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Abstract: Tensor networks have primarily, thought not exclusively, been used to the describe quantum states of lattice models where there is some
inherent discreteness in the system. This raises issues when trying to describe quantum field theories using tensor networks, since the field theory is
continuous (or at least the regulator should not play a central role). I'll present some work in progress studying tensor networks designed to directly
compute correlation functions instead of the full state. Here the discreteness arises from our choice of where and how to probe the field theory. This
approach is roughly analogous to studying a Legendre transform of the state. I'll discuss the properties of such networks and show how to construct
them in some cases of interest, including non-interacting fermion field theories. Partly based on work with Volkher Scholz and Michael Walter.
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Overview

* Conceptually different approach to what it means to describe a
quantum field theory with a tensor network

* Tensor networks for correlation functions (instead of for the “bare”
quantum state)

* Various examples and properties

* Main result: A rigorous construction of a MERA-like network for 1+1
Dirac field with provable error bounds (use wavelets, c.f. Evenbly-
White)
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Tensor network states for lattice models

Fine grained lattice model:
00000000 000000000 0000O0O0CROCOCFOCGIOCGNOGIOGINOGINOINOOINOIOINOPININOPNOTINTNNTYTS

Fine grained tensor network:

- 00606606000000006064440060600000000000000000

Perhaps we are interested only in marked points:

0600000000000 00000600400600000000000000
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Tensor networks for correlation functions

0066060000666 0066000080000000000000b6000000

(Lol el ] elILIIII Iel[ILI]
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General definition

O . . operator choice
{ Lqg Oy }

Clary.c,an) =Tr(pOygy ay---Ox, a0,

Underlying system can be continuous; discreteness is
imposed in our choice of how to probe the system
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Comments

* Completeness: In a lattice model, given a sufficiently dense and
complete set of operators, the object Cis equivalent to the state

* Inheritance: Any tensor network for the state also gives a tensor
network for C, but it may not be the most efficient network

* Ambiguity: Given a set of data C, it is not always the case that the
data can arise as the expectation of operators in a positive quantum
state

* Some literature:
* MPS/quantum Hall (Zaletel-Mong),
* MPS/CFTs (Konig-Scholz)
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» Inheritance: Any tensor network Tor
network for C, but it may not be the

» Ambiguity: Given a set of data C, it is
data can arise as the expectation of (
state
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* MPS/quantum Hall (
* MPS/CFTs (
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Example 1: Topological order

- o
o¥

. o
H:—E |IO';—E |IO’§ —~ o~ o”
C - OﬂL

v b{Eew P EEp o..’II

p toric code ground state

{ O } any operators separated all separated by multiple lattice constants
L ,g

Clag,...,apn) = Ci(aq)...Cp(ay)
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Example 2: Bosonic free field (d+1)
I = / B(@qﬁ)z - %mqug

p ground state OCE@ o — ezai Cb (a:?’ ) vertex operators
Y

1
Claq, ..., ap) = exp 5 Z oGz — ;)
0]

G is the 2-point function; if G is short ranged then C is approximately a PEPS
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Example 3: Quench dynamics

—7 ] is a good chaotic
p(t) = € ZHtp()eZHt :amiltgonian t

(), ., = hydrodynamic variables, e.g. energy
density, currents

Simple at early times (assumption)
C(al S eius an) Simple at late times (thermalization)
Simple for all times?
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Example 4: Fermionic free field (1+1)

- % = 2 LV
I - /U)Z’yuauf(/) {fYH»?,Y } gl

Y0 :O-wv Y1 = 10

10y + 10, 0 w_{_ . -
0 10y — 10, ,d)_ = massless!
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Filled Fermi sea
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Pi

IIIII

Ground state

Single particle

@(eikm) _ ezl«.'rg(k,)

T,Z)_|_Z].—(")
Y_ O

ground state projectors

: 17040045

Many particle

Yo (k> 0)Q)
z/a+(k <0)|2) =0
v_(k < 0)|Q)
(k> 0)[Q) =0

Many particle “state” and
creation/annihilation operators
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Eigenstates

0y > E, —i0, — k

Yyt BE—k =0

/l/)_ . E + k — O Infinite line:
keR
Circle: o
ke TZ
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Approximating smooth correlation functions?

vilfl = [ def(@) (@) dk
/ W@ o = [ G o)

(w‘|‘ [f]i'/)jl- [g]> - (f’ 69) f and g = delta functions

Suppose f and g are smooth functions; can we approximate the ground
state correlation function using an approximation of the projector?

Crucial: We will never get all the fine grained information, but we can
get correlators of smoothed and separated operators!
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Multiresolution analysis (MRA)

1. Union of spaces is dense

VO C V]_ C V2 o~ 2. Spaces generated by scaling and

translating a single function

Scaling function (father wavelet): s()

V; = span{s; o(v) a1 21 Sja(z) =5(2'0 —a277L)

Wavelet function (mother wavelet): w(x)
Vi=V,_1 & W, wjo(r) =w(2r —a27’L)

generates the wavelet space

irsa: 17040045 Page 18/27




Approximating smooth correlation functions

* Smooth functions can be well approximated using MRA tools

~ O(277) x Sobolev norm( f)
2

> fa277L)sja - f

* Hence, if we can approximate the ground state projector on MRA
spaces, then we can approximate smooth correlation functions

* Roughly speaking, one approximates the continuum with a
discretuum with a finite dimensional Hilbert space whose correlators
approximate those of the continuum system
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Approximating the projector

- -|_

| 2- A roxim ~ approximation should be local; can be
Goa HIO ate U U UA'I used to build a MERA-like circuit

Proceed via the Hilbert transform:

H(Gik::r) _ ?:Sigll(k')(?ikm @ — 1_2?:%
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Hilbert pairs

* Suppose we had a pair of wavelets that were Hilbert transform pairs
w? = H(wV)

* Discrete wavelet transform

DOV, s Vie W &...o W

* Idea: H = (D?)TDWM)
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Calculation

gLl (1 P 0 11

2\ 1 i 0 D®¥ 1 -1
1 0 171 1 1 iH 11

f e

U(o o)U—4(1—1)<m 1)(1—1)

1 0 1/ 1+iH 0
t _ =
U(o O)U—Q( 0 1—?:?{)
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Construction of wavelet transform

* We still need to construct an approximate Hilbert pair with locally
implementable discrete wavelet transformation

* Fortunately, Selesnick and co-workers have already done this!

* Being Hilbert transform pairs translates into the corresponding filters
having a “half-delay shift”

s(x) = \/EZ F(n)s(2x —n) ,/7(2)(7’1,) = J—-'(l)(n —1/2)

* No exact solution with finite filter, but Selesnick also gave a way to
design good approximations
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Result

>_ Finite number
of layers, e.g. 2

/

s w s w S w

(U LA]- ¢ faly 1] 0 [gm] 1€2)
— (circuit| [ f1]...x0[fn )0 [g1]... 0T [gm]|circuit)| < e(n, m, wavelets)
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Construction of wavelet transform

* We still need to construct an approximate Hilbert pair with locally
implementable discrete wavelet transformation

* Fortunately, Selesnick and co-workers have already done this!

* Being Hilbert transform pairs translates into the corresponding filters
having a “half-delay shift”

s(x) = \/EZ F(n)s(2z —n) ]-—(2)(71,) = f-'(l)(n —1/2)

* No exact solution with finite filter, but Selesnick also gave a way to
design good approximations
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Summary

* Tensor networks can (of course) be used to describe the physics of
correlation functions directly

* Particularly well suited to quantum field theories, but also probably
useful in other contexts

* Generalize beyond states at fixed time: operator insertions in
Euclidean path integral, insertions on real time contours

* Rigorous RG network for a quantum field theory (Dirac 1+1); many
generalizations are possible (lattice w/ J. Haegeman, M. Bal, J. Cotler,
V. Scholz, M. Walter)
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