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Introduction

Like many Disney®© tales, we begin with young hero, and a dream...

If only we understood quantum
gravity...

Thankfully his wish was granted:
AdS/CFT Duality
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We have a UV complete theory of quantum gravity in terms of a dual
CFT...

Makoto Natsuume

AdS/CFT

ﬁ.}"’éﬁl@ P‘LE_K_

AN

Duality
User Guide

e

Sl 5%
=

g
T e N L
TN EASIEIN S

e

but we haven’t been given the tools to completely translate between
them.

How do we see classical geometry and gravitational physics emerge
from CFT description?

Perhaps we need simpler toy models of holography to make
progress...
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Outline

1. Review of Gauge/Gravity Duality
2. MERA as Emergent Geometry
3. Gravitational Physics from Toy Tensor Networks

This Talk: pedagogical review

Based on: [Swingle]
[Pastawski, Yoshida, Harlow, Preskill]
[Hayden, Nezami, Qi, Thomas, Walter, Yang]
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Gauge/Gravity Duality
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AdS/CFT Duality
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Conformal Field theory
d-dimensions

..........
........
0. .0

Theory of Gravity
(d+1)-dimensions

Page 8/143



AdS/CFT Duality

Conformal Field theory Theory of Gravity

d-dimensions (d+1)-dimensions

Oa AN 7N
B\ "

ZC’FT ZGrav

l Sl aaiieg lSemic/assical Limit

Classical geometry, Perturbative
gravity

(01020304) o @ — lim(p102¢3¢4)
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Ad S/C FT D u a | ity [cf. Heemskerk, Penedones, Polchinski, JS]

Only particular class of CFTs expected to have a ‘good’ gravitational dual:
What are these CFTs?

Consider a CFT that has: :

1. Large central charge: ¢ >> 1 (—) > 1

i L, Perturbative effective
2. Whose correlators factorize: fields in bulk

(O1(21)O01(22)O2(23)O2(24)) = (O1(21)O1(22)) (O2(23)O2(24)) + O(1/¢)
3. Whose spectrum of conformal dimensions is sparse:

Low-energy fields Black hole states
O 0% 000 O(c)

Then this CFT is dual to a theory of gravity whose low-energy energy
description is gravity plus effective field theory of field ¢ dual to O.
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AdS/CFT Duality

If we consider some state, | Y), in the CFT

CFT Gravitational Theory

it also describes some geometry in the gravitational theory.

Pirsa: 17040041 Page 11/143



AdS/CFT Duality

If we consider some state, | Y), in the CFT

CFT Gravitational Theory

it also describes some geometry in the gravitational theory.

Pirsa: 17040041 Page 12/143



AdS/CFT Duality

If we consider some state, | Y), in the CFT

CFT Gravitational Theory

it also describes some geometry in the gravitational theory.

Pirsa: 17040041 Page 13/143



AdS/CFT Duality

If we consider some state, | Y), in the CFT

CFT Gravitational Theory

it also describes some geometry in the gravitational theory.
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AdS/CFT Duality

* In the case where [) is the vacuum, the dual spacetime is maximally
symmetric, negative curvature anti-de Sitter Space (AdS)

Global AdS

(—dt® + dp* + sin® pd25_, )

time

Pirsa: 17040041 Page 15/143



AdS/CFT Duality

* In the case where |) is the vacuum, the dual spacetime is maximally
symmetric, negative curvature anti-de Sitter Space (AdS)

Global AdS

ds® = 1

cos? p

(—dt? + dp® + sin? pd27_,)

Poincare Patch

thin— 3—2 (d2?® — dt* + di?)

Spatial Slice: Hyperbolic Disk

e
.....
2 B
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Reconstructing Bulk Geometry

How do we determine the bulk geometry (and the dynamics of this
background) from the CFT?

Given a state | Y ) want to know:

1) When is | ¥ ) dual to a classical gravitational background?

2) What probes can we use to most efficiently determine the
classical background?

3) How do we describe the local dynamics in these backgrounds?
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[Banks, Douglas, Horowitz, Martinec; Bena;
Hamilton, Kabat Lifschytz, Lowe;

l—O Ca | B u | k O pe rato rS Heemskerk, Marolf Polchinski, JS]

What does local bulk physics look like in terms of CFT operators?

* Best understood perturbatively about the AdS vacuum:
* Near the boundary, AdS/CFT dictionary: 1in(1) z dle2)= 0(x%)
Z—

* Further into the bulk: HKLL
Global Reconstruction:

-
I
_
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[Banks, Douglas, Horowitz, Martinec; Bena;
Hamilton, Kabat Lifschytz, Lowe;

l—O Ca | B u | k O pe rato rS Heemskerk, Marolf Polchinski, JS]

What does local bulk physics look like in terms of CFT operators?

* Best understood perturbatively about the AdS vacuum:
* Near the boundary, AdS/CFT dictionary: 1in(1) z dle2)= 0(x%)
zZ—

* Further into the bulk: HKLL
Global Reconstruction: Rindler Reconstruction:

oz, 2) = /ddar.:'K_,,(:z:,z\:x:’)(f)(:x:')
> >
WL

> - S
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[Banks, Douglas, Horowitz, Martinec; Bena;
Hamilton, Kabat Lifschytz, Lowe;
Loca | B u | k O pe rato rS Heemskerk, Marolf Polchinski, JS]
What does local bulk physics look like in terms of CFT operators?

* Best understood perturbatively about the AdS vacuum:
* Near the boundary, AdS/CFT dictionary: 1in(1) z dle2)= 0(x%)
Z—

* Further into the bulk: HKLL
Global Reconstruction: Rindler Reconstruction:

oz, 2) = /r_ld:I:’K,,(:zrjz\:;r:’)(’)(:x:’) ol 2) = /ddﬂ{!’f{r(il?, z|z"O(z)

©  Local Bulk Operator

Non-local boundary

T S| - operator

* Supported on causal

\_/ region

i
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Geometry and Entropy

What about non-perturbative probes to study non-trivial backgrounds?

* Long history suggestive that there is a deep connection between

spacetime and entropy:

* Black hole thermodynamics: 6 £ =T dS

SBH =

i
4G N

* BH thermo can be used to derive Einstein equation
* Thermofield double state of two CFTs (L and R):

TFDy =N e PF/%|E)L|E)g
FE
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[Jacobson]

[Maldacena]
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Geometry and Entropy

What about non-perturbative probes to study non-trivial backgrounds?

* Long history suggestive that there is a deep connection between

spacetime and entropy:

* Black hole thermodynamics: 6 £ =T dS

Spn =

i
4G N

* BH thermo can be used to derive Einstein equation
* Thermofield double state of two CFTs (L and R):

TFDy =N e PF/%|E)L|E)g
FE

Spr = —tr[prlog pg]

Black hole entropy is entanglement entropy
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[Jacobson]

[Maldacena]
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[Ryu, Takayanagi; Hubeny,

Ryu _Ta kaya n a gl Rangamani, Takayanagil]
* Consider a spatial region of a single CFT:

What bulk object computes the entanglement
entropy of the region A?

Ay
M e

N

(d — 1) — dimensional

Radial direction into bulk
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[Ryu, Takayanagi; Hubeny,

Ryu _Ta kaya n a gl Rangamani, Takayanagi]
* Consider a spatial region of a single CFT:

What bulk object computes the entanglement
entropy of the region A?

Ay
S(A) = ext ——
- ( ) Z?EA 4G N
(d —:-\dimensional

(This has corrections from higher-
curvature and quantum contributions

in the bulk.)

Radial direction into bulk
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[Ryu, Takayanagi; Hubeny,

Ryu _Ta kaya n a gl Rangamani, Takayanagil]
* Consider a spatial region of a single CFT:

What bulk object computes the entanglement
entropy of the region A?

| »~A 4G N
r\'f\

(d - 1) — dimensional (This has corrections from higher-
curvature and quantum contributions

in the bulk.)

Radial direction into bulk

Entanglement entropy gives us non-perturbative, non-local probes of the dual bulk
geometry
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[Lashkari, McDermott, van Raamsdonk; Faulkner, Guica, Hartman,

. Myers, van Raamsdonk; Swingle, van Raamsdonk; Lin, Marcollil,
Ry u -Ta ka ya n a g I Ooguri, Stoica; Czech, Lamprou, McCandlish, Mosk, Sully;]
Suggestive of picture where CFT entanglement seems to constitute bulk
geometry.

Can we reconstruct the bulk geometry from these probes?

* A lot of progress showing how to read off bulk geometry and Einstein
equation from this data (Bulk Tomography)

* But would like to understand how/why
geometry emerges from entanglement.
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[Lashkari, McDermott, van Raamsdonk; Faulkner, Guica, Hartman,

. Myers, van Raamsdonk; Swingle, van Raamsdonk; Lin, Marcollil,
Ry u -Ta ka ya n a g | Ooguri, Stoica; Czech, Lamprou, McCandlish, Mosk, Sully;]
Suggestive of picture where CFT entanglement seems to constitute bulk
geometry.

Can we reconstruct the bulk geometry from these probes?

* A lot of progress showing how to read off bulk geometry and Einstein
equation from this data (Bulk Tomography)

 But would like to understand how/why
geometry emerges from entanglement.

* Also: entanglement can be blind to
important regions of bulk geometry:
‘entanglement shadows’

[Balasubramanian, Chowdhury, Czech, de Boer]
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[Lashkari, McDermott, van Raamsdonk; Faulkner, Guica, Hartman,

. Myers, van Raamsdonk; Swingle, van Raamsdonk; Lin, Marcollil,
Ry u -Ta ka ya n a g | Ooguri, Stoica; Czech, Lamprou, McCandlish, Mosk, Sully;]
Suggestive of picture where CFT entanglement seems to constitute bulk
geometry.

Can we reconstruct the bulk geometry from these probes?

* A lot of progress showing how to read off bulk geometry and Einstein
equation from this data (Bulk Tomography)

 But would like to understand how/why
geometry emerges from entanglement.

* Also: entanglement can be blind to
important regions of bulk geometry: @

‘entanglement shadows’

[Balasubramanian, Chowdhury, Czech, de Boer]

What CFT quantities are needed to see the complete bulk geometry?
Is a different type of CFT correlation responsible for generating these?
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[Almheiri, Marolf, Polchinski, JS;+Stanford;

Black Hole Interior st
One of the most important examples of a region not probed by
entanglement is the interior of a black hole: Singularity

.

Horizon

5y
N

Shell of Matter
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Black Hole Interior

One of the most important examples of a region not probed by

entanglement is the interior of a black hole:

* The BH Information Paradox gives us reason
to doubt the existence of the interior of
a black hole at late times (ie. Firewalls)

Pirsa: 17040041

[Almheiri, Marolf, Polchinski, JS;+Stanford;
Mathur]

Singularity

-~

Horizon

\_
Shell of Matter
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[Almheiri, Marolf, Polchinski, JS;+Stanford;

Black Hole Interior Mathur]

One of the most important examples of a region not probed by
entanglement is the interior of a black hole: Singularity

* The BH Information Paradox gives us reason /

to doubt the existence of the interior of

a black hole at late times (ie. Firewalls) ( /\/

* The interior is in an entanglement shadow

If this region of spacetime exists, how is
it encoded by the CFT?

SeII of Matter
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Sub-region Duality

How non-local is the mapping between the boundary and the bulk?

* Given the density matrix for a spatial region on the boundary, how
much of the bulk can | reconstruct?

* Can compute EE for all sub-regions = Suggests we
should be able to reconstruct out to RT surface, the
Entanglement Wedge W ,
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Sub-region Duality
How non-local is the mapping between the boundary and the bulk?

* Given the density matrix for a spatial region on the boundary, how
much of the bulk can | reconstruct?

* Can compute EE for all sub-regions = Suggests we
should be able to reconstruct out to RT surface, the
Entanglement Wedge W ,
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Sub-region Duality

What can we actually do?

Constructive:

* Can build bulk operators in regions
to boundary (HKLL) A4 Ca da |A
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Sub-region Duality

What can we actually do?

Constructive:

* Can build bulk operators in regions
to boundary (HKLL) A4 Ca da |4

Less Constructive: [Dong, Harlow, Wall]
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Sub-region Duality

What can we actually do?

Constructive:

* Can build bulk operators in regions
to boundary (HKL) @Al Ca da |4

Less Constructive: [Dong, Harlow, Wall]

* There is a prescription to construct operators in the entanglement
wedge, but requires knowledge of modular Hamiltonian for region
—> Hard to carry out explicitly
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Sub-region Duality

What can we actually do?

Constructive:

* Can build bulk operators in regions
to boundary (HKLL) A4 Ca da |4

Less Constructive: [Dong, Harlow, Wall]

* There is a prescription to construct operators in the entanglement
wedge, but requires knowledge of modular Hamiltonian for region
- Hard to carry out explicitly

Are there concrete scenarios to explore sub-region duality?
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Toy Models for Holography?

To summarize, we are interested in:

How do we see the emergence of classical bulk geometry?
What are effective non-perturbative probes of this geometry?
How do see into regions shadowed from entanglement?

- N

Are there practical approaches to understanding duality for sub-
regions?
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AdS / MERA



MERA and Holography Swinglel

Sometime circa 2009, Brian Swingle was staring at a MERA network...

And realized that one can assign a natural
discrete Euclidean metric to translations in the
network:
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MERA and Holography Swinglel

Sometime circa 2009, Brian Swingle was staring at a MERA network...

And realized that one can assign a natural
discrete Euclidean metric to translations in the
network:

An® = An? + 2 % ™0) Ap?
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MERA and Holography Swinglel

Sometime circa 2009, Brian Swingle was staring at a MERA network...

And realized that one can assign a natural

discrete Euclidean metric to translations in the
network:

An® = An? + 2 % ™0) Ap?

ds® = dp? + e 2Pdx?
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MERA and Holography Swinglel

Sometime circa 2009, Brian Swingle was staring at a MERA network...

And realized that one can assign a natural

discrete Euclidean metric to translations in the
network:

An® = An? + 2 % ™0) Ap?

ds® = dp? + e 2Pdx?
1
dss — Z—z(alz2 + dz?)

Hyperbolic Metric

Pirsa: 17040041
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MERA and Holography

It looks as though MERA generates a spatial slice of the AdS geometry
dual to the CFT ground state:
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MERA and Holography

It looks as though MERA generates a spatial slice of the AdS geometry
dual to the CFT ground state:

* Both have natural hyperbolic metrics

* Both have an extra-dimension that
emerges

Pirsa: 17040041 Page 51/143



MERA and Holography

It looks as though MERA generates a spatial slice of the AdS geometry
dual to the CFT ground state:

* Both have natural hyperbolic metrics

* Both have an extra-dimension that
emerges

* The extra ‘radial’ dimension is associated
to the RG in both schemes
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MERA and Holography

This very simple model also realize more features of the duality:

Consider the region of the MERA network
responsible for computing the density matrix of a
region:
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MERA and Holography

This very simple model also realize more features of the duality:

Consider the region of the MERA network

responsible for computing the density matrix of a

region:

* Implements unitary transformation between IR
and UV density matrix

* Entanglement entropy is bounded by dimension

of IR Hilbert space:
S(A) S Neut log X

PIR
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MERA and Holography

This very simple model also realize more features of the duality:

Consider the region of the MERA network

responsible for computing the density matrix of a

region:

* Implements unitary transformation between IR
and UV density matrix

* Entanglement entropy is bounded by dimension
of IR Hilbert space:

S(A) S Neut 1Og X

* Better yet, it has been shown that each scale
contributes approximately equally to the entropy
so that

PIR

S(A) = Necut log Xeff
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MERA and Holography

Entanglement entropy or a region in MERA: is given by length of cut:




MERA and Holography

Entanglement entropy or a region in MERA: is given by length of cut:

Beautiful correspondence to length of RT surface in spatial slice of
AdS!
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M E RA a n d H O | Og ra p hy [Czech, Lamprou, McCandlish, JS; Beny]

A short detour:

One feature of MERA not particularly well-
captured by this equivalence is its causal structure:
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M E RA a n d H O | Og ra p hy [Czech, Lamprou, McCandlish, JS; Beny]

A short detour:

One feature of MERA not particularly well-
captured by this equivalence is its causal structure:

1
ds® = 2—2(—dz2 + dz?)

de Sitter Metric
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[Czech, Lamprou, McCandlish, JS; Beny]

Kinematic Space

What is this de Sitter space we have associated to
MERA?
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. . [Czech, Lamprou, McCandlish, JS; Beny]
Kinematic Space

What is this de Sitter space we have associated to
MERA?

Natural to associate point with interval on
boundary in its causal past.
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. . [Czech, Lamprou, McCandlish, JS; Beny]
Kinematic Space

What is this de Sitter space we have associated to
MERA?

Natural to associate point with interval on
boundary in its causal past.

de Sitter is the space of intervals of the CFT:

Kinematic Space

Pirsa: 17040041
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MERA: dS vs AdS

Is there a correct answer for the right gravitational analog of MERA?
Probably not: real space and kinematic space are really dual to each other
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MERA: dS vs AdS

Is there a correct answer for the right gravitational analog of MERA?
Probably not: real space and kinematic space are really dual to each other

1) Forget that MERA us composed of unitaries
with a direction and consider it as an
undirected graph. This looks like hyperbolic
space.
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MERA: dS vs AdS

Is there a correct answer for the right gravitational analog of MERA?
Probably not: real space and kinematic space are really dual to each other

1) Forget that MERA us composed of unitaries
with a direction and consider it as an
undirected graph. This looks like hyperbolic
space.

2) From the center, add arrows to indicate the
direction/action of the isometries and
unitaries. (Now we have MERA with a causal
structure.) This looks like de Sitter.
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MERA: dS vs AdS

Is there a correct answer for the right gravitational analog of MERA?
Probably not: real space and kinematic space are really dual to each other

1) Forget that MERA us composed of unitaries
with a direction and consider it as an
undirected graph. This looks like hyperbolic
space.

2) From the center, add arrows to indicate the
direction/action of the isometries and
unitaries. (Now we have MERA with a causal
structure.) This looks like de Sitter.

3) This duality assigns an interval on the
boundary to the point on the RT surface
closest to the center.
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MERA: dS vs AdS

Is there a correct answer for the right gravitational analog of MERA?
Probably not: real space and kinematic space are really dual to each other




MERA: dS vs AdS

Is there a correct answer for the right gravitational analog of MERA?
Probably not: real space and kinematic space are really dual to each other
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MERA: dS vs AdS

Is there a correct answer for the right gravitational analog of MERA?
Probably not: real space and kinematic space are really dual to each other
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MERA: dS vs AdS

Is there a correct answer for the right gravitational analog of MERA?
Probably not: real space and kinematic space are really dual to each other
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MERA and Holography

Comments
* Every tensor of MERA gives a large region of AdS size

55 = 0(c) ~ ~ L ags
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* Can we probe sub-AdS physics?
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MERA and Holography

Comments
* Every tensor of MERA gives a large region of AdS size

55 = 0(c) ~ ~ L ags

* Can we probe sub-AdS physics?
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MERA and Holography

Comments
* Every tensor of MERA gives a large region of AdS size

55 = 0(c) ~ ~ L ags

* Can we probe sub-AdS physics?

\f“‘\f\"la
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Classical Geometry and Random
Tensor Networks
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Beyond the Vacuum

AdS/MERA gives a beautiful description of the ground state. How do
we extend this?

Want to understand both directions:

1. Given a state |Y) far from the vacuum, how do | find an
appropriate tensor network description?

* Tensor networks are enormously redundant. There may be one that looks like
dual bulk geometry, but what about a generic one...
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AdS/MERA gives a beautiful description of the ground state. How do
we extend this?

Want to understand both directions:

1. Given a state |Y) far from the vacuum, how do | find an
appropriate tensor network description?

* Tensor networks are enormously redundant. There may be one that looks like
dual bulk geometry, but what about a generic one...

* What constraints do | need so that this tensor network represents the dual
geometry?

2. Given a bulk geometry, how can | convert it to a tensor network to
write down a CFT state consistent with that geometry (ie the same
EE as given by RT)?
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Beyond the Vacuum

AdS/MERA gives a beautiful description of the ground state. How do
we extend this?

Want to understand both directions:

1. Given a state |Y) far from the vacuum, how do | find an
appropriate tensor network description?

* Tensor networks are enormously redundant. There may be one that looks like
dual bulk geometry, but what about a generic one...

* What constraints do | need so that this tensor network represents the dual
geometry?
2. Given a bulk geometry, how can | convert it to a tensor network to
write down a CFT state consistent with that geometry (ie the same
EE as given by RT)?
* There are many CFT states with same classical geometry, so not unique
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G eo m et ry 9 TN % State [Czech, Hayden, Lashkari, Swingle]

Let’s begin with second question:

Finding geometric TN would likely be hard (impossible?) for a generic CFT.
But CFTs conjectured to have good bulk descriptions are special:
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[Czech, Hayden, Lashkari, Swingle]

Geometry = TN - State

Let’s begin with second question:

Finding geometric TN would likely be hard (impossible?) for a generic CFT.
But CFTs conjectured to have good bulk descriptions are special:

* Large central charge, ¢, and a large gap.
One entropic consequence:
* Consider the smooth min- and max-entropies
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[Czech, Hayden, Lashkari, Swingle]

Geometry = TN - State

Let’s begin with second question:

Finding geometric TN would likely be hard (impossible?) for a generic CFT.
But CFTs conjectured to have good bulk descriptions are special:

* Large central charge, ¢, and a large gap.
One entropic consequence:
* Consider the smooth min- and max-entropies

He . (p)= min log(rank(a))

lo—pll<e
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Geometry = TN - State

Let’s begin with second question:

[Czech, Hayden, Lashkari, Swingle]

Finding geometric TN would likely be hard (impossible?) for a generic CFT.
But CFTs conjectured to have good bulk descriptions are special:

* Large central charge, ¢, and a large gap.
One entropic consequence:
* Consider the smooth min- and max-entropies

(p) =
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[Czech, Hayden, Lashkari, Swingle]

Geometry = TN - State

Let’s begin with second question:

Finding geometric TN would likely be hard (impossible?) for a generic CFT.
But CFTs conjectured to have good bulk descriptions are special:

* Large central charge, ¢, and a large gap.
One entropic consequence:
* Consider the smooth min- and max-entropies

Hpax(p) = min log(rank(o)) min(P) = max —log(pmax)
lo—pll<e le—pll<e
rpl 8 /1 /k’ P /pl b rl/l—)lunx -
" P " 1/k o :
=~ 0 : = i
e PM S 0) . PM e 0
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G eo m et ry 9 TN % State [Czech, Hayden, Lashkari, Swingle]

Let’s begin with second question:

Finding geometric TN would likely be hard (impossible?) for a generic CFT.
But CFTs conjectured to have good bulk descriptions are special:

* Large central charge, ¢, and a large gap.
One entropic consequence:
* Consider the smooth min- and max-entropies

Heun(p) = min_ log(rank(c)) Cn(p) = MaX —10g(pma)
|lo—pll<e |lo—pll<e
/'pl N /‘I/k‘ B r’pl ™ /l/pumx ™
" Pk 1k o '
= : / 0 ‘. : ]-/plunx
s pM/ e 0 D . pM/ s . 0/
* One finds: min / max(P) = Sun(p) £0(1/c) = nearly flat spectrum

Pirsa: 17040041 Page 90/143



[Hayden, Nezami, Qi, Thomas, Walter, Yang]

Geometry =2 TN

The lesson we should draw:
To good approximation (leading order in 1/c), we can consider all density

matrices to be maximally mixed.
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Let’s begin with second question:

Finding geometric TN would likely be hard (impossible?) for a generic CFT.
But CFTs conjectured to have good bulk descriptions are special:
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[Hayden, Nezami, Qi, Thomas, Walter, Yang]

Geometry =2 TN

The lesson we should draw:
To good approximation (leading order in 1/c), we can consider all density

matrices to be maximally mixed.
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[Hayden, Nezami, Qi, Thomas, Walter, Yang]

Geometry =2 TN

The lesson we should draw:
To good approximation (leading order in 1/c), we can consider all density

matrices to be maximally mixed.

Useful toy model:

= A

MERA Tensors
Detailed spectrum,
OPE Coefficients
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[Hayden, Nezami, Qi, Thomas, Walter, Yang]

Geometry =2 TN

The lesson we should draw:
To good approximation (leading order in 1/c), we can consider all density

matrices to be maximally mixed.

Useful toy model:

= A -

MERA Tensors Random Tensor
Detailed spectrum, Flat spectrum
OPE Coefficients (large bond dimension)
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[Hayden, Nezami, Qi, Thomas, Walter, Yang]

Geometry =2 TN - State

Consider an arbitrary geometry:

&

N
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Geometry =2 TN - State

Consider an arbitrary geometry:
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Geometry =2 TN - State

Consider an arbitrary geometry:
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[Hayden, Nezami, Qi, Thomas, Walter, Yang]

Geometry =2 TN - State

Consider an arbitrary geometry:

Random (e.g. Haar)
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[Hayden, Nezami, Qi, Thomas, Walter, Yang]

Geometry =2 TN - State

Consider an arbitrary geometry:
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[Hayden, Nezami, Qi, Thomas, Walter, Yang]

Geometry =2 TN - State

Consider an arbitrary geometry:

Random (e.g. Haar)

) = X 4 5 %Y V:L
) ((M>€E< y|) (we‘) >)
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[Hayden, Nezami, Qi, Thomas, Walter, Yang]

Geometry =2 TN

What is the entanglement entropy?
Bounded from above by the smallest cut through the tensor network.
Bounded from below by the second Renyi entropy:

S2(A) = —log trpQA

One can show:

E [trp%] oc Y e 1os(DIOT4]
['a
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[Hayden, Nezami, Qi, Thomas, Walter, Yang]

Geometry =2 TN

What is the entanglement entropy?
Bounded from above by the smallest cut through the tensor network.
Bounded from below by the second Renyi entropy:

S2(A) = —log trp

One can show: A

E [trp‘i] X Z e~ 10g(D)[0T 4| A€
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[Hayden, Nezami, Qi, Thomas, Walter, Yang]

Geometry =2 TN

What is the entanglement entropy?
Bounded from above by the smallest cut through the tensor network.
Bounded from below by the second Renyi entropy:

A

S2(A) = —log trp?q

One can show: A

E [trp%] X Z e~ 10g(D)[0T 4| A€
['a
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[Hayden, Nezami, Qi, Thomas, Walter, Yang]

Geometry =2 TN

What is the entanglement entropy?
Bounded from above by the smallest cut through the tensor network.
Bounded from below by the second Renyi entropy:

S2(A) = —log trp

One can show: A
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[Hayden, Nezami, Qi, Thomas, Walter, Yang]

Geometry =2 TN

What is the entanglement entropy?
Bounded from above by the smallest cut through the tensor network.
Bounded from below by the second Renyi entropy:

S2(A) = —log trp

One can show: A
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G eo m et ry 9 TN 9 State [Pastawski, Yoshida, Harlow, Preskill]

Comments

* Too flat spectrum in this toy model
* Match the entanglement entropy of a CFT, but not the higher Renyi entropies

Pirsa: 17040041 Page 107/143



G eo m et ry 9 TN 9 State [Pastawski, Yoshida, Harlow, Preskill]

Comments

* Too flat spectrum in this toy model
* Match the entanglement entropy of a CFT, but not the higher Renyi entropies

* |dealization of random tensors: Perfect Tensors

k=n/2
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G eo m et ry 9 TN % State [Pastawski, Yoshida, Harlow, Preskill]

Comments

* Too flat spectrum in this toy model
* Match the entanglement entropy of a CFT, but not the higher Renyi entropies

* |dealization of random tensors: Perfect Tensors

Isometry for any division
(k, n-k)

k=n/2
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G eo m et ry 9 TN 9 State [Pastawski, Yoshida, Harlow, Preskill]

Comments

* Too flat spectrum in this toy model
* Match the entanglement entropy of a CFT, but not the higher Renyi entropies

* |dealization of random tensors: Perfect Tensors

Isometry for any division
(k, n-k)

k=n/2

* Perfect tensor formulation actually predates work with random tensors
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State 2 TN = Geometry

What about the other direction?

How do we take a CFT state and find a tensor network that will tell us
about geometry?

* Not much progress in this direction
* This is an even more interesting question!

Could even ask within scope of ‘maximally entangled’ toy models:

* |s there an algorithm to find random tensor network description of state?
* Are there constraints needed?
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Bulk Physics and Holographic
Maps

Pirsa: 17040041



[Hayden, Nezami, Qi, Thomas, Walter, Yang]
Bulk States

So far we have been discussing correspondence between a tensor
network and a bulk geometry.

But we would also like to describe the perturbative physics in this
background.
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[Hayden, Nezami, Qi, Thomas, Walter, Yang]

Bulk States

So far we have been discussing correspondence between a tensor
network and a bulk geometry.

But we would also like to describe the perturbative physics in this
background.

* Want not one state, but a Hilbert space of perturbative states
associated to each tensor network.
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Bulk States

So far we have been discussing correspondence between a tensor
network and a bulk geometry.

But we would also like to describe the perturbative physics in this
background.

* Want not one state, but a Hilbert space of perturbative states
associated to each tensor network.

* Already happens in MERA:
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[Hayden, Nezami, Qi, Thomas, Walter, Yang]

Bulk States

So far we have been discussing correspondence between a tensor
network and a bulk geometry.

But we would also like to describe the perturbative physics in this
background.

* Want not one state, but a Hilbert space of perturbative states
associated to each tensor network.

* Already happens in MERA:
|10)
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[Hayden, Nezami, Qi, Thomas, Walter, Yang]

Bulk States

So far we have been discussing correspondence between a tensor
network and a bulk geometry.

But we would also like to describe the perturbative physics in this
background.

* Want not one state, but a Hilbert space of perturbative states
associated to each tensor network.

* Already happens in MERA:
10)
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[Hayden, Nezami, Qi, Thomas, Walter, Yang]

Bulk States

So far we have been discussing correspondence between a tensor
network and a bulk geometry.

But we would also like to describe the perturbative physics in this
background.

* Want not one state, but a Hilbert space of perturbative states
associated to each tensor network.

* Already happens in MERA:
10)

7'LBulk X HBoundary
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[Hayden, Nezami, Qi, Thomas, Walter, Yang]

Bulk States

So far we have been discussing correspondence between a tensor
network and a bulk geometry.

But we would also like to describe the perturbative physics in this
background.

* Want not one state, but a Hilbert space of perturbative states
associated to each tensor network.

* Already happens in MERA:
|10)
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[Hayden, Nezami, Qi, Thomas, Walter, Yang]

Bulk States

So far we have been discussing correspondence between a tensor
network and a bulk geometry.

But we would also like to describe the perturbative physics in this
background.

* Want not one state, but a Hilbert space of perturbative states
associated to each tensor network.

* Already happens in MERA:
|10)
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[Hayden, Nezami, Qi, Thomas, Walter, Yang]

Bulk States

So far we have been discussing correspondence between a tensor
network and a bulk geometry.

But we would also like to describe the perturbative physics in this
background.

* Want not one state, but a Hilbert space of perturbative states
associated to each tensor network.

* Already happens in MERA:
|10)

Holographic Map: Bulk states <> Boundary states
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Bulk States

In the MERA example we have an isomorphism:

HBulk = HBoundary
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Bulk States

In the MERA example we have an isomorphism:

%Bulk = HBoundary

But this is more than we typically want:

* Typical bulk state will have entanglement structure
unrelated to the MERA network.
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Bulk States

In the MERA example we have an isomorphism:

HBulk = HBoundary

But this is more than we typically want:

* Typical bulk state will have entanglement structure
unrelated to the MERA network.

* Smaller subset of ‘perturbative bulk states’ leave leading order
entropies unchanged.
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Bulk States

In the MERA example we have an isomorphism:

HBulk = %Boundary

But this is more than we typically want:

* Typical bulk state will have entanglement structure
unrelated to the MERA network.

* Smaller subset of ‘perturbative bulk states’ leave leading order
entropies unchanged.

A better requirement is to have an isometry

HBulk — HBoundary dim Hpuk < dim HBoundary
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[Hayden, Nezami, Qi, Thomas, Walter, Yang]

Bulk States in Random TN

In the random TN model, we can also create bulk Hilbert space:
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[Hayden, Nezami, Qi, Thomas, Walter, Yang]

Bulk States in Random TN

In the random TN model, we can also create bulk Hilbert space:

This is sufficient to generate an isometry Hiuix — ’HBoundary :

- [¥B) = |v8) = T|vB)
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Bulk States in Random TN

Moreover, reproduce quantum corrections to the RT formula:
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[Hayden, Nezami, Qi, Thomas, Walter, Yang]

Bulk States in Random TN

In the random TN model, we can also create bulk Hilbert space:

This is sufficient to generate an isometry Hiulx — ’HBoundary :

W) — |1a) = T|vs) (Bulk EFT)

¢’B — 08 - T¢BTT (HKLL for random TN)
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Bulk States in Random TN

Moreover, reproduce quantum corrections to the RT formula:

So(A) = —log(D)|OT 4| + S2(E 4, pB)
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Subregion Duality and Error-
Correcting Codes
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Subregion Duality

We would also like to understand how to reconstruct bulk operators
using only subregion of the boundary.
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Subregion Duality

We would also like to understand how to reconstruct bulk operators
using only subregion of the boundary.
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[Almheiri, Dong, Harlow]

Error-Correction

To understand construction, it’s useful to consider a puzzle:

Puzzle:
¢(X) € E,: Dualto operator Ogx) € Hy
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Error-Correction

To understand construction, it’s useful to consider a puzzle:

Puzzle:
¢(X) € E,: Dualto operator Ogx) € Hy
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[Almheiri, Dong, Harlow]

Error-Correction

To understand construction, it’s useful to consider a puzzle:

Puzzle:
¢(X) € E,: Dualto operator Ogx) € Hy
¢(X) € Ep: Dual to operator Oy (xy € Hp

If p(X) is a fixed boundary operator
= qu(X) € HA ﬂHB = HC
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[Hayden, Nezami, Qi, Thomas, Walter, Yang]

Error-Correction

When can a logical bulk operator be encoded by a physical operator

o . o
In a region Az Need there to be no mutual

information between C and C¢A¢:

S(C) + S(C°A°) = S(CC°A)

Can calculate by treating bulk legs on
equal footing with boundary legs
* Just find min cuts
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[Hayden, Nezami, Qi, Thomas, Walter, Yang]

Error-Correction

When can a logical bulk operator be encoded by a physical operator

o . o
In a region Az Need there to be no mutual

information between C and C¢A¢:

S(C) + S(C°A°) = S(CC°A)

Can calculate by treating bulk legs on
equal footing with boundary legs
* Just find min cuts

When is mutual information vanishing?
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[Hayden, Nezami, Qi, Thomas, Walter, Yang]

Error-Correction

When can a logical bulk operator be encoded by a physical operator

o . o
In a region Az Need there to be no mutual

information between C and C¢A¢:

S(C) + S(C°A°) = S(CC°A)

Can calculate by treating bulk legs on
equal footing with boundary legs
* Just find min cuts

When is mutual information vanishing?

CCEA

Reconstruct entanglement wedge using
QECC
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Space < Spacetime

So far we have used tensor networks to understand spatial geometry
in an emergent extra dimension. What about spacetime?

A state in the CFT describes an entire causal
diamond in the bulk geometry.

P * What is the tensor network description of an
arbitrary slice of this diamond?
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Space < Spacetime

So far we have used tensor networks to understand spatial geometry
in an emergent extra dimension. What about spacetime?

A state in the CFT describes an entire causal
diamond in the bulk geometry.

P * What is the tensor network description of an
arbitrary slice of this diamond?

In a non-static geometry, entropy given by
extremal (not minimal) surface.
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Space < Spacetime

So far we have used tensor networks to understand spatial geometry
in an emergent extra dimension. What about spacetime?

A state in the CFT describes an entire causal
diamond in the bulk geometry.

P * What is the tensor network description of an
arbitrary slice of this diamond?

In a non-static geometry, entropy given by
extremal (not minimal) surface.
* Different HRT slices may not lie on same slice
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Real-time Evolution

We would also like to understand real-time evolution:

AW AW A o
— c— a— SN
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