Title: Unitary Networks from the Exact Renormalization of Wavefunctionals
Date: Apr 19, 2017 11:00 AM
URL: http://pirsa.org/17040040

Abstract: The exact renormalization group (ERG) for O(N) vector models at large N on flat Euclidean space admits an interpretation as the bulk
dynamics of a holographically dual higher spin gauge theory on AdS {d+1}. The generating functional of correlation functions of single trace
operators is reproduced by the on-shell action of this bulk higher spin theory, which is most simply presented in a first-order (phase space)
formalism. This structure arises because of an enormous non-local symmetry of free fixed point theories. In this tak, | will review the ERG
construction and describe its extension to the RG flow of the wave functionals of arbitrary states of the O(N) vector model at the free fixed point.
One finds that the ERG flow of the ground state and a specific class of excited states is implemented by the action of unitary operators which can be
chosen to be local. Thus the ERG equations provide a continuum notion of a tensor network. We compare this tensor network with the entanglement
renormalization networks, MERA, and cMERA. The ERG tensor network appears to share the general structure of cMERA but differs in important

way’s.
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Outline

|. the Exact Renormalization Group (ERG)

2. ERG for partition function of free field theories
* higher spin gauge theory holography

+ comes about through identification of an enormous non-local symmetry of
free field theories

* holographic fields described by Cartan connection
spin 2 part = graviton
3. ERG for wave-functionals of arbitrary states of free field theories
- derive explicit flow through space of states

« ERG is well-designed for unitary flow
contains rescaling and disentangler — a continuous tensor network

disentangling is in momentum space

4. Qutlook

i

M
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ERG

. K(x)
Z = [(dolemol-selo

path integral is over all modes of field

* regulator function gives zero weight to high momentum modes

the RG principle is that the choice of K is immaterial

d
M—Z=0
dM
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ERG

this comes about through the couplings of the theory becoming
scale dependent

Polchinski showed that this gives an exact equation

OSint 1 o 0Sint 0Sint (stfm
M = -A do| | = — — —
om — 288y ),_/ (4] {(m(x) 3o(y)  06(x)d0(y)

+ employed a trick: discard a total functional derivative in the path integral

this single equation can be expanded to extract the scale
dependence of each coupling

In fact, we will improve on this
introduce separate cutoff and renormalization scale

complete exact system of equations for sources and correlation functions
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will apply this to a special scenario

initially won't turn on explicit interactions, but instead will source ‘single
trace’ operators

thus, will first study the RG properties of the generating functional of
correlation functions of single trace operators
by single trace, we mean local operators of the form

*, 4
(Da()

i | a
m“'()n.,-‘fj

that is, organize elementary fields into an N-vector, and consider only
U(N) (or O(N)) singlets

these are bilinears, and so path integral for generating functional is Gaussian

the ERG equations are a system of first order equations for the scale
dependence of the sources and the corresponding expectation values

this is the same data tracked by a holographic system
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Holography in First-Order

given a conserved current j" /s there is a corresponding massless
gauge field A, . in the bulk (obtained by gauge-fixing bulk tensor)

- at linearized level, satisfies a second order PDE

* packages together info about CFT: source and vev of :,\'“1---!“5

we will be led to package this info together in a sort of Hamiltonian
formalism, in which RG scale plays the role of time, and the bulk

gauge field appears as a canonical pair, satisfying a palr of first order
PDEs — the ERG equations "~
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The Exactness of ERG

- usually, we think of RG flows as irreversible, associated with coarse
graining
+ this is a practicality, rather than a necessity

* it comes about because we throw away information

- if we could track everything, in principle we could have unitarity
* typical this i1s impractical
* we must track an infinite number of operators, not just the relevant
subset
- there is one case where we must do so

* In free field theories, such truncations correspond to explicit breaking of
gauge symmetries (from a holographic point of view)

1! 7
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Symmetries of Free Fixed Points

this symmetry acts linearly, but non-locally |¢?) — L]|o?)
or,in the space-time basis

) [ oy Lixn)e() 0
this encodes dif‘feomorphisr(ns as well as higher-spin analogues

L(x,y) = 3D (x = y) + ("(x)08 D (x — y) + (" (x)T 6D (x — y) + ...

we implement (*) this as a change of variables in the path integral
* this generates an exact Ward identity — in the background sense

 will be an important ingredient in RG, and is the origin of higher spin
symmetry In the holographic bulk

+ geometry of the bulk is associated with symmetry of the fixed point
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Generating Functionals and Ward Identities

a standard tool is a generating functional
Z[Au(x)] = (ef ] &ALy

if we can compute it, it encodes all of the correlation functions of
the operator j*(x) that is sourced

if the quantum theory is such that the current is conserved, we have
an exact VWard identity

Z[Aﬁ - Z[A,,]

- given a path integral rep’n of Z, derive by the Fujikawa method
+ make a change of integration variables ¢ — ¢®

measure invariant (or anomalous), action transforms

Stol + [ Aut s Stof) + [ Ag
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Generating Functionals for Free QFTs

- we have local operators {1, H*(x), j*(x), TH(x), o}
- would introduce sources (‘couplings’) {U, b(x), a,.(x), h..(x), ...}

- in the case of free field theory, all of these operators are bilinear in
the elementary fields, and they can be collected together into a bi-
local expression

/dd fdd (d2]%) (x| Bly) (y|6?) fdd /d‘*y o5 (x)B(x,y)d?(v)

- we can think of expanding the bi-local source quasi-locally

B(x,y) = bo(x)0')(x, y) + b (x)0,6'D(x,y) + ...

- this then gives local sources for the infinite collection of spin-s
currents that are conserved at the free fixed point
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Free Majoranas

fixed point action ‘
So = / POV PR )0 () m=v2w
Jx,y

_ a(x) s(d
PF;;f(XuV) ();(;_X)(s( )(X'Y)
introduce sources for all single-trace operators
.
St = U+ > / z,‘m(x)(A(x,y) + YW, (%, y) + Y AL (X, y) + ) " (y)

the list of sources terminates, depending on space-time dimension

- e.g.,d=3: just A(x,y) and W, (x,y)

now perform the non-local change of variables v*(x) — / dy L(x,y)*(y)
S =™ LT (P + W) + Al £y

=Y APLT L PRy ™+ ™ VLT [P L]+ LT W, L)+ LT A L]y

1] .
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if £L” - L = 1 then the fixed point action remains unchanged, while
the sources transform. That is

Z{U, A, W,,} = Z[U, LTVALLY W, L+ L0 [Pr L]
tensor connection

we call this group O(L?(R*9"1))
* D, = Pe, + W, plays the role of covariant derivative
- the fixed point theory corresponds to

(A W,.) = (0, W;?)

- that is, because W, is a connection, the QFT is unsourced whenever A is
zero and W, is a flat connection
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Dilatations and ERG

we extend this to RG by asking how the theory responds to a
dilatation x" — Ax*

one can combine O(L?) with the dilatation in a simple way, by
simply allowing £7 - £ = A\?2*1 (we refer to this as CO(L?))

this has the effect
. . -1 2 = » ¥
Z[M,g; U, A, W,] = Z[\"'M, Ng, US, AS, WE]

\ K = K[-2°D\9?/M?

metric seen by field theory

if we parameterize &. = 2 ‘7, we can write this equivalently as
ZIM, z; U, A W,] = Z[\ "M, \ 1z, UF, A5, WE]

we regard z € [¢,00) as the renormalization scale
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The Exact RG

we perform the ERG in two steps /‘\
« |.lower the cutoff M — AM
. e (a la Polchinski)
Z[M, z; U, A W, = Z[\M, z, U, A, W, ]

2. bring M back to its original value via a CO(L?) transformation

ZIMM, z; U, A W, ] = Z[M, A\ 'z, U=, A®, Wi
there is a freedom in the choice of L

comparing the two, we arrive at a relation between the generating
functionals at the same scale M, but different renormalization scale z

ZIM, 2, U, A W,] = Z[M,\ 'z, UF, A, WE]

Pirsa: 17040040 Page 15/31



ZIM, z; U, A, W,] = Z[M, X"z, UF, A¢, WE]

this is exact in general, but it is convenient to re-write it as a
differential equation by expansing near a well chosen name

/
A~1—¢, L~1+cezW,

then we find
Az + €2) = A(z) + ez [W,, A] + ez + 0(£?)

W.(z+¢cz) = W, (2) +cz[Pr. + W, W] + &tz_{ﬁ;(,W) + 0(?)

Wiz +ez) = WO (2) + ez | Pry b WKW 4+ O(e?)

output of ERG

recall:
everything bi-local in x,y
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ZIM, z; U, A, W,] = Z[M, X"z, UF, A¢, WE]

or by taking £ — 0

IWO — [Pr, WO + WO, WO = 0

bi-local products (')ZA + [VVZ,.A] _ 3(.4)
é)ZWf-f- - [PF:iu )/VZ] + [M}z, VV;:.] = [ f}ﬂ':)

- this is what is obtained from dilatations; we suppose that more
generally, these are components of covariant equations

dW® + WO AWO =g . |
other components
dA + [V\J _/4] — ﬁ(-A) / not determined by RG
dW +W AW = B(W) Aﬂ determined by consistency

‘Bianchi identities’
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(Classical) Bulk Action

this is only half of the bulk system
- repeat analysis for the vevs (Callan-Symanzik equations)

« give rise to bulk ' momenta’

* the resulting system of equations is a Hamiltonian system with
respect to z

+ the ERG analysis determines the Hamiltonian
» correspondingly, there Is an action ’\
7 — o SmulziBl _y o—I[P.B] _ o~ [dz Tr(P-9.B—H(P B))

| = /dz Tr{P' - (DB - 5{") + NAg - B}

:"))(B) =B-Ag-B
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Z[M, z; U, A, W,] = Z[M, X"z, UF, A¢, WE]

or by taking ¢ — 0

IWO — [Pe, WOT + WO, WO = 0
bi-local products 0, A + [VVZ,.A] _ 3(.4)
Oy = [Peye Wol + Ve W] = B2V

- this is what is obtained from dilatations; we suppose that more
generally, these are components of covariant equations

dW® + WO AWO =g
other components
dA + [M) A] — ﬁ(A) / not determined by RG
dW +W AW = 6(11) Aﬂ determined by consistency

‘Bianchi identities’

Pirsa: 17040040 Page 19/31



Pirsa: 17040040

1]

Holographic Higher Spins

all of the usual holographic machinery can be employed here
a classical solution corresponds to an RG flow

the trivial solution corresponds to the free fixed point

..e., turn off all sources Wais flat

- If we choose "'spin-2 gauge”, this connection encodes the geometry of

. Ad5d+'l , w0 _ {e?, wip} WO (x, y) OLZD()(‘ y) d:(” P.(x,y)
at least when the free fixed point has relativistic symmetry

all correlation functions can be systematically computed

* look like “bi-local Witten diagrams”

these resum to the determinant — proof that no information has been
lost
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Conformal details

- the usual conformal group SO(2,d) C CO(L?)

- each local operator transforms in a short conformal module U(A, s)
- the corresponding sources transform in the dual module U(d — A, s)
- the bulk degrees of freedom transform in

i—i%s(U(d ~ A s) @ U(A, s))

linearizing around AdSy. 1, one can write the equations of motion
as decoupled second order PDEs
+ these are nothing but Casimir = s(s + d — 2)

+ “Fronsdal equations” of higher spin theory
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ERG and Wave-functionals

in continuum QFT, we do not typically consider explicit wave
functionals for states

however, the ground state wave-functional of a free field theory is
well-known, being Gaussian

much less understood is how the renormalization group acts on the
ground state, as well as all other states

we can in fact use ERG methods to study this
builds on similar concepts to those introduced previously

+ the ERG construction naturally retains ‘ancillary’ degrees of freedom
generates a flow In the space of states

equivalent to a continuous tensor network whose properties we can study

M
v
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ERG for Wave-functionals

to employ these exact methods for wave-functionals, we need to
carefully construct familiar concepts

wave-functional in ‘position basis’ (p?(X)|V) obtained by path
integral over half space-time in Euclidean time, with specified
boundary condition on a space-like hypersurface

(¢*(X)

V) = Z[M_; 7]

A3
»?(X)
- extract ground state by usual
X limiting procedure

W - generate large class of states by
t operator insertions in Euclidean
' time

Pirsa: 17040040 Page 23/31



ERG for Wave-functionals

- various technical points to manage

convergence
normalizability
* well-defined canonical structure (boundary conditions)

here we are interested in states corresponding to insertions of
O(N)-invariant operators

) = e H01(0,51)02(0, %) - - On(0, %) )

it is useful to introduce the generating functional of states

1

‘. ’ —3 Jy dx [y, d% 3 (x b(x,) )t;E
{h'[b]) — T‘Ee 2 JM? <IM7 y &7 (x)b(x,y (y)|

2)
- (can generalize to contour ordering in complex time)

- b(x,y) plays a similar role to the sources considered earlier

1]
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ERG for Wave-functionals

again, there is a large non-local symmetry present
- restrict £(x, y) to preserve ¥
need to regulate appropriately

So=3 [ o) o K (=BY/M) 0 D% 0 0(x) + 5 [ o) KT (<BY/M2) - Dy 015 ()

2. 2z

* cannot introduce arbitrary number of time derivatives

sufficient to introduce ‘spatial’ regulator K (— DQ/MQ)

recall for partition function, we implemented ERG as a 2-step
process

+ lower cutoff M — \M
use CO(L?) to take AM +— M,  z+— A1z

M
wn
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ERG for Wave-functionals

for the generator of states, we employ a similar process
- the novelty is that we have to take care with boundary terms

there is dependence on a bulk kernel Ag but now also a boundary
kernel Ay , and a CO(L?) transformation given by W, and w,

these know about the details of the regulator

for the partition function, we required M-independence as the basic
RG requirement

- for wave-functionals, this would be too strong

instead we just eliminate M-derivatives from the ERG equations

’ . ) N ) 0
z—V zTrs v c ([W,,b].x.+bmA,c;<\b)<‘-f—)+z—Try_g+z/ ,r-gT-_—)‘U
i ()b 2 Jy f)?"

g(z:%.7) = (385 + w:) (%,7)
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ERG for Ground State

- the ground state is obtained by setting b(x,y)=0
- then, the § /db terms disappear

the ground state does not mix with other states, and satisfies

z%‘ﬂ(z» = i(K(2) + L(2)) |(2)

K(Z) ; (ﬁ ' A}:(Z) g (") + (A) ' A;(Z) : fr) “disentangler”

~
~

L(Z) = ; (ﬂ' . Wz(Z) - D + (’“\) . WZT(Z) T scale transformation

- K and L are both Hermitian

- can be solved in terms of path-ordered exponential

Volz.. 4] = (¢|z.)) = (¢
PI

pe; }, oz I) (%'K(/) 34 ,_,_Rt(,]%) ‘Q(( )>

M
~l

Pirsa: 17040040

Page 27/31



ERG for States

- for any other state, we have
o . :
z0, |V c[b]) = ( TrBo 5b + 1K + 1L> (W [b])
(

- Kand L are state independent, 3 causes mixing of states along the
flow

- if we think of W [b]) as a family of states in the space of b, we can
regard this equation as a flow along the integral curves of

« that is, we introduce a “running” source B(z; x, y) satisfying

z0,B = (B8]
24 ez, B@) = 1 (K + 1) [Velz, B@))

* (same equation as sround state
S

1]
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ERG for States

claim: RG principle for states should be that the flow is along
integral curves of (3

+ then, state changes by a unitary operator

« consistent with RG-invariance of norm (~ partition function)

| W[z, L

M
0o
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MERA!

of course such unitary evolution is present in MERA

- In MERA though, the precept is that unitaries be chosen to disentangle
spatially, culminating in a specific IR state

our result should be interpreted as a continuous tensor network

the disentangling is happening in momentum space
« ground state Is a product state in momentum space

excited states are typically not

* by looking at non-trivial states, can show that K disentangles states
above and below RG scale

- Kis given by the choice of regulator

* optimization, as in MERA, then explores different choices of regulator

1]
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MERA!

thus, conceptually very similar, but details differ for entanglement

- this essentially follows from locality in position space of the free fixed
point

* it is not clear that there Is a suitable K that would give rise to a position
space product state in IR

does not preclude the study of real space entanglement using ERG

+ given that we understand wave-functionals, we also understand how to
do ERG for density matrices

- the flow of reduced density matrices, entanglement entropy, etc.,
apparently requires a sophisticated regulator, and is currently under study

31
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