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Abstract: | will propose a new class of tensor network state as a model for the AAS/CFT correspondence and holography. This class shall be
demonstrated to retain key features of the multi-scale entanglement renormalization ansatz (MERA), in that they describe quantum states with
algebraic correlation functions, have free variational parameters, and are efficiently contractible. Yet, unlike MERA, they are built according to a
uniform tiling of hyperbolic space, without inherent directionality or preferred locations in the holographic bulk, and thus circumvent key arguments
made against the MERA as amodel for AAS/CFT. Novel holographic features of this tensor network class will be examined, such as an equivalence
between the causal cone C[R] and the entanglement wedge E[R] of connected boundary regions R.
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Overview:

Motivation:

Construction:

Implications:

MERA as models for holography

Holographic codes as models for holography

How to build networks that are invariant
on the hyperbolic disk?

Want: efficient contractibility and non-
trivial entanglement / correlations

Causal properties?
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Intro to MERA

length/energy scale

A

<€

log, N |

layers

* lower layers encode short-ranged properties of the state

* higher layers encode long-ranged properties of the state

10Y|0)

Multi-scale entanglement
renormalization ansatz:

Unitary circuit for preparing
quantum states on the lattice

9 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 -0 1D lattice
( [ ) T
N sites

Unitary gates:
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Intro to MERA

N |0)|0)
Q
[1+]
s
> Multi-scale entanglement
= 105-_12 VT renormalization ansatz:
c
"E‘ layers Unitary circuit for preparing
= quantum states on the lattice
(7}
v - .
0 0 0 -0 0 0 0 -0 0 0 -0 0000 1D lattice
L ’ J &
N sites
Unitary with Unitary gates:
fixedinput = |sometry
10)
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Intro to MERA

A
£
o
v
= Scale-invariant MERA
% Choose each layer to be the
%‘ same (for RG fixed points!)
e
2
v
0 0 0 0 0 0 0 0 0 0 0 0 0 -0 -0 1D Ilattice
£
Entanglement Renormalization (ER)
; Constraints:
..... ............................................................ £ coarser y :
| lattice Isometries: Disentanglers:

T

original
lattice

seaiina @@ @ @ @ @i @i @i @@

blocks of two sites
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Numerical example: Scale-invariant MERA

1D critical Ising model: H= Z (“X(I")X(}" +1)+ Z(l"))
ye )
» optimize a scale-invariant MERA for its ground state (bond dim: x = 36)

« extract the conformal data that characterizes the critical theory

Scaling Dimensions A

2+1l8 |l sodificesfiins ipfssi insssscnsnoss 241/8 |pteepteie pr.irnary e é
g [ae e fialds: : xact MERA :
1+1/2 = e spin: g=0.125 0.1250003
I 7 1] Vi oo oy ol Ly Dt energy: i s=1 ¢ 1.0000200
= e : : :
€ W W disorder: : 4=0.125 : 0.1250002
: = | TN [0 fermion: iy =05 i 0.5000004
1/8 ‘;O{X, ..................... 1/3 ...... P B el |l : - -

2 oo
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Numerical example: Scale-invariant MERA

1D critical Ising model:

H=2,(

optimize a scale-invariant MERA for its ground state (bond dim: x = 36)

- XN X(r+D+Z()

extract the conformal data that characterizes the critical theory

A

Scaling Dimensions

.
el A1) et
2 » » » B
e I B L L s S
) SUS - -

8
| g

g [t B e e T
0["® = o

L]

Scale-invariant MERA accurately encodes ground states of lattice CFT's

1/2

1/8
0

OPE Coefficients

By ( {”E“{’,‘ error
Ceoo=1/2 0.50008 0.016%
Couvp=—1/2 -0.49997 0.006%
Oy = —\E 1-"’0”‘5\’-_‘;,';":"’1 0.068%
O3 ao= \/u 1'“”"%"”"‘ 0.068%
Cepp =1 1.0001z2 0.010%
Cegp = —1t —1.0001¢ 0.010%
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MERA as a model for holography

D-dim CFT (D+1)-dim AdS
AdS / CFT *T ¥ T
correspondence: <=
\9_// X \>_// X
CFT144 AdS,.,

Entanglement renormalization and holography:
B. Swingle, Phys. Rev. D 86, 065007 (2012)

MERA as a concrete
realization of AdS / CFT?
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MERA as a model for holography

MERA as a realization of holography or AdS / CFT? Many different opinions...

However, this proposal has certainly been useful to tensor networks:
many new developments in TN methods and algorithms

we should think about properties of tensor networks geometrically

Scaling of entanglement
entropy from minimal
surfaces

Correlation
functions from
geodesic paths

(like Ryu-Takayanagi " .
holographic E.E)

E(R)
Log correction to the area law Polynomial decay of correlators
SL = kllogz(L) | kz ((j)(X)(f)(x + L)) (0.4 L-ZA
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MERA as a model for holography

Scale-invariant MERA

« Efficiently contractible

* Entanglement and correlation functions
compatible with critical ground states

* Scale-invariance....
...but preferred directions and
locations in the holographic bulk

Constraints:

Isometries: Disentanglers:
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MERA as a model for holography

Constraints:

Isometries:

gz

Disentanglers:

Scale-invariant MERA

« Efficiently contractible

* Entanglement and correlation functions
compatible with critical ground states

* Scale-invariance....
...but preferred directions and
locations in the holographic bulk

Preferred directions result from
isometric / unitary constraints

Basis for many arguments against MERA
as a direct realization of AdS/CFT

Can we construct a tensor network
that is uniform in the bulk?
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Holographic quantum error correcting codes

(Pastawski, Yoshida, Harlow, Preskill, arXiv:1503.06237)

Code based on {4,5} tessellation
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Holographic quantum error correcting codes

(Pastawski, Yoshida, Harlow, Preskill, arXiv:1503.06237)

Code based on {4,5} tessellation

Can have free bulk indices (red circles)

Here shall consider the case with
fixed bulk indices
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Holographic quantum error correcting codes

(Pastawski, Yoshida, Harlow, Preskill, arXiv:1503.06237)
Code based on {4,5} tessellation

Q - -
." Y Built from perfect tensors:
Y isometric across all partitions

¥

o O
* Achieve bulk uniformity (no
preferred locations or directions
Can have free bulk indices (red circles) in holographic bulk)
Here shall consider the case with * Properties are not compatible
fixed bulk indices with CFTs (trivial correlation

functions)
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Holographic quantum error correcting codes

(Pastawski, Yoshida, Harlow, Preskill, arXiv:1503.06237)
Code based on {4,5} tessellation

Network based on {c0,3} tessellation

» Holographic codes talked about by Tobias
Osborne correspond to tree tensor networks

* Not suitable for representing ground states of
CFT’s (e.g. entanglement entropy not correct)
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Tensor networks as models for holography

Scale-invariant MERA Holographic codes

« Efficiently contractible ‘t/ + Efficiently contractible Y/

* Properties compatible with CFT's t/ * Properties not compatible with CFT's x

* Not uniformin the bulk x *  Bulk uniformity §/
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Tensor networks as models for holography

Scale-invariant MERA Holographic codes

+  Efficiently contractible

@ties compatible with CFT's

*  Not uniformin the bulk

* Properties not compatible with CFT’s

~

Tensor network with all three properties?

Goal:

Yes! Hyper-invariant tensor networks
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Overview:

Motivation:

Construction:

Implications:

MERA as models for holography

Holographic codes as models for holography

How to build networks that are invariant
on the hyperbolic disk?

Want: efficient contractibility and non-
trivial entanglement / correlations

Causal properties?

Page 20/101



Hyper-invariant networks

Network from {7,3} hyperbolic tessellation

plaquettes have 7 vertices, vertices have 3 edges
* 3-index tensor A placed on each vertex

matrix B is placed on each edge between two vertices

Rotation
invariance:

A:

o

B
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Hyper-invariant networks

Network from {7,3} hyperbolic tessellation

Note: we focus on networks
without free bulk indices
(though these could be added)

Q-8

Rotation
invariance:

A:

t p-

B:
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Hyper-invariant networks

Network from {7,3} hyperbolic tessellation

Note: we focus on networks
without free bulk indices
(though these could be added)

\ Copies of same Aand B

tensors at each location
+

e Rotation invariance

I
Bulk uniformity: no
o preferred locations or
directions in the bulk (in the

Rotation
invariance:

A:

limit of an infinite tiling)

t P~

B:
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Hyper"in\la riant networks Many forms are possible!

Network from {7,3} hyperbolic tessellation Network from {5,4} hyperbolic tessellation

s
¥

¥
Rotation Rotation
invariance: invariance:
A /CS\ — A:

B
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Hyper-invariant networks

Network from {7,3} hyperbolic tessellation

. Unwrap into layers about chosen bulk point T:
4. ol R 3 _ (each layer is a string of alternating A and B tensors)
7’ N
/ -
/ ” ' = ~ \\
/ i N

/ / G

/ / vt
7 / v 1)
\
L 9) 0 4

I N V
{ \ / '
$ \ 7 ¥

N / /

\\ D e oy k¢ 7/

N i 2
- S ¥, -
Each layer composed of 2 types of unit cell:
Rotation
invariance: /@

B:—Q—:@

2-site cell 3-site cell
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Hyper-invariant networks

Notice: the pattern of cells is fractal

(no finite repeating pattern even in
thermodynamic limit)

Scale factor is irrational:

_3+45

5= 2.618

S

Unwrap into layers about chosen bulk point T:

(each layer is a string of alternating A and B tensors)

Each layer composed of 2 types of unit cell:

A Ay

2-site cell 3-site cell
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Hyper-invariant networks

Unwrap into layers about chosen bulk point T:

What additional constraints (each layer is a string of alternating A and B tensors)
are needed for preservation
of locality?

First: revisit MERA and
holographic codes

Notice: the pattern of cells is fractal

e ] _ Each layer composed of 2 types of unit cell:
(no finite repeating pattern even in

thermodynamic limit)

Scale factor is irrational:
§=——= 2.618

2
2-site cell 3-site cell
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CO n Stl’a i I"ItS in M ERA Layer of MERA as a coarse-graining transformation

(Entanglement Renormalization):

............... [ TECCTTTLLTTTTTPITY TETYPPTPPPITTTIRY TTTTTIITTTY L coarser Isometric constraints:

Z+1 |attice

_...___.____._______.' .... 0 O 0

Z |attice
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CO n Stl’a i ntS in M ERA Layer of MERA as a coarse-graining transformation

(Entanglement Renormalization):

--------------- CYITHTNTRIRIN SFTRTRRIRTY YT ) coalae Isometric constraints:

Z+1 |attice

..... .... I .... @ @@ L initial

Z |attice

Local operators map to local operators: (‘J'Jr = VO"V-I-
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CO n Stra i nts in M ERA Layer of MERA as a coarse-graining transformation

(Entanglement Renormalization):

--------------- CYITITRTRIRIN SHTRTRTRIRIY TITT |) e Isometric constraints:

Z+1 |attice

__..___.____._______.' .... l.d4.4.4.. " initial

Z |attice

v R

N
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CO n Stra i ntS in M ERA Layer of MERA as a coarse-graining transformation

(Entanglement Renormalization):

coarser
Z+1 |attice

V

....'I... [ initial

Z |attice

--------------- CYIHTNPRRIRI STRMIRRINIY YIS i Isometric constraints:

P, e

Local operators map to local operators: (‘J‘Jr = VO'V-I-

(e e TN
kT’

a1 n
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CO n Stra i ntS in M ERA Layer of MERA as a coarse-graining transformation

(Entanglement Renormalization):

o
-------------- A e @ [ Sl Isometric constraints:
zZ+1 |

attice

....___.____._______.' .... [.4.0.4.. il

Z |attice

Local operators map to local operators: (‘J'Jr = VO'V-I-

(e e TN
‘NT’

N n

Preservation of locality is important!

Practically: allows MERA to be efficiently contracted

Conceptually: to reproduce features of CFTs (like scaling operators)
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Constraints in holographic codes

Layer of perfect tensors as a coarse-graining transformation:

coarser
Perfect tensors:
Z+1 |attice
V u a Isometric
+ . = across all index
S 80 e s i |n|t|.al u ﬂ partitions
Z |attice
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Constraints in holographic codes

Layer of perfect tensors as a coarse-graining transformation:

coarser
Perfect tensors:
Z+1 |attice
vV u ﬂ Isometric
+ . = across all index
R i R e eiis e |n|t|.al u ﬂ partitions
Z |attice

Perfect tensors also preserve locality...
...but cause some operators to coarse-grain trivially
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Constraints in holographic codes

Layer of perfect tensors as a coarse-graining transformation:

coarser
Perfect tensors:
Z+1 |attice
vV u ﬂ Isometric
+ . = across all index
o s e p L T e |n|t|.al uT (Gl partitions
Z |attice

Perfect tensors also preserve locality...
...but cause some operators to coarse-grain trivially

Coarse-graining of a local operator: O"r == VO'V-i-
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Constraints in holographic codes

Layer of perfect tensors as a coarse-graining transformation:

coarser
Perfect tensors:
Z+1 |attice
vV u ﬂ Isometric
+ . = across all index
o e I s T |n|t|.al u ﬂ partitions
Z |attice

Perfect tensors also preserve locality...

...but cause some operators to coarse-grain trivially —
trivial operator

Coarse-graining of a local operator: g — VO'V-i- = O" o I
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Hyper-invariant networks: constraints

Scale-invariant MERA

Isometric constraints:

Not strong enough!

(to be compatible with
bulk uniformity)

Holographic codes

Perfect tensors:

u ﬂ Isometric
L | = across all index
uf ﬂ partitions

Too strong!

(restricts to trivial
correlation functions)
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Hyper-invariant networks: constraints

Scale-invariant MERA Holographic codes
Isometric constraints: Goldilocks Perfect tensors:
constraints???
(st":rt‘g s bl;t u [ Isometric
hosdiidlial e | = across all index
< > uf ﬂ partitions
Not strong enough! Too strong!

(restricts to trivial
correlation functions)

(to be compatible with
bulk uniformity)
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Hyper-invariant networks: constraints

Scale-invariant MERA Holographic codes
Isometric constraints: Goldilocks Perfect tensors:
constraints???
(St":rt‘g ko bl;t u [ Isometric
Bi oot i [ | = across all index
< > uf ﬂ partitions
Not strong enough! New idea: Multi-tensor constraints. Too strong!
(to be compatible with Constrain certain products of (restricts to trivial
bulk uniformity) tensors to be isometric correlation functions)
Multi-tensor constraints 2-to-1 isometry 3-to-2 isometry

for {7,3} network:

=

BB
B B = (W
BY BY B
o u
ut
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Hyper-invariant networks: constraints

Scale-invariant MERA Holographic codes
Isometric constraints: Goldilocks Perfect tensors:
constraints???
(St":rt‘g i bl;t u [ Isometric
die Ll = across all index
< > uf ﬂ partitions
Not strong enough! New idea: Multi-tensor constraints. Too strong!
(to be compatible with Constrain certain products of (restricts to trivial
bulk uniformity) tensors to be isometric correlation functions)
Multi-tensor constraints 2-to-1 isometry 3-to-2 isometry

for {7,3} network:

=~

BB
B B = W
BY BY B
- u
ut
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Hyper-invariant networks: constraints

Multi-tensor cons

"y
-

Layer of the {7,3} network:

SR i
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Hyper-invariant networks: constraints

Layer of the {7,3} network:
Multi-tensor const

e - DA
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Hyper-invariant networks: constraints

Layer of the {7,3} network:
Multi-tensor constraints:

Lt Mﬁ\m}

Many ways to group tensors into isometries wand u

Each layer “V” is an isometric mapping
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Hyper-invariant networks: constraints

Layer of the {7,3} network as a coarse-graining transformation:
Multi-tensor constraints:

BrélB #\1#\”{\?{\”{}?{\”{\”}1/

Coarse-graining of local operators? O" = VO'VT
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Hyper-invariant networks: constraints

Layer of the {7,3} network as a coarse-graining transformation:
Multi-tensor constraints:

e

>

Zz
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Hyper-invariant networks: constraints

Layer of the {7,3} network as a coarse-graining transformation:

Multi-tensor constraints:

Z

:
i

"
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Hyper-invariant networks: constraints

Coarse-grained operator depends on choice of grouping?

Multi-tensor constraints: NOI

Properties cannot be changed by which grouping is “imagined”
BB = g’ o
Ba B +
Non-trivial part of coarse-grained operators are understood
through grouping that yields minimal support

. O..”
T —ary tes T sse -...
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Hyper-invariant networks: constraints

Causal cones through a single layer (from minimal support grouping):

(3(32) (3(32) 6(52)
@) i @ c(rm
L(lR) C(R) t?(iR)

WMM
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Hyper-invariant networks: constraints

Causal cones through a single layer (from minimal support grouping):

e e o®
@) N @ e(rm
R
C(:R) L(R) (3(:72)

MMMM

Locality: operators with support L. < 2 sites mapped to operators with support L. < 2 sites

No trivial coarse-grainings: support remains at L. > 0 sites
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Hyper-invariant networks: constraints

Scale-invariant MERA Holographic codes
Isometric constraints: Goldilocks Perfect tensors:
constraints???
(St":rt‘g e bl;t u [ Isometric
LIRS S D= across all index
< > uf ﬂ partitions
Not strong enough! New idea: Multi-tensor constraints. Too strong!
(to be compatible with Constrain certain products of (restricts to trivial
bulk uniformity) tensors to be isometric correlation functions)

Y
BB

Just right!

(compatible with bulk uniformity, but
also give non-trivial correlations)
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Hyper-invariant networks: causal properties

Can choose “center of orthogonality” at any bulk point:

A ~ T
N P W e \\
v o ~ PR
% od # N
’ 4 - \
/ V4 7~ ~ N
v, / N VooV
II z \ e
) I \
Thd | 5 L
I \\J lVl
1 | |
1“ : T(——|,<—|
1 A \ / U
4 /

)Y Y !
\\\ \""--u—” / o
N - 7/ 2
~ "'....__ -_f’(
~ e >
oy At s

* For any bulk point T, the network can be organised
into concentric layers of isometric mappings V
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Hyper-invariant networks: causal properties

Can choose “center of orthogonality” at any bulk point:

f’ - ‘.‘\ '_-—-""—--\
'S 2 N S C 9
o % N I 2 - - N
N % P <y A\~ b ~
/ ve /’_-"\. N /, \\ \
e & ’ » \ P 7 \ \
v, / N o / 8 T~ \ \
! \ p 5
/ { A L ~ \ \
"' I \ { \ II, N \ |
1 I - | - \
] \J 4 ViV R g~ |
I I /4 ~ \
i 1\ T(—-|,<—| I’T X . ¢
v o { / T4 A = V\ R 14 I ]
4 \ 4 oy W W e—qTe 1€ :l /
VAP D > 147 \ / ) RY
g QP & 7 ZA S 7 4
¥ 2 )l 0 A ¢ L7 A R R
-~ — - . - - ’/ ~
Iy J ’f T 3 ’/

* For any bulk point T, the network can be organised
into concentric layers of isometric mappings V
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Hyper-invariant networks

{7,3} hyper-invariant network

Rotation constraints: Multi-tensor constraints:
B_ B
- =S 000 .
B BT

Bulk Preservation of
uniformity locality

* Network does not have any structurally trivial correlation
functions (between pairs of 2-site boundary regions)

* Algebraic decay of correlations follows geometrically
(geodesic path lengths are same as MERA)
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Hyper-invariant networks

{7,3} hyper-invariant network

Rotation constraints: Multi-tensor constraints:

b-G

Bulk Preservation of
uniformity locality

¢
Il

* Network does not have any structurally trivial correlation
functions (between pairs of 2-site boundary regions)

« Algebraic decay of correlations follows geometrically
(geodesic path lengths are same as MERA)

+ What are the implications of these constraints? (causal properties?)

» How can we find solutions to the constraints for tensors A and B?
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Hyper-invariant networks: causal properties

region R
(L sites)

V:R minimal surface: surface with same
boundary as R that transects minimum
number of bulk indices

E(R) entanglement wedge: set of tensors in
the region bounded by y., and R
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Hyper-invariant networks: causal properties

/ N 4 N
,’ 4 ' N \\\ \ ’ 7 v 7 : N\

;. ‘I‘-':I , / / \ ‘I.f'.l / / N\ I.I"'-‘ \

e B ) \ L

[ t il o . \\

{ l I. \ | || } ] l ‘ {5 l ] \L [

\ {E | | \ I". \ \ | ."I ;I

(R \ o I".‘_ \ "‘.‘ < 7 / ’.-"I
region R region R
(L sites) (L sites)

YR minimal surface: surface with same C(R) causal cone: set of tensors that can
boundary as R that transects minimum effect the reduced density matrix p(R)

number of bulk indices

E(R) entanglement wedge: set of tensors in
the region bounded by y., and R

Pirsa: 17040049 Page 56/101



Hyper-invariant networks: causal properties

Y
i Lz - e A \\\\ c . .

’ i 4 N \ Holographic causality: for a continuous boundary
. X region R of a hyper-invariant network, the causal
il / 7 \ \ . . » . .
[ {.f I i cone C(R) is approximately coincident* with the
[Il | t i O '| | ‘ H entanglement wedge £(R)
\\ : i /
LBAR \ A ;f’ i

region R
(L sites)

V:R minimal surface: surface with same
boundary as R that transects minimum
number of bulk indices

E(R) entanglement wedge: set of tensors in
the region bounded by y., and R

C(R) causal cone: set of tensors that can
effect the reduced density matrix p(R)
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Hyper-invariant networks: causal properties

4 Y
;/ \\ Holographic causality: for a continuous boundary
" / . 2 region R of a hyper-invariant network, the causal
[ { / \ \ '\-\ cone C(R) is approximately coincident* with the
H ( L | O | | } } J entanglement wedge £(R)
|\ . / ,

*Disclaimer: for most regions C(R) = E(R),
however there exists some regions R for which
C(R) is slightly larger than £(R).

region R
(L sites)

V:R minimal surface: surface with same
boundary as R that transects minimum
number of bulk indices

E(R) entanglement wedge: set of tensors in
the region bounded by y., and R

C(R) causal cone: set of tensors that can
effect the reduced density matrix p(R)
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Hyper-invariant networks: causal properties

W i _ \\\
/ ~ \ Holographic causality: for a continuous boundary
' ) N region R of a hyper-invariant network, the causal
[ {.-" r 1 Al cone C(R) is approximately coincident* with the
H | \ O } ‘ } ‘ entanglement wedge £(R)
| \ \ \ / / || If
\ \ /';. f

Causal cones are geometric!

region R
(L sites) Consequence of:
Bulk Shiftable centre of
uniformity orthogonality
Not true for MERA!
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Hyper-invariant networks: causal properties

Example of holographic causality:

Pirsa: 17040049 Page 60/101



Hyper-invariant networks: causal properties

Example of holographic causality:

reduced density / R
matrix p(R)

* Many tensors cancel in the evaluation of
p(R) due to the multi-tensor constraints

* Tensors that remain are contained within
the minimal surface y
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Hyper-invariant networks: causal properties

Example of holographic causality:

reduced density / R
matrix p(R)

* Many tensors cancel in the evaluation of
p(R) due to the multi-tensor constraints

+ Tensors that remain are contained within
the minimal surface y
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Hyper-invariant networks: causal properties

Example of holographic causality:

L3
minimal Iy
7
surface Y¢
Ly
Ly
Density matrices
for 1-3 site regions

p(R) p(R) p(Ry)  p(R3) p(R3) p(R'3)

All obey holographic causality!

How can we understand this?
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Hyper-invariant networks: causal properties

’ \ - .
S b 8 ¥ ===p Unwrap into layers about chosen bulk point T:
7 - -, ~ \
/ ” ~ L 4 P
/ s N
/ ’ o\

/ / \ % o
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Hyper-invariant networks: causal properties

’ \ . .
e b 8 ¥ ===p Unwrap into layers about chosen bulk point T:
7 -, \
/ ” o q ~ X
/ i N
/) ’ >4\

/ / \ % o
7 / 3
\
. I ) \ ;
| | v T i V4 !

\ \ l(_l
\ \ / T
$ \ 7 ¥

N\ /
AY N ¥ /
N -~ o /4
\ — -
- \ P 2
-~ -

Apparent Causal Cone CT (:R)

Causal cone that arises from a layer-by-layer
analysis (around bulk point T)
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Hyper-invariant networks: causal properties

===p Unwrap into layers about chosen bulk point T:

Apparent Causal Cone CT (:R)

Causal cone that arises from a layer-by-layer
analysis (around bulk point T)

» Apparent causal cone C;(R) depends on choice of T

¢ ForallT: C(R) € Cr(R)
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Hyper-invariant networks: constraints

Causal cones through a single layer (from minimal support grouping):

6(32) (3(32) C‘(iR)
@ & @ e(rR)
@) @) @)

WMM

Causal cones through a layer of the hyper-invariant network
look like causal cones through a layer of MERA
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Hyper-invariant networks: causal properties

===p Unwrap into layers about chosen bulk point T:

Apparent Causal Cone CT (:R)

Causal cone that arises from a layer-by-layer
analysis (around bulk point T)

» Apparent causal cone C;(R) depends on choice of T

* ForallT: C(R) € Cr(R)
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Hyper-invariant networks: causal properties

Argument for holographic causality:
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Hyper-invariant networks: causal properties

Argument for holographic causality:

-1 ]
- - ‘\ "ur"'—-h.h
// - \.\ A ’—' \\
L f’ N 3 7 — - ~
7 / - % P //’d ‘.i\ Ny
/ V4 P \g =~ N> » “~ \
e & ’ S \ P 7 \ \
Y “ . Niah PNzl T~ \ \
{eenshs, ) \ b7 ~
1 I ----- \ \ Fd \ \
l .l.o ‘.‘ \ 1 N\ \
l o'[ ) \ ‘ I I o \ l
1) £ A _— K P~ \ N
T CE(RINE: T <« 1 Palol
o A0 N § ! I 2. \ Y& | /
PN A / i 3T Do \ U
[ > 7 Ty, W YT Y1 | ™)
Wi W v :
\ et o : 147 \ - ¥ / ] I/ /
R \ 3R \-_V;R‘_’, ¢ & RN\ 22 / &Y
g QP ¢ 7 ZA < 7 4
o B e A i v R,
-le 0 o - - -
\\ v ‘ P e //
b | -y e']‘(R-_) ~IN7T\ [TA

* (Choose center point of layering T at the apex of the minimal surface

« Apparent causal cone reduces to true causal cone (equals entanglement wedge)

Cr(R) = C(R) ~ E(R)
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Hyper-invariant networks: causal properties

Freedom to chose center in hyper-invariant MERA is the
same as choice of orthogonality center in MPS!
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Hyper-invariant networks: causal properties

Freedom to chose center in hyper-invariant MERA is the
same as choice of orthogonality center in MPS!

Consider a canonical form MPS (Schmidt form across all L/R partitions):
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Hyper-invariant networks: causal properties

Freedom to chose center in hyper-invariant MERA is the
same as choice of orthogonality center in MPS!

Consider a canonical form MPS (Schmidt form across all L/R partitions):

Left orthonormal Choose a Right orthonormal
basis center basis
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Hyper-invariant networks: causal properties

Freedom to chose center in hyper-invariant MERA is the
same as choice of orthogonality center in MPS!

Consider a canonical form MPS (Schmidt form across all L/R partitions):

Left orthonormal Choose a Right orthonormal
basis center basis

—& o

v | |
R’
]
Multiplying weights from the left Multiplying weights from the right
gives right facing isometry gives left facing isometry
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Hyper-invariant networks: causal properties

Canonical form MPS:
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Hyper-invariant networks: causal properties

Canonical form MPS:

A A, A3 Ay As A6 A7 8 Ag

Reduced density matrix only
depends on local tensors
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Hyper-invariant networks: causal properties

Canonical form MPS: can organise into isometries about any chosen point

Hyper-invariant network: can organise into ¥ Generalization of
isometric layers about any chosen point 'V, N canonical form
< from 1D line to
hyperbolic disk!
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Hyper-invariant networks: causal properties

Other implications of holographic causality?

reduced density / R
matrix p(R)
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Hyper-invariant networks: causal properties

Other implications of holographic causality?

reduced density / R
matrix p(R)

Implication of holographic causality

* All local reduced density matrices have closed
form representation (in A and B tensors)

No equivalent closed forms from MERA!
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Hyper-invariant networks: causal properties

Other implications of holographic causality?

reduced density / R
matrix p(R)

Implication of holographic causality

* Alllocal reduced density matrices have closed
form representation (in A and B tensors)

No equivalent closed forms from MERA!
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Hyper-invariant networks: causal properties

reduced density R
matrix p(R)
Sub-region duality: give reduced density matrix
| | | | | | | p(R), can we recover the bulk tensors A, B from

within the entanglement wedge?

p(R)
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Hyper-invariant networks: causal properties

Hyper-invariant tensor network Scale-invariant MERA

Pa Pr Pc « Each boundary region R has
unique bulk causal cone

* The 3-site density matrix is one of three possibilities « Different 3-site density matrix
p(R) for each 3-site region R

Hyper-invariant tensor network is better for describing
translation invariant quantum states than MERA?
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Hyper-invariant networks: causal properties

region R
(L sites)

Holographic causality: for a continuous boundary
region R of a hyper-invariant network, the causal
cone C(R) is approximately coincident* with the
entanglement wedge £(R)

Other properties of hyper-
invariant networks???
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Hyper-invariant networks: causal properties

region R
(L sites)

Holographic causality: for a continuous boundary
region R of a hyper-invariant network, the causal
cone C(R) is approximately coincident* with the
entanglement wedge £(R)

Other properties of hyper-
invariant networks???
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Hyper-invariant networks: parameterizations

Rotation constraints: Multi-tensor constraints:

b M A
T ¢re-a

Difficult set of constraints! How to solve?

Page 85/101



Hyper-invariant networks: parameterizations

Rotation constraints: Multi-tensor constraints:

h- b
T ¢re-&

Difficult set of constraints! How to solve?

There exists many families of solutions that satisfy the following properties:

« Parameterized by a set of continuous variables {6,, 6,, 65, ..., 8, }

*  Number n of variables increases with bond dimension

« Entanglement / correlations are 8-dependent (and non-trivial)

Most general solution???
Best parameterization for practical purposes???
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Hyper-invariant networks: parameterizations

Example solution family:

Strategy: build tensors A and B
from some finer structure

T y dim
Each index decomposed as
a product of finer indices
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Hyper-invariant networks: parameterizations

Example solution family:

o

Strategy: build tensors A and B

1
from some finer structure — Y@

T —
o —

N
ﬂ”’ f” \"\ 3 ~
- - [ -~
- ”d ’d \~\ ~ i \.‘
dim ot P i o pal S i 1
\d - -~ ~ ~
1 X _I’:’f” Y ‘\\\ ‘s\
Each index decomposed as 14 :i S
a product of finer indices X Q

s g
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Hyper-invariant networks: parameterizations

Example solution family:

T —
o

Strategy: build tensors A and B

]
from some finer structure — Y@
'

-

Arrive at single tensor Each index decomposed as 1/4 i N
g q fai xY* dim Q
constraints on finer a product of finer indices
tensors Y, QandR 1 """"""" D """""""
- ’»——u

(doubly - unitary) = 5
k

Multi-tensor constraints:
2-to-1 isometry w: 3-to-2 isometry u:
i

ik | :O' oy .._@

I 1 11 - 5= = b

B qﬁg Sy [:llszﬂg@ @ﬂu >4
ey 1 R areEet. | 1

i -I ! ERE | | | [:'::F] '::i:':::]

<
I
L
i
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Hyper-invariant networks: parameterizations

There exists many families of solutions that satisfy the following properties:

+ Parameterized by a set of continuous variables {6,, 6,65, ..., 6,,}
* Number n of variables increases with bond dimension

* Entanglement / correlations are 8-dependent (and non-trivial)

Pirsa: 17040049 Page 90/101



Hyper-invariant networks: parameterizations

There exists many families of solutions that satisfy the following properties:

* Parameterized by a set of continuous variables {6,,6,, 65, ..., 6,,}
* Number nof variables increases with bond dimension

* Entanglement / correlations are 8-dependent (and non-trivial)

Spectrum of 3-site
reduced density matrix

10°

Ae
10¢ \
=

v Two random
instances

p(R3)

0° |
o 10 1

ot
4}
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Hyper-invariant networks: parameterizations

There exists many families of solutions that satisfy the following properties:

* Parameterized by a set of continuous variables {6,,6,, 65, ..., 6,,}

*  Number n of variables increases with bond dimension

* Entanglement / correlations are 8-dependent (and non-trivial)

Spectrum of 3-site Scaling dimensions
reduced density matrix (diagonalise superoperator)
3 ' : e
10‘; p(R3) 4 V—
Ak Ak Polynomial decay
3 of correlations:

b (9i(0);(r)) r(4i+4))
10% ’

\ All superoperators
\v\. v Two random found to have a non-

instances trivial spectrum

5 L L L
0
i J0E vl

(9]
9]

2 4% 6 8 10
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Hyper-invariant networks: parameterizations

Solve multi-tensor constraints by
allowing some finer structure:

Consider more seriously? Bulk invariance as an
emergent symmetry that is broken at short scales...
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Hyper-invariant networks: summary

{7,3} Hyper-invariant network

{5,4} Hyper-invariant network
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Hyper-invariant networks: summary

- i Other geometries?
{7,3} Hyper-invariant network Stuff to do:

Introduce bulk indices

{5,4} Hyper-invariant network

Pirsa: 17040049 Page 95/101



Hyper-invariant networks: summary

- i Other geometries?
{7,3} Hyper-invariant network Stuff to do:

Introduce bulk indices

e - —-—

b\*ﬁ)\ R —

Characterization:

other implications of bulk uniformity?

* interpretation in terms of holography?

{5,4} Hyper-invariant network :
* what class of quantum states can they describe?

Notice: perfect tensor codes can be understood as
specific instances of hyper-invariant networks

oy
b4
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Hyper-invariant networks: summary

i i Other geometries?
{7,3} Hyper-invariant network Stuff to do:

Introduce bulk indices

e -

oo B8

Characterization:

» other implications of bulk uniformity?
* interpretation in terms of holography?

{5,4} Hyper-invariant network _
* what class of quantum states can they describe?

Notice: perfect tensor codes can be understood as
specific instances of hyper-invariant networks

i
b

Practical:

* best way to solve multi-tensor constraints?
* how to optimise numerically?
» ideas useful for other tensor network algorithms?
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Hyper-invariant networks: summary

Scale-invariant MERA
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Hyper-invariant networks: summary

» keep locality
(and efficiency)

* keep interesting
correlations

e add bulk
Scale-invariant MERA uniformity
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Hyper-invariant networks: summary

* keep locality
(and efficiency)

+ keep interesting
correlations

_ _ * add bulk

Scale-invariant MERA uniformity Hyper-invariant network

(aka MERA on steroids)
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Hyper-invariant networks: summ

* keep locality
(and efficiency)

+ keep interesting
correlations

_ _ * add bulk

Scale-invariant MERA uniformity Hyper-invariant network

(aka MERA on steroids)

Thanks!
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