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Abstract: In thistalk | discuss the problem of introducing dynamics for holographic codes. To do thisit is hecessary to take a continuum limit of the
holographic code. As | argue, a convenient kinematical continuum limit space is given by Jonesd€™ semicontinuous limit. Dynamics are then
furnished by a unitary representation of a discrete analogue of the conformal group known as Thompson&€™s group T. | will describe these
representations in detail in the simplest case of a discrete AdS geometry modelled by trees. Consequences such as the ER=EPR argument are then
realised in this setup. Extensions to more general tessellations with a MERA structure are possible, and will be (very) briefly sketched.

Pirsa: 17040047 Page 1/88



Dynamics for

holographic
(o) e [

Jfobias 3. Gsborne
J))gmg &d%mwm




Dynamicsi for

holographic
Ziel - codes

. ' 'll.

|| -1.’




Pirsa: 17040047

Page 4/88



Pirsa: 17040047

PREPARED FOR SUBMISSION TO JHEP

Holographic quantum error-correcting codes:
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ABsTRACT: We propose a family of exactly solvable toy models for the AdS/CFT
correspondence based on a novel construction of quantum error-correcting codes with a
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Toy AdS/CFT

Discretising
conf(R1)

[[$y)] € lim £y
: Semicontinuous limit
(trivalent)

Holographic
codes
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3-leg perfect tensor




3-leg perfect tensor




Example: d =3

0 ifj=kork=lorj=1
1 otherwise

v« |
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Example: d =3
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Example: d =3
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More examples:

(i) Frobenius algebras (finite dimensional)

(ii) OPE coefficients (infinite dimensional)

(iii) Tensor categories, e.g., SO(3),; Temperley Lieb
(iv) Planar algebras
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Hyperbolic tessellations
(slice of AdS;)
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Tessellation with distinguished
oriented edge

888888888



Tessellation (with flips/local moves)
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Cutoffs
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Bigger cutoff: y' > y




Directed set of cutoffs (P, X):

!

1. The relation “A,, is contained in A4,," writteny <y

is a partial order
2.For every pair y; and y, there is a bigger cutoff y:

yisyandy, <y




Holographic state (ideal triangle)
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Holographic state (ideal triangle)




Holographic state (cutoff y)
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Holographic state: for every
cutoff y we get a

state [y, ):
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Where do

holographic states
live?




Boundary hilbert space 7,:




Boundary hilbert space 7,:
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Boundary hilbert space 7,:




Holographic state:
sequence of states

14, ) and hilbert
spaces H,,




Boundary space with bigger cutoff 77,




Boundary space with bigger cutoff 77,




Boundary space with bigger cutoff 7 ;:
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Definition: the kinematical space for
holographic state is determined by the

directed set (P, <) with boundary Hilbert
space H,, for eachy € P s.t. forall y < y' there

are isometries T]Z/,: H, - H,, satistying
MT) =1,Vy

YimpV _ Y
(2) TyuTy! — Ty!”

V)/ Syl S)/"
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Equivalent holographic states:
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Equivalent holographic states:

\
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Semicontinuous limit:

HJ{V/N ||

the disjoint union of H, overally € P
modulo the equivalence relation |(f))), ~ |1p)},,
if there is "' = y and y"' = y' such that

i my!
I]}:rlﬁl’}y = I}ﬁ;lw)w

1. any book on algebra
2. R. F. Werner, unpublished (1993)
3. V.F.R. Jones, arXiv:1412.7740 (2014)
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Semicontinuous limit:

F: infinite dimensional

separable Hilbert space




Residents of /{:

Sequences of boundary states |¢),, for increasing cutoffs y:

[ll/))y] = {|¢>y — T)l/rh/))y}

= UV completion of [¢),,




Residents of /{:




Residents of /{:




Residents of /{:
o~
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Residents of /{:







Inner product: [|¢), ] and [[Y),,]




Inner products:




Inner products:




Inner products:

(L) L )y D =(@I(VT IR R T® V)|3h)

(D]




Works for all “nice" tessellations:




Hyper-invariant tensor networks and holography

Glen Evenbly!

I;’)r}nnfr'nu'rﬁf de ."h_{jﬂr,’”r and Institut f‘}HHNHf,HH‘ Université de Sherbrooke, (‘JHI:HNT'. Canada *

(Dated: April 14, 2017)

We propose a new class of tensor network state as a model for the AdS/CFT correspondence
and l'llllli“.i‘l'.'ll'l]l_\, I'his class 18 demonstrated to retain |u‘_\ features of the multi-scale \‘IlT.IIlg]l'Im'tﬂ
renormalization ansatz (MERA), in that they describe quantum states with algebraic correlation
functions, have free variational parameters, and are efliciently contractible. Yet, unlike MERA,
they are built according to a uniform tiling of hyperbolic space. without inherent directionality
or preferred locations in the holographic bulk, and thus circumvent key arguments made against
the MERA as a model for AdS/CF'T. Novel holographic features of this tensor network class are
examined, such as an equivalence between the causal cones C(R) and the entanglement wedges £(R)
of connected boundary regions R.

PACS numbers: 05.30.-d, 02.70.-¢, 03.67.Mn, 75.10.Jm

Introduction. Tensor network methods l _’ have

proven remarkably useful for investigating quantum
many-body systems, both advancing their theoretical un-
derstanding and providing powerful tools for their nu-
meric simulation. Introduced by Vidal, the multi-scale
entanglement renormalization ansatz (MERA) (3], which
describes quantum states on a D-dimensional lattice as a
tensor network in (D4 1)-dimensions, is known to be par-

ticularly well-suited for representing ground states of crit
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STATES WITH GEOMETRY




Tessellation with distinguished
oriented edge

P




State with geometry (7, e)

D\ Y
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State with geometry (7, e)
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State with geometry (7, e)




State with geometry (7', e")

AV

o




State with geometry (7', e")

7%,

o




State with geometry (r’, e')




Definition: State [|y, )] € H has geometry (7, e)
if it is contraction of holographic tensor

network for tessellation (z, e)




Subset G of I of states with a geometry (7, e)
are semiclassical states
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Warning: subset G of H of states with some
geometry (7, e) is not a linear space
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BOUNDARY DYNAMICS




Dynamics: unitary representation of

Poincaré/conformal group
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CFT Dream: find a unitary

action of conf(R1) on H




diff (S) acts on boundary S* = 0

Poincaré disc D:

I"ff g~
[l
Sy
LS
\¢~I _
"




Problem: diff (S1) is
incompatible with (dyadic) tessellation
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Strategy: study “discrete”
version of conformal group;

Thompson’s group T




Thompson’s group 7 generated by A(x), B(x),

and C(x) under composition

/ £I—

/

B(x) C(x)

J. W. Cannon, W. ]. Floyd, and W. R. Parry, Enseign. Math., vol. 42, no. 3-4, pp. 215 - 256, 1996
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Proposition (“well known”): let f € dift, (S 1) Then
3 sequence A, (x) €T s.t. [|A, — flle — O.

/

Aq(x)

see e.g., A. Akhmedov and M. P. Cohen, arXiv:1508.04604

irsa: 17040047 Page 71/88



Proposition (“well known”): let f € dift, (S 1) Then
3 sequence A, (x) €T s.t. [|A, — flle — O.

/

A3(x)

see e.g., A. Akhmedov and M. P. Cohen, arXiv:1508.04604
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R. C. Penner, Adv. Mach. 98, 143-215 (1993)

Geometric Galois Actions: Volume 2, (Cambridge University Press, 1997)
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R. C. Penner, Adv. Mach. 98, 143-215 (1993)

Geometric Galois Actions: Volume 2, (Cambridge University Press, 1997)
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Theorem (Imbert, Lochak & Scheps, Penner):
Thompson’s group 7'is isomorphic to group of
Pachner flips on tessellation (7, e) with
distinguished oriented edge.

R. C. Penner, Adv. Mach. 98, 143-215 (1993)
Geometric Galois Actions: Volume 2, (Cambridge University Press, 1997)
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Unitary representation of 7 on H:

/

V. E R. Jones, arXiv:1412.7740 (2014)




Unitary representation of 7 on H:
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V. E R. Jones, arXiv:1412.7740 (2014)
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Unitary representation of 7 on H:

(G

orollary: let f € T, then every state

£ = n(H[1),]

\is a state with geometry (f (7), f (e)) )

V. E R. Jones, arXiv:1412.7740 (2014)




Unitary representation of 7 on H:

Definition: let V € H be space spanned
by states in G, for f € T:

) =r(H]10)]

V. E R. Jones, arXiv:1412.7740 (2014)




Unitary representation of 7" on V:

/T heorem (Jones): the action \

n(f)lg) = |fg)

furnishes a unitary representation of 7°

s Y,

V. E R. Jones, arXiv:1412.7740 (2014)
V. E R. Jones, arXiv:1607.08769 (2016)
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BTZ BLACK
HOLES
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| Werz)ag € Hy ® Hp




|WgT7) 45 IS €entangled state
(no geometry) of Thompson CFTs A & B
AND

|WgTt7) 45 IS a state with geometry of
tessellation of BTZ

M. Van Raamsdonk, Gen. Relativ. Grav. 42, 2323-2329 (2010)
J. Maldacena and L. Susskind, Fortsch. Phys. 61, 781-811 (2013)
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Unitary representation of groupoid
tensor category

Objects: tessellations of Riemann surfaces
Morphisms: cobordisms
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conf(R"1)

CFT hilbert space H

Hags € Hcrr

(Large) bulk
diffeomorphism

Primary field

Fusion rules

-~

g1
VcH

Pachner flip

ba
EX)=VvXRDVT
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