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Abstract: Tensor network is a constructive description of many-body quantum entangled states starting from few-body building blocks. Random
tensor networks provide useful models that naturally incorporate various important features of holographic duality, such as the Ryu-Takayanagi
formulafor entropy-arearelation, and operator correspondence between bulk and boundary. In thistalk | will overview the setup and key properties
of random tensor networks, and then discuss how to describe quantum superposition of geometries in this formalism. By introducing quantum link
variables, we show that random tensor networks on all geometries form an overcomplete basis of the boundary Hilbert space, such that each
boundary state can be mapped to a superposition of (spatial) geometries. We discuss how small fluctuations around each geometry forms a &oecode
subspace&€s in which bulk operators can be mapped to boundary isometrically. We further compute the overlap between distinct geometries, and
show that the overlap is suppressed exponentially in an area law fashion, in consistency with the holographic principle. In summary, random tensor
networks on all geometries form an overcomplete basis of &oeholographic coherent states&€e which may provide a new starting point for describing
quantum gravity physics.
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Outline

* Quantum entanglement and tensor networks
* Holographic duality
 Random tensor networks (RTN)

* Two new directions
- Global symmetries
- Fluctuation geometry (holographic coherent states)
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Tensor networks

* Building many-body entangled states from few-qubit
building blocks.

* Tensor contraction just like in Feynman diagrams
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Tensor networks: Physical interpretation

* Projected Entangled Pair States (PEPS)  Vorstraate Fl Ciae D

* 1. Prepare and distribute EPR pairs. Alice, Bob and
Charlie are all entangled with David, but not with
each other.

Alice

|AD)|BD)|CD)
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* 2. David measures the qubits he has.
* pp = |Va)(Va| with probability p, = (Va|pp|Va)

Va)

ﬁ Measurement
,/@\ £ @ | | |

\_ \ //.

Alice

David

* For a given output a, David now has a pure state, but Alice,
Bob and Charlie are entangled. (Entanglement of
assistance, ) A

* [Wapc) = (Vu|lAD)|BD)|CD)
VAL c
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Tensor networks: Physical interpretation

* More generally, measurements occur on multiple
parties, creating a complicated entangled state of the
remaining parties that are not measured.
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Geometry constrains entanglement

o ok
* Entanglement ( i T T T

structure encoded in
geometry (and the

vertex tensors |V})) Py = Z|LPA \w8)
* For example, for any
region 4, 54 <
log Dmin(A)
*or Sy < |yallogD. o (SA
|V4| is the minimal T

surface area
bounding A region.

= 7ank(pA) <D,S, <logD
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Holographic duality

Quantum
Quantum _
gravity <:> field

theory

AdS CFT
Black hole Thermal state
Z = [ Dpe=S Z = [ DyeS

Boundary condition of ¢ (0O) local operators

Classical equation of RG flow
motion

(Maldacena 97, Witten '98, Gubser, Klebanov & Polyakov '98)
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Area measures entanglement
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Entanglement entropy

= 5,

Minimal surface area

L
4G, 14

Ryu&Takayanagi ‘06
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Tensor networks and holography

boundary bulk

Energy
spectrum |

* TNW in holography: geometry emerges from the
entanglement structure of quantum states (swingle ‘09)

* Various tensor network related proposals (Nozaki et al "12, XLQ
’13, Hartman&Maldacena ‘13, Maldacena & Susskind 13, Czech et al '14-
15, Pastawski et al ‘15, Yang et al '15)

* Goal: an explicit holographic mapping between bulk and
boundary
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Random tensor networks NG,
* Entanglement quantities are hard to compute >i
for a given tensor networks. T

* Random average greatly simplifies entanglement calculations.

* Arandom tensor V,,; corresponds to
a (Haar) random state in the Hilbert space

V) = V,,LW|M)IV)|T)-
* Random tensor network state

L2 th ¥y =| [(klIP)
I | *_ Link states. EPR pairs
7 ' Random vertex | [Tlxy) or more
| states ‘ general

* The link state can be EPR pairs |P) = [],, |Lyy) but can also
be more general
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Random tensor networks v

* Entanglement quantities are hard to compute
for a given tensor networks. T

V

* Random average greatly simplifies entanglement calculations.

* Arandom tensor V),,,; corresponds to
a (Haar) random state in the Hilbert space

V) = V,,LW|M)I’V)|T)-
* Random tensor network state

1 3 W) =1 [{%lIP)
A A T’ \j
x/ . Link states. EPR pairs

7 ' Random vertex [Tlxy) or more
states general

* The link state can be EPR pairs |P) = [],, |Lyy) but can also
be more general

Pirsa: 17040046 Page 13/35



Renyi entropy calculation

*p = |YNYP| = tr([ L IVix (V| pp) is a linear function of
[V (V|-
* Renyi entropies S, = ilog E:EZ;?

* For any quantity that is polynomial in
p, such as tr(p}), the random
average can be easily obtained.

* For example, second Renyi tr(p3) = tr(p ® pX,)
=tr(pp @ pplXa @ [Lx IV XVa| & [V X (Viel])

- Random average [Vu/ (V.| ® [Vl V.| = —— (I, + X,

DZ+D,
» tr(p3) = const.x tr(pp & ppXa @ [1x(x + Xx))
* Expanding the product gives 2" terms

irsa: 17040046 Page 14/35



» tr(pz) = tr(pp @ ppXs @ [Ty + X)) |
= Z tr(pp @ ppXa ® Xg) = Z 3-5‘592)(}?‘4)

RCShulk RShulk

average
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Purity = Ising partition function

* For a random tensor network

+(23) = 24 = Zigymag A1

* Al{o,}] = S{o, = —1}; pp) “the second Renyi
entropy of o, = —1 domain for state pp = |P){P|”

* Boundary condition: spin l in A and T elsewhere

A 1 Random \A& wl! \ /l\
7, average \ -
S ) ~
1
* The second Renyi entropy S4 = — log——w is the “cost of

free energy” of flipping spins in A from T to l.
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RT formula

* If |P) = [1xylxy) consists of maximally entangled EPR
pairs with rank D,

» Al{oy}] = —5logD Ty 0,0,
-1, x€eA

* Boundary cond. o, = _ .« T2 g
i * {+1,x € A g\f\{ 7t R
. . . d @ - A
* The action is proportional to ﬁ/y\o : O ﬂf/\_ﬁ
the domain wall area. NBSESIE Fa %
(vt 9 § /
s tr(p3) = Xy-ae o8PV B /T R A
"\Pa) = Zy~a€ oL
Y™ ,fl / ?\ﬁ
*D > 0= ‘f({o\c\x’
low T limit of Ising model ‘IWJ{? ”
. B

A
« S = —logtr(p3) =logD |y,| (RT formula)
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Other properties of RTN

* The random average technique applies
to more general networks

* Other properties of RTN:

* tr(p)) = S, spin model partition function

* RT formula with quantum correction
(agree with raulkner, Lewkowycz & I\/laldacena’13)

Sa = 10og D |yal + S(E4, [$pXWp ).
* RT formula for higher Renyi entropies

* Quantum error correction properties
(Almheiri, Dong, Harlow ‘14)

¢, can be reconstructed on boundary
region A if x € Ej,.

* Scaling dimension of operators
* (040p) x (qu(tby)bulk

(For more details see our paper 1601.01694)
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New direction I: Global symmetry

* Random tensor networks capture entanglement
properties, but do not preserve any symmetry

* To describe states on the boundary with global
symmetry, the tensors need to satisfy further
constraints

* Consider on-site global symmetry
Hx 9x W) = |'¥)
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Symmetric tensor networks

* Sufficient condition to preserve symmetry: requiring
each tensor to be symmetric. (singh, pfeifer, vidal '10)

* Fix representation for each (oriented) leg

e -

P e L
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Symmetric random tensor networks

* Generalization of RTN: Symmetric-but-otherwise-
random tensor networks.

* Representation of each link H=® ;c;rrep IH]®n‘

* Irreducible rep. i appears n; times.

1 'k 1 'K
* General form of the tensor Tabc By = ajﬁy ajbcfl]k
o /,/ y/,
._,/jf;"7/ / \
Clebush- it Normalization |
Gordon ; Random thatisijk |
coefficients ‘ tensor in abc || dependent
for fixed ijk

Cui, XLQ, Yang, to appear ‘17
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Bulk gauge field

KA =
/ N

Za

* Contraction of a, 3,y ... leads to a bilayer structure of

wavefunction = _ |
. gauge field Y i
ITTTITIT I IIT] 9[{xy}]

G t .
(random::rzzrr:etwork) T |{ny}>

* [Wa) = Z:{zxy} Wy [{ixy } [{iy 1)
* A bulk gauge field with wavefunction ¥, [{ixy}] (Levin-Wen
05)
* Maybe confined or deconfined, controlled by fl.].k
Cui, XLQ, Yahg, to appear ‘17
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Gauge field contribution to entanglement

* Modified RT formula (for large multiplicity n;) N

* Sy =logD [Val + Sgauge(EA)

* For discrete gauge theory in
deconfined phase,
Sgauge(C) = aldC| — Stop, , for bulk region C
Stopo = 10g Dy.

* D, is the total quantum dimension.
* What is the consequence of S;,,, on the boundary?

* Consider situation with topology change of y,.
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Gauge field contribution to entanglement

* Consider a thermal double state
for symmetric stEEtes
T

ITFD) = Yne 2z |n) |n)g.
e Dual to an eternal black hole.

small region large region
* Entropy reduction Sa
* Physical interpretation: | .
Only large region knows the ‘ 7 NS tome
whole state is symmetric /
(with zero charge). — > |4l

Cui, XLQ, Yang, to appear ‘17
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Bulk gauge field

\
S 45 N/
* Contraction of a, 3,y ... leads to a bilayer structure of
wavefunction bulk gauge field J ]
TTTT LTI TTTITT] Yo [{ixy}]
| Geometry L |{L })
' (random tensor network) xy

*1Wa) =2y 1 Yo {3 {iay })
* A bulk gauge field with wavefunction ¥, [{ixy}] (Levin-Wen
05)

* Maybe confined or deconfined, controlled by fl.].k
Cui, XLQ, Yahg, to appear ‘17
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New direction Il: fluctuating geometries

* RTN represent ‘ansatz states” with various
holographic properties

* To describe quantum gravity, we need to allow
superposition of geometries

* RTN with geometry fluctuation
can be defined by
considering link qudits

la) = Les1a)|B)

* a controls the entanglement
of this link

a a p 4
® '/’zaﬁ

XLQ, Yang, You arxiv: 1703.06533
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Superposition of geometries )

* So X aincreases with a. o o o

* {(a|lb) = 8,4. |a = 0) = [0)|0) corresponds to a
disconnected link

* Random tensors map each weighted graph ay,, to a
boundary state

Il{J[a]) = nx(‘/g(l ny Iaxy) l_[xEB IXX>'

* |Y[a]) are “geometry states”
satisfying RT formula.

 Question: Do |W[a]) form an
(over-)complete basis?
Short answer: Yes. |Y|a]) are
“holographic coherent states”
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Boundary-to-bulk isometry

« With enough number of bulk vertices, |Y[a]) is an
overcomplete basis satisfying W
Yo |¥lal¥la]l =1 nd

* Boundary-to-bulk isometry M

* To prove this, define \
pg = Xq|Plal)(W¥[a]|, and calculate

tr(pz). Maximal entropy = Isometry \

* The random average maps
to Ising model on the complete graph

J h 1
¢ A= —szy SxSy — szsx + ElogDerB Sy

V ; 1 log D, Boundary pinning field

1
jzsx—zlogDL h =
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Boundary-to-bulk isometry

* [sometry condition: bulk pinning field wins.
* Minimal energy configuration “all up” s,, = +1

* Sufficient condition:
V-1
2
_ 2 ) .
tr [p%)fg X h” < tr [p%),d'g X g] tr [p§,4h X h]
(for all g # h elements of permutation group S,)

log D; > log D

* 4-th order permutations appear in order to bound the
2

fluctuation tr(pé)z = tT(Pé)
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Small fluctuations

* If we take D; to be large, we can
define small fluctuation around
a classical geometry.

* |W[ay, + da))
+18al < A )L
* In the limit D; — oo, finite

A, there is an isometry
from bulk to boundary.

¢ 05 = YsalPlap + 8al)(W[ao + 8a ]|
* |Isometry condition

(V-1)
tr(aB)— =

=2A+1) =z

bulk
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Small fluctuations

y
* The small fluctuations form a “code  / \% ,
subspace” H,. |

* Emergent bulk locality in the code
subspace.
¢, is actually P,¢, P, only acting on H,.

* Bidirectional holographic mapping:
- boundary — bulk in entire Hilbert space

- bulk—= boundary in H,
A
code subspaces  cemeili— boundary
. f 26 \ P
* Local reconstruction /i \ / / L\
/ ‘ ] | ' : \
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Classical geometries

* Overcompleteness = boundary state |®) =
Y..(P[a]|P)|W[a]) can be expanded in geometries

* However, it will be bad if the basis is “too
overcomplete”, s.t. significantly different geometries
have a big overlap.

* Cqp = (Plal|¥[b])

* [Capl® = ZRgmflk tr(_Png)ganBl_VB
3587 R+ (®))

< ZR,(a:b)R e

s [
VR VU R
BT 2 G N
~ v 0 ~\ |

/ T \/\ ?\"’“\rw "\"/
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Classical geometries

* Example:

e a # bforalllinks = |C,,|2 =D~ VB

1
* For generic regions, Large D limit |[Cyp|% < e 2(rlatlvlp)

e ¥: minimal area surface enclosing the region a # b.
* Inner product suppress exponentially with area law.
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Comparison with boson coherent states

* Boson coherent state of a superfluid |¢p(x)) =
e/ a%xp(Ib* () o)

* Overcomplete basis [ Dp|d)P| = 1
» Overlap [{(¢|¢")| = exp(—[ d®x|¢(x) —

¢’ (x)|?) ~e™V for distinct states

* Small fluctuations around a state ¢ (x) are subspaces
of independent excitations (Goldstone modes)

* Key difference: volume A Al
law versus area law in

overlap. {(a|b)~e 4 \

—_—
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Summary and open questions

* Random tensor networks encode entanglement properties
geometrically

* Global symmetry is mapped to gauge symmetry in the bulk

* Random tensor networks form a basis of “holographic
coherent states”. A generic boundary states is mapped to a
superposition of geometries Y., ¢, |¥Y[a])

* Overlap between different geometries suppressed by exp
of area law.

* Bulk to boundary isometries in code subspace of small
fluctuations

* Open question:
- Continuous symmetry. Gapless photons?
- Optimization of geometry for a given boundary state. -
Comparison with GR calculation? (e.g. b. Jafferis 1703.01519)
- Einstein equation from boundary dynamics?
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