels of the curvature basis.
Over-crossing graph given by vacuum loops around triangles.

® (Curvature or Crane-Yetter) vacuum state:
trivial spins associated to all edges of (triangulation) graph.

Non-degenerate vacuum state for all topologies.
Crane-Yetter invariant is ‘trivial’.
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Operators for the (3+1)D theory

Under-crossing Wilson loops preserve flatness constraints.

Wilson loops around : » Wilson loops around
triangles.

~

. . . . * diagonalized by curvature basis
* diagonalized by Spi network basis * measures curvature around edges
* measure area of triangles:

I. classical group case:

ribbon operators preserving constraints
map to integrated flux operators
associated to triangles [ Delcamp, BD |MP 2017]
[HHKR]: Wilson loop around triangle
measures homogeneous curvature
which is proportional to area

3. spectra match in classical limit

For normalized SJi“(k’fz(zai*-l)(?ﬁwl)) sin( . 1= 80+ 1) k(k + 1) ( n )2
" . ~ 3 ' k+2
k-Wilson loop: sin (sz % + 1))) sin (k_f_2(2j + 1))) |
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Operators for the (3+1)D theory

Under-crossing Wilson loops encode curvature and area operators.

Spectra are discrete and bounded and coincide:

sin( (27 +1)(2k+ 1) )bm(
sin ( 5(2k + 1))) sin ( 5(27 )))

A self-dual quantum geometry.
1
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Examples with even more self-duality

quantum-quantum 4-simplex

Curvature basis for 4-simplex.
(Over-crossing graph copy, which is
given by vacuum loops

around triangles, is suppressed.)

Spin network basis for 4-simplex.

quantum-quantum 3-torus

Curvature basis for 3 torus

with cubical lattice.
(Over-crossing graph copy and
vacuum loops are surpressed.)

Spin network basis for 3-torus.
(With Vacuum loops suppressed)
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Conclusion

enforcing a most important advantage of LQG/spin foams: relation to TQFT  [Barrett, Crane, Smolin]
* could be crucial for continuum limit (do we already have a geometric phase?)
 exchange of elegant techniques between (now also canonical) quantum gravity and TQFT

new vacua can serve as starting point of approximation scheme for dynamics  [BD 2012-14]
(Consistent Boundary Framework)

this quantum geometry realization offers many advantages
* spectra of intrinsic and extrinsic geometric operators are discrete and bounded
* self-duality
* finiteness properties important for (numerical) coarse graining schemes
* new bases important for coarse graining

new view on quantum geometries [BD, Steinhaus 2013: From TQFT to quantum geometry]
* many new directions (next slide)
* are there other quantum geometries (4D TQFTs) out there?
* how do predictions depend on choice of representation?
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Outlook

More quantum geometries:
® systematic way to construct 4D TQFTs with defects: [Delcamp, BD w.i.p]
lift other 3D TQFTs or string net models to 4D, e.g. group algebra models

® further generalizations ala  [Baerenz, Barrett 2016]
 weaken flatness constraints for triangles
* allows for degenerate ground state (non-trivial 4D invariants)
* introduces torsion degrees!?

Analysis of current model:

® boundaries and torsion
» compression bodies: Heegaard decomplosition with boundary
* expect surface anyons as excitations confined to boundary [Keyserlingk et al PRB 2013, ...]
* interpretation for lifted punctures with torsion defects?

® geometric interpretation of states and operators [Charles, Livine;
* phase space Haggard, Han, Kaminski, Riello]
* Barbero-Immirzi parameter

® refinements and coarse graining [Delcamp, BD wi.i.p.]
* fusion basis for (3+1)D
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Thank you!

* B. Dittrich, (3+1)-dimensional topological phases and self-dual quantum geometries
encoded on Heegaard surfaces, arXiv: 1701.02037

* C.Delcamp, B. Dittrich, From 3D TQFTs to 4D models with defects,

to appear in JMP, arXiv: 1606.02384

* B. Dittrich, M. Geiller, Quantum gravity kinematics from extended TQFTs,
NJP 2017, arXiv: 1606.02384

* M. Baerenz, ]. Barrett, Dichromatic state sum models for four-manifolds from pivotal functors,
arXiv: 1601.03580 1

* R. Koenig, G. Kuperberg and B.W. Reichardt, Quantum computation with Turaev-Viro codes,
Annals of Physics 2010, arXiv: 1002.2816

* G.Alagic, S.P. Jordan, R. Koenig, B.W. Reichardt, Approximating Turaev-Viro 3-manifold
invariants is universal for quantum computation, Phys RevA 2010 ,arXiv:1003.0923
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Further applications

[Haggard, Han,
Kaminski, Riello 14-15]

[BD, Martin-Benito,
Steinhaus, NJP 2014

Lift of (2+1)D TQFTs
to (3+1)D state spaces.
[Delcamp, BD: JMP 2017]

BD, Schnetter,

\ Delcamp, BD 2016]
amp, BD, Riello JHP 2016;
condensed
math. physics:

matter:
new 4D topological (3+1)D

invariants topologlcal

[Baerenz, Barrett 201 6] v

[Walker-Wang 201 1] yserlingk et al PRB 2013, ...]

Seth, Steinhaus, PRD 2016;
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