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Abstract: We will review the topic of tensor network renormalization, relate it to real space Hamiltonian flows, and discuss the emergence of matrix
product operator algebras as symmetries of the renormalization fixed points.

joint work with Matthias Bal, Michael Marien and Jutho Haegeman
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Outline

Real Space Renormalization

— Kadanoff, the tensor renormalization group
— Tensor Netork Renormalization, MERA

— TNR+

Symmetries

— Matrix Product Operator algebras and tensor fusion category
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Real Space Renormalization

Original ideas date back to Kadanoff, Fisher and Wilson in the 60’s when
studying critical phenomena in classical statistical mechanics settings

Consider 2D statistical mechanics model (e.g. Ising)

; S L —.ca-H
e

P

We are interested in the thermodynamics or infrared physics of this
model: specific heat, magnetization, critical exponents, ...

Wilson: renormalize the spins (e.g. majority voting) and define flow of
couplings /. I,

RG fixed points are obtained when «/, .~ , critical exponents are
then the eigenvalues of the matrix
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Example: Ising on Triangular lattice

First successful real-space implementation of Wilson’s RG was obtained by
Niemeijer and van Leeuwen in 73 for Ising on the triangular lattice:

Decimation step: majority voting

Update of couplings is obtained by combinatorics:
check how many times certain couplings appear,
and only keep a certain subset of all possible
interactions.

As the update rescales distances with

eigenvalue of K should be
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Despite successes for simple models and several sophistications (e.g. bond-
moving), such blocking methods have never worked systematically
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Mutual Information Catastrophe for
Kadanoff’s real space RG

Mutual information of any classical spin systems satisfies an area law for the
mutual information:

)

» A

Cirac, Hastings, FV, Wolf ‘06

By blocking spins and a judicious choice of A and B, the tensor product
structure between the regions A, B does not change.

— This implies that ever more terms with longer and longer interactions have
to be included in the RG steps to be faithful: this is the only way to keep
the “entanglement” satisfying an area law
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Tensor Renormalization Group

Way of overcoming mutual information obstacle: change the tensor
product structure!

Levin and Nave (‘07): write partition function as a tensor network, and use
singular value decomposition to renormalize this tensor network
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Tensor Renormalization Group

Way of overcoming mutual information obstacle: change the tensor
product structure!

Levin and Nave (‘07): write partition function as a tensor network, and use
singular value decomposition to renormalize this tensor network
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Levin and Nave’s tensor renormalization group:
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TRG

The key novelty of Levin and Nave RG is the fact that the tensor product

structure is changed:

— Each new “site” consists of four
The “entanglement” cut which satisfied the area law for mutual
information does not exist anymore as the tensor product structure

“halves” of previous sites

changed!

® ® e o o ©
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TRG

TRG has been successfully applied to a variety of classical statistical
mechanical problems (Potts model, XY-model, ...) and to the evaluation of
expectation values in PEPS

Decimation is done by throwing away the smallest singular values

— The number of singular values kept is the new effective dimension of
the spins

Conceptually beautiful:

— cost to contract translational invariant tensor network is logarithmic in
size of the lattice!

We can start renormalizing impurity tensors, ... and /IF we obtain fixed
point tensors of this RG decimation step, we can envision conformal
transformations and obtain critical exponents as eigenvalues of
matrices of the form -

o«
}
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Problems with TRG

A conceptual problem of TRG is the fact that it does not yield any
interpretation anymore in terms of Hamiltonian flows: singular value
decomposition gives tensor networks with negative coefficients

Another flaw of TRG is the fact that no information about the environment
is used in this decimation step (the “density matrix” in DMRG parlance)

— TRG can be slightly improved by taking into account the environment
in a mean-field way (“Higher order TRG”, Xiang et al. "12)

A much more serious flaw is the fact that there is a proliferation of terms
needed for critical systems: in practice, TRG does not flow to a fixed point
if a fixed number of singular values is kept!

More generally, while TRG has solved the bipartite entanglement problem
related to mutual information, it has not solved the multipartite one!
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Double loop tensors

An especially interesting class of tensor networks is represented by the
double loop tensor network (which Chen, Gu, Wen et al. used to construct
the first nontrivial bosonic SPT phases):

As can easily be demonstrated, this tensor network
is a fixed point of TRG

Even though all correlations are strictly “local”, TRG

»”

but on the contrary promotes it to next RG scale

This fundamental problem can be traced back to the bipartite decimation
step

D -
O O

Gu and Wen suggested to remove such double line entanglement using a
filtering approach, but their procedure was not powerful enough to lead
to fixed point tensors at criticality

is not able to remove this 4-partite “entanglement”,
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Tensor Network Renormalization

Evenbly and Vidal (PRL “15) cured all those problems by combining the
formalism of TRG with the firepower of the multiscale entanglement
renormalization ansatz:
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Tensor Network Renormalization

TNR hence captures both the bipartite and some multipartite
entanglement; is this enough?

Simulations on Ising model:
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Most important point: TNR yields nontrivial fixed points at criticality!
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Eigenvectors of transfer matrices: TRG vs TNR

A beautiful way of distinguishing TRG and TNR is to consider the
representations that they generate of the leading eigenvectors of the
transfer matrices of the original lattice

TRG yields a tree tensor network representation of the leading eigenvector:

open boundary

Evenbly, Vidal ‘16
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Eigenvectors of transfer matrices: TRG vs TNR

A beautiful way of distinguishing TRG and TNR is to consider the
representations that they generate of the leading eigenvectors of the

transfer matrices of the original lattice

TNR yields a much better MERA representation of the leading eigenvector:
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Because TNR yields fixed points, it is possible to realize the original dream
of TRG and construct conformal transformations on the lattice!
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Loop Tensor Network Renormalization

An alternative TNR scheme has been proposed by Yang, Gu and Wen (PRL ‘17),
which yields very similar results in practice

The difference lies in the decimation step where a multipartite generalization of

the SVD is used to approximate a ring of 4 tensors by a matrix product state with
periodic boundary conditions with 8 sites

Such a step can be done efficiently using standard MPS algorithms (Fv, Porras,
Cirac '04)

The multipartite SVD is of course able to figure out how to deal with double
line tensors
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Loop Tensor Network Renormalization
Yang, Gu, Wen PRL ‘17

As in TNR, this scheme yields fixed points for critical systems with a similar
accuracy as the works of Evenbly and Vidal; same games can be played
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Real space RG and TNR schemes

Kadanoff "14: “... the more recent tensor-style work often employs indices which are
summed over hundreds of values, each representing a sum of configurations of
multiple spinlike variables. All these indices are generated and picked by the computer.
The analyst does not and cannot keep track of the meaning of all these variables.
Therefore, even if a fixed point were generated, it would not be very meaningful to the
analyst. In fact, the literature does not seem to contain much information about the
values and consequences of fixed points for the new style of renormalization...”

TNR vyields a flow of tensors, but it is indeed not clear how this flow is related to an RG
flow of Hamiltonians as envisioned by Kadanoff and Wilson: the tensors contain
negative values, and have therefore no interpretation anymore in terms of Hamiltonians
(same would be true in the gquantum case, where the tensors should be positive
definite)

Can we devise a TNR-like scheme which works equally well, but gives rise to tensors
which are elementswise positive and hence yield a fixed point Hamiltonian?

Page 20/50



TNR,

M. Bal et al.;arXiv:1703.00365

TNR, is a TNR scheme which produces similar results as the other TNR
schemes, but preserves positivity

— The Hamiltonian obtained during the flow represents a classical
system with nearest neighbour interactions (e.g. 4-point on the square
lattice), and with a number of levels equal to the decimation level D

The resulting Hamiltonian is one with constraints (such as in the 6-
vertex problem); the constraints arise due to the fact that optimization
over nonnegative tensors yields a lot of zero components

The scheme is very stable and no tricks nor symmetries (as e.g.
symmetric tensors) are needed to get it to work
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Nonnegative Matrix Factorization

Key element in all TRG/TNR schemes is the singular value decomposition
or its tensor generalization. How can this be generalized such that no
negative coefficients are obtained?

— The Nonnegative Matrix Factorization (NMF) does exactly that, and is
an elementswise positive generalization of the SVD:

), ¢

ANy

NMF is popular in machine learning community: in many cases, we are
interested in extracting features which are non-negative!

Problem is in principle NP-hard, but in practice very good algorithms
exist
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Interludum: unsupervised digit recognition using NMF

* Given a 42000x785 matrix A representing 42000 images of the digit 0..10,
compress this matrix in the form

\
ArgInin y y

For k=10, a typical “singular vector” looks like
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NMF and TNR,

The key technical tool in using the nonnegative matrix factorization in the TNR
setting is the following optimization problem:

This is equivalent to the approximation problem of a multipartite probability
distribution by a stochastic matrix product state (Temme, Fv, PRL “10)

— In [Bal et al "17], we have devised efficient algorithms for dealing with this,
crucially relying on gauge degrees of freedom which bring positive
matrices to stochastic matrices (as opposed to isometries)

The non-negativity constraints typically lead to sparse solutions (a lot of
zeros), which is great as the zero coefficients encode constraints, while the
non-zero coefficients denote coupling constants
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Numerical Results for TNR,

*« We studied the critical Ising Hamiltonian (c=1/2) as well as spin ice (c=1)
on the square lattice, and observed clear convergence to Hamiltonian
fixed points.

Smallest Scaling Dimensions:
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Critical exponents using the radial transfer matrix

Pl —~4 Semmed

) ) ) )

%_ __\}»-A_{,_ _\‘).A
—1- . j =

<

===
"~ — e —
) e | e ) )
e T
—t —t —t

Pirsa: 17040039 Page 27/50



Fixed Point Equations for TNR,

* TNR, yields an algebraic relation for fixed point tensors:

= Solutions of those equations yield scale-invariant theories.
— Is it possible to find all solutions of those algebraic equations?

— If we let the dimension D go to infinity, do we recover all CFT’s, or do
we get less or more?
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TNR, yields stochastic MERA

* The leading eigenvector of a partition function should be positive (Perron-
Frobenius); this is reflected in the fact that we get a stochastic MERA as
fixed point:
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Symmetries in TNR, networks

The IR tensor network of the original Hamiltonian inherits all the
symmetries of the Hamiltonian

— Typical symmetries are of the form

[ x]
] @

— The TNR, decimation steps involve approximating a tensor network
with such symmetries by an sMPS; the fundamental theorem of MPS
(Perez Garcia et al ‘08) implies that this symmetry is represented on
the virtual level in the form of a projective representation.

— Those virtual levels become the physical levels of the scaled

Hamiltonian, so symmmetries are preserved using the decimation steps
(although they could be projective, cfr. Haldane chain)
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Symmetries in tensor networks

There are however also much more interesting ways in which symmetries
can manifest themselves, namely in the form of matrix product operators
(MPO):

o

Such operators can be pulled through the lattice, and correspond to
Wilson loops (cfr. Logical operators in toric code states)
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MPO symmetries and algebras

= Such symmetries have independently been discovered in tensor networks
in different forms :

Mehmet Burak Sahinoglu, Dominic Williamson, Nick Bultinck, Michael
Marién, Jutho Haegeman, Norbert Schuch, Frank Verstraete,
“Characterizing Topological Order with Matrix Product Operators”,
arXiv:1409.2150

Nick Bultinck, Michael Marién, Dominic J. Williamson, Mehmet B.
Sahinoglu, Jutho Haegeman, Frank Verstraete, “Anyons and matrix
product operator algebras”, arXiv:1511.08090

Markus Hauru, Glen Evenbly, Wen Wei Ho, Davide Gaiotto, Guifre
Vidal: “Topological conformal defects with tensor networks”,
arXiv:1512.03846

David Aasen, Roger Mong, Paul Fendley: “Topological Defects on the
Lattice”, arXiv:1601.07185
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Example: Critical Ising model

» Transfer Matrix T is a matrix product operator

= At criticality (where the Ising model is self dual), an MPO symmetry emerges
which corresponds to the duality defect, where the MPO ~ is of the form

I R
E

® o o o o
[
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Example: Critical Ising model

Transfer Matrix T is a matrix product operator

At criticality (where the Ising model is self dual), an MPO symmetry emerges
which corresponds to the duality defect, where the MPO ~ is of the form

E E 5L
»

Other MPO-symmetries of the Ising model are much simpler:
N
Wy

A U U G G G U
YA

Transfer Matrix T
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Those MPOs (with PBC) obey the following algebraic relations:

1113
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We clearly observe the fusion rules for the Ising CFT
s y x W

2

— The [ represent the shiftsin

‘space and time”

The MPOs colloquially correspond to the exponentials of the zero Fourier
components of the primary fields
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TNR, MERA and MPO algebras

The symmetries of the tensor network are hence represented by Matrix
Product Operator algebras, and the TNR, schemes can explicitly be
constructed such as to keep those symmetries

— Because of the equivalence of TNR and MERA, this gives rise to MERA
with MPO symmetries

Bridgeman, Williamson
arXiv:1503.07782
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MPO algebras and tensor fusion categories

. Basic premise: MPQO’s form a representation of the tensor fusion
categories describing the algebraic content of TQFTs/CFTs

* Let us try to find all solutions of closed MPO algebras:

Sl 7 At g A\ g At g Abig Abigm Ap A g A Aigs Alige ALgm A ge Algs A

Page 38/50



6. Two different ways of fusion leads to pentagon equation:

Hence MPO algebras are classified by the triple
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7. Just as in the case of the Yang Baxter equation in Bethe ansatz, we can
now construct a “fundamental representation” in terms of those F-symbols:
all equations written out are satisfied by choosing all tensors in terms of F

35 _
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8. We now have to construct the topological sectors of the theory. For this
we need to introduce an object which lives at the end of an MPO string; those
will correspond to the primary fields

4

NS
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This “anyon” tensor has 5 indices in and 5 out:

— defines a C* algebra (similar to Ocneanu’s “tube algebra”) which

contains all the content of the output tensor category

— Anyons should be locally distinguishable by their charge. So we define
them as central idempotents of this algebra:
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Bultinck et al. ‘15

Example: Ising case

Those idempotents define the topological sectors in the Ising CFT
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Bultinck et al. ’15

Topological / Conformal Spin:

Ising CFT:
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Fusion:

Fusion rules of output category can readily be obtained from the idempotents
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Braiding
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The braiding matrix R is itself determined by the central idempotent
(argument by “teleportation”)
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Out of this, we can immediately calculate the relevant S and T matrices, ...
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MPO symmetries: summary

We started from an MPO representation of a (modular) input tensor
category

s y x

— These MPOs corresponds to the exponential of the zero Fourier
components of the chiral primary fields

We then constructed the Drinfeld center of this input category, and
obtained the chiral and anti-chiral part (full CFT) including topological spin
and S and T matrices:

P,
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Topological conformal defects

This MPO approach is related to the one pursued by

— Markus Hauru, Glen Evenbly, Wen Wei Ho, Davide Gaiotto, Guifre
Vidal: “Topological conformal defects with tensor networks”,
arXiv:1512.03846

— David Aasen, Roger Mong, Paul Fendley: “Topological Defects on the
Lattice”, arXiv:1601.07185

TNR/MERA/PEPS algorithms are taken to a different level by incorporating
those MPO symmetries
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Conclusion

Real space RG: from Kadanoff to TRG to TNR to TNR,

Symmetries in those tensor networks are most concisely represented by
matrix product operator algebras, from which all algebraic content of the
underlying CFT can be obtained
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