Title: $\operatorname{SU}(3)$ Landau-Zener-Stueckelberg-Majorana interferometry with quantum triangles
Date: Apr 04, 2017 03:30 PM
URL: http://pirsa.org/17040025
Abstract: <p>Quantum triangles can work as interferometers. Depending on their geometric size and interactions between paths, â€ \wp beatsâ€ \bullet and/or â€œstepsâ€•</p>
<p>patterns are observed. We show that when inter-level distances between level positions in quantum triangles periodically change with time, formation of beats and/or steps no longer depends only on the geometric size of the triangles but also on the characteristic frequency of the transverse signal. For large-size triangles, we observe the coexistence of beats and steps for moderated frequencies of the signal and for large frequencies a maximum of four steps instead of two as in the case with constant interactions are observed.</p>
$<\mathrm{p}>$ Small-size triangles also revealed counter-intuitive interesting dynamics for large frequencies of the field: unexpected two-step patterns are observed. When the frequency is large and tuned such that it matches the uniaxial anisotropy, three-step patterns are observed.</p>
$<p>$ We have equally observed that when the transverse signal possesses a static part, steps maximize to six. These effects are semi-classically explained in terms of Fresnel integrals and quantum mechanically in terms of quantized fields with a photon-induced tunneling process. Our expressions for populations are in excellent agreement with the gross temporal profiles of exact numerical solutions. We compare the semi-classical and quantum dynamics in the triangle and establish the conditions for their equivalence.</p>

University of Dschang Faculty of Science
 Department of Physics

Maseim Bassis Kenmoe

SU(3) Landau-Zener Interferomemtry with quantum triangles

g

Perimeter Institute, 04 April 2017

Motivations

1. Quantum Interferometry (High precision measurement)
2. Quantum Information Processing (QIP): Two-entangled qubits
3. Bose-Einstein Condensates: Optical lattices
4. Bose-Josephson Junctions (BJJ) etc

Outline of the presentation

- What are quantum triangles?

Where do we observe quantum triangles in the quantum realm? General model for quantum triangles

- How to deal with quantum triangles?

Understand the two-level crossing model (Landau-Zener) Bloch picture and main equations

- How are quantum triangles important in quantum technology?

Quantum interferometry (High precision measurements) Manifestation of interference patterns (beats and steps)

What are quantum triangles?

Time, flux, chemical potential, pressure, Temperature

Where do we observe Quantum Triangles? Optical lattices

Lattice sites converted into double-well potentials

Two-mode Hubbard model

$$
\mathcal{H}(t)=-\sum_{\nu=x, z} \mathbf{B}_{\nu}(t) S^{\nu}+D\left(S^{z}\right)^{2}+D \mathbf{n}(\mathbf{n}-1)
$$

Effectiveness of triangles in experiments
 (Non-Adiabatic evolution)

level crossings

Effectiveness of triangles in experiments (Adiabatic evolution)

Avoided level crossings

Where do we observe Quantum Triangles? Cont'd Double quantum dots

How to deal with Quantum Triangles?

 Two level crossing: Landau-Zener model
Out resonance

Transition

Hamiltonian:

$$
\mathbf{H}(t)=\alpha t \boldsymbol{\sigma}_{z}+\Delta \boldsymbol{\sigma}_{x},
$$

Eigen-states(adiabatic states): $\left|\varphi_{+}(t)\right\rangle$ and $\left|\varphi_{-}(t)\right\rangle$
Eigen-energies: $\lambda_{ \pm}(t)= \pm \sqrt{\alpha^{2} t^{2}+\Delta^{2}}$

What is the Landau-Zener effect?

(Landau, Zener, Stuckelberg, Majorana 1932)

$$
\mathbf{H}(t)=\vec{b}(t) \cdot \overrightarrow{\boldsymbol{\sigma}}
$$

$$
\vec{b}(t)=\left[b_{x}(t), 0, b_{z}(t)\right]
$$

Zeeman field

$$
\mathbf{H}(t)=b_{z}(t) \boldsymbol{\sigma}_{z}+b_{x}(t) \boldsymbol{\sigma}_{x}
$$

Transition time: $\tau_{z e e}=\left|\frac{b_{z}}{\dot{b}_{z}}\right|$ Field variation time: $\tau_{F V}=\left|\frac{\dot{b}_{z}}{\ddot{b}_{z}}\right|$ Condition of short transition time:

$$
\tau_{z e e} \ll \tau_{F V} \quad b_{z} \ll \frac{\left(\dot{b}_{z}\right)^{2}}{\left|\ddot{b}_{z}\right|}
$$

$$
b_{z}(t)=\dot{b}_{z}(t) t, \quad \longrightarrow \mathbf{H}(t)=\dot{b}_{z}(t) t \boldsymbol{\sigma}_{z}+b_{x}(t) \boldsymbol{\sigma}_{x}
$$

Populations

$$
\begin{aligned}
& \text { Diabatic basis } \\
& \text { (Fast drive) } \\
& i \frac{d}{d t} c(t)=\mathbf{H}(t) c(t), \\
& \mathbf{H}(t)=\left[\begin{array}{cc}
\alpha t & \Delta \\
\Delta & -\alpha t
\end{array}\right], \quad c(t)=\left[c_{1}(t), c_{2}(t)\right]^{T} \\
& P_{d i a}(t)=\left|c_{1}(t)\right|^{2}, \\
& P_{a d i a}(t)=\left|c_{2}(t)\right|^{2}, \quad \text { Survival probability } \\
& P_{d i a}(t)+P_{a d i a}(t)=1
\end{aligned}
$$

From Diabatic to Adiabatic Basis

Diabatic basis $c(t)=\left[c_{1}(t), c_{2}(t)\right]^{T} \quad$ (Fast drive) (unperturbed basis)

$$
i \frac{d}{d t} c(t)=\mathbf{H}(t) c(t), \quad \mathbf{H}(t)=\left[\begin{array}{cc}
\alpha t & \Delta \\
\Delta & -\alpha t
\end{array}\right],
$$

Passage

$$
c(t)=\mathbf{W}(t) a(t), \quad \boldsymbol{\quad} \quad \mathbf{W}=\left[\begin{array}{cc}
\cos \vartheta & \sin \vartheta \\
-\sin \vartheta & \cos \vartheta
\end{array}\right],
$$

Adiabatic basis (dressed states)
$a(t)=\left[a_{1}(t), a_{2}(t)\right]^{T} \quad$ (Slow drive)
$i \frac{d}{d t} a(t)=\mathbf{H}_{a}(t) a(t), \quad \boldsymbol{\quad} \quad \mathbf{H}_{a}(t)=\left[\begin{array}{cc}\lambda_{\bar{\prime}} & -i \dot{\vartheta} \\ i \dot{\vartheta} & \lambda_{+}\end{array}\right]$,

$$
\mathbf{H}_{a}(t)=\mathbf{W}^{T} \mathbf{H}(t) \mathbf{W}-i \mathbf{W}^{T} \frac{d}{d t} \mathbf{W}
$$

Condition for Adiabatic Evolution

Adiabatic theorem

A slowly driven system remains in the same adiabatic state

Coupling less than splitting

$$
-i \mathbf{W}^{T} \frac{d}{d t} \mathbf{W} \ll\left|\lambda_{-}-\lambda_{+}\right|
$$

Superadiabatic evolution

$$
\dot{\vartheta}(t) \rightarrow 0
$$

Results for two-state systems

$$
\begin{gathered}
P_{\text {adia }}\left(\tau, \tau_{0}\right)=\frac{1}{2}-\frac{\tau \tau_{0}}{\omega(\tau) \omega\left(\tau_{0}\right)}-\frac{2 \lambda}{\omega(\tau) \omega\left(\tau_{0}\right)} \cos \left[\Lambda_{12}\left(\tau, \tau_{0}\right)\right] \\
Q_{a d i a}\left(\tau, \tau_{0}\right)=\frac{1}{2}+\frac{\tau \tau_{0}}{\omega(\tau) \omega\left(\tau_{0}\right)}+\frac{2 \lambda}{\omega(\tau) \omega\left(\tau_{0}\right)} \cos \left[\Lambda_{12}\left(\tau, \tau_{0}\right)\right] \\
\phi(\tau)=\frac{1}{2}\left(\tau \sqrt{\tau^{2}+4 \lambda}+4 \ln \left(\tau+\sqrt{\tau^{2}+4 \lambda}\right)\right) \\
\Lambda_{12}\left(\tau, \tau_{0}\right)=\phi(\tau)-\phi\left(\tau_{0}\right), \\
\omega(\tau)=\sqrt{\tau^{2}+4 \lambda}, \quad \lambda=\Delta^{2} / \alpha
\end{gathered}
$$

Landau-Zener times

What is so exciting in QTs?

$$
\begin{gathered}
\mathcal{H}(t)=\alpha t S^{z}+f(t) S^{x}+D\left(S^{z}\right)^{2} \\
f(t)=\Delta
\end{gathered}
$$

What is so exciting in QTs?

Splitter 1

$$
S_{20} \quad \mathcal{H}(t)=\alpha t S^{z}+f(t) S^{x}+D\left(S^{z}\right)^{2}
$$

$$
f(t)=\Delta
$$

What is so exciting in QTs?

Splitter 2

Splitter 1

$$
S_{20} / \mathcal{H}(t)=\alpha t S^{z}+f(t) S^{x}+D\left(S^{z}\right)^{2}
$$

$$
f(t)=\Delta
$$

What is so exciting in QTs?

Splitter 2

Splitter 1

$\mathcal{H}(t)=\alpha t S^{z}+f(t) S^{x}+D\left(S^{z}\right)^{2}$

$$
f(t)=\Delta
$$

"Beats" and "Steps" pattern

Time difference between two crossings

$$
\delta t<t_{\mathrm{LZ}}
$$

$$
\delta t>t_{\mathrm{LZ}}
$$

M. N. Kiselev et al 2013

General Model for Quantum Triangles

$$
\mathcal{H}(t)=-\sum_{\nu=x, z} \mathbf{B}_{\nu}(t) S^{\nu}+D\left(S^{z}\right)^{2}
$$

- Optical lattices (Two-mode Hubbard model)

$$
\begin{aligned}
& \mathcal{H}(t)=-B_{x}(t)\left(a_{\sigma}^{\dagger} b_{\sigma^{\prime}}+b_{\sigma^{\prime}}^{\dagger} a_{\sigma}\right)-B_{z}(t)\left(n_{\sigma}-n_{\sigma^{\prime}}\right)+\frac{D}{2}\left[n_{\sigma}\left(n_{\sigma}-1\right)+n_{\sigma^{\prime}}\left(n_{\sigma^{\prime}}-1\right)\right] \\
& S^{x}=\frac{1}{2}\left(a_{\sigma}^{\dagger} b_{\sigma^{\prime}}+b_{\sigma^{\prime}}^{\dagger} a_{\sigma}\right), \quad \mathcal{K}=\left(S^{x}\right)^{2}+\left(S^{y}\right)^{2}+\left(S^{z}\right)^{2}=\frac{n}{2}\left(\frac{n}{2}+1\right) \\
& S^{y}=\frac{1}{2 i}\left(a_{\sigma}^{\dagger} b_{\sigma^{\prime}}-b_{\sigma^{\prime}}^{\dagger} a_{\sigma}\right), \quad n_{\sigma}=a_{\sigma}^{\dagger} a_{\sigma}, \quad n=n_{\sigma}+n_{\sigma^{\prime}}, \\
& S^{z}=\frac{1}{2}\left(a_{\sigma}^{\dagger} a_{\sigma}-b_{\sigma^{\prime}}^{\dagger} b_{\sigma^{\prime}}\right), \quad n_{\sigma^{\prime}}=b_{\sigma^{\prime}}^{\dagger} b_{\sigma^{\prime}}, \quad\left[n, S^{\nu}\right]=0 \\
& \mathcal{H}(t)=-\sum_{\nu=x, z} \mathbf{B}_{\nu}(t) S^{\nu}+D\left(S^{z}\right)^{2}+D \underbrace{\frac{n}{2}\left(\frac{n}{2}-1\right)}_{\text {Abelian term }}
\end{aligned}
$$

- Two entangled qubits

$$
\mathcal{H}(t)=\sum_{\nu=x, z} \mathbf{B}_{\nu}(t)\left(\boldsymbol{\sigma}_{\nu}^{(1)}+\boldsymbol{\sigma}_{\nu}^{(2)}\right)+J \boldsymbol{\sigma}_{z}^{(1)} \boldsymbol{\sigma}_{z}^{(2)} \quad \text { Kibble-Zurek model }
$$

General Model for Quantum Triangles

$$
\mathcal{H}(t)=-\sum_{\nu=x, z} \mathbf{B}_{\nu}(t) S^{\nu}+D\left(S^{z}\right)^{2}
$$

- Optical lattices (Two-mode Hubbard model)

$$
\begin{aligned}
& \mathcal{H}(t)=-B_{x}(t)\left(a_{\sigma}^{\dagger} b_{\sigma^{\prime}}+b_{\sigma^{\prime}}^{\dagger} a_{\sigma}\right)-B_{z}(t)\left(n_{\sigma}-n_{\sigma^{\prime}}\right)+\frac{D}{2}\left[n_{\sigma}\left(n_{\sigma}-1\right)+n_{\sigma^{\prime}}\left(n_{\sigma^{\prime}}-1\right)\right] \\
& S^{x}=\frac{1}{2}\left(a_{\sigma}^{\dagger} b_{\sigma^{\prime}}+b_{\sigma^{\prime}}^{\dagger} a_{\sigma}\right), \quad \mathcal{K}=\left(S^{x}\right)^{2}+\left(S^{y}\right)^{2}+\left(S^{z}\right)^{2}=\frac{n}{2}\left(\frac{n}{2}+1\right) \\
& S^{y}=\frac{1}{2 i}\left(a_{\sigma}^{\dagger} b_{\sigma^{\prime}}-b_{\sigma^{\prime}}^{\dagger} a_{\sigma}\right), \quad n_{\sigma}=a_{\sigma}^{\dagger} a_{\sigma}, \quad n=n_{\sigma}+n_{\sigma^{\prime}}, \\
& S^{z}=\frac{1}{2}\left(a_{\sigma}^{\dagger} a_{\sigma}-b_{\sigma^{\prime}}^{\dagger} b_{\sigma^{\prime}}\right), \quad n_{\sigma^{\prime}}=b_{\sigma^{\prime}}^{\dagger} b_{\sigma^{\prime}}, \quad\left[n, S^{\nu}\right]=0 \\
& \mathcal{H}(t)=-\sum_{\nu=x, z} \mathbf{B}_{\nu}(t) S^{\nu}+D\left(S^{z}\right)^{2}+D \underbrace{\frac{n}{2}\left(\frac{n}{2}-1\right)}_{\text {Abelian term }}
\end{aligned}
$$

- Two entangled qubits

$$
\mathcal{H}(t)=\sum_{\nu=x, z} \mathbf{B}_{\nu}(t)\left(\boldsymbol{\sigma}_{\nu}^{(1)}+\boldsymbol{\sigma}_{\nu}^{(2)}\right)+J \boldsymbol{\sigma}_{z}^{(1)} \boldsymbol{\sigma}_{z}^{(2)} \quad \text { Kibble-Zurek model }
$$

Correspondence between $\mathrm{SU}(2)$ and $\mathrm{SU}(3)$ SU(2)
 sU(3)

Pauli Matrices $\boldsymbol{\sigma}^{\alpha}, \quad \alpha=1+3 \quad$ Gell-Mann Matrices $\quad \boldsymbol{\lambda}^{\alpha}, \quad \alpha=1+8$ $\begin{array}{ccc}b^{\alpha}(t)=\operatorname{Tr}\left(\rho(t) \cdot \boldsymbol{\sigma}^{\alpha}\right) & \text { Bloch vector } & b^{\alpha}(t)=\operatorname{Tr}\left(\rho(t) \cdot \boldsymbol{\lambda}^{\alpha}\right) \\ \vec{b}^{2}(t)=1 & \text { Surface } & \vec{b}^{2}(t)=1\end{array}$

Equation of Motion for the Density Matrix = Bloch equation

$$
\begin{gathered}
i \frac{d}{d t} b^{\alpha}=\operatorname{Tr}\left([H, \rho] \cdot \sigma^{\alpha}\right) \quad i \frac{d}{d t} b^{\alpha}=\operatorname{Tr}\left([H, \rho] \cdot \lambda^{\alpha}\right) \\
i \frac{d}{d t} \vec{b}=-\vec{\Theta} \times \vec{b}
\end{gathered}
$$

$$
(\vec{\Theta} \times \vec{b})^{\alpha}=\epsilon^{\alpha \beta \gamma} \Theta^{\beta} b^{\gamma} \quad(\vec{\Theta} \times \vec{b})^{\alpha}=f^{\alpha \beta \gamma} \Theta^{\beta} b^{\gamma}
$$

$$
\left.\left.\epsilon^{\alpha \beta \gamma}=\frac{1}{4 i} \operatorname{Tr}\left(\left[\boldsymbol{\sigma}^{\alpha}, \boldsymbol{\sigma}^{\beta}\right]\right) \cdot \boldsymbol{\sigma}^{\gamma}\right), f^{\alpha \beta \gamma}=\frac{1}{4 i} \operatorname{Tr}\left(\left[\boldsymbol{\lambda}^{\alpha}, \boldsymbol{\lambda}^{\beta}\right]\right) \cdot \boldsymbol{\lambda}^{\gamma}\right)
$$

Correspondence between $\mathrm{SU}(2)$ and $\mathrm{SU}(3)$ sU(2) SU(3)

Pauli Matrices $\boldsymbol{\sigma}^{\alpha}, \quad \alpha=1+3 \quad$ Gell-Mann Matrices $\quad \boldsymbol{\lambda}^{\alpha}, \quad \alpha=1+8$ $\begin{array}{ccc}b^{\alpha}(t)=\operatorname{Tr}\left(\rho(t) \cdot \boldsymbol{\sigma}^{\alpha}\right) & \text { Bloch vector } & b^{\alpha}(t)=\operatorname{Tr}\left(\rho(t) \cdot \boldsymbol{\lambda}^{\alpha}\right) \\ \vec{b}^{2}(t)=1 & \text { Surface } & \vec{b}^{2}(t)=1\end{array}$

Equation of Motion for the Density Matrix = Bloch equation

$$
\begin{gathered}
i \frac{d}{d t} b^{\alpha}=\operatorname{Tr}\left([H, \rho] \cdot \sigma^{\alpha}\right) \quad i \frac{d}{d t} b^{\alpha}=\operatorname{Tr}\left([H, \rho] \cdot \lambda^{\alpha}\right) \\
i \frac{d}{d t} \vec{b}=-\vec{\Theta} \times \vec{b}
\end{gathered}
$$

$$
(\vec{\Theta} \times \vec{b})^{\alpha}=\epsilon^{\alpha \beta \gamma} \Theta^{\beta} b^{\gamma} \quad(\vec{\Theta} \times \vec{b})^{\alpha}=f^{\alpha \beta \gamma} \Theta^{\beta} b^{\gamma}
$$

$$
\left.\left.\epsilon^{\alpha \beta \gamma}=\frac{1}{4 i} \operatorname{Tr}\left(\left[\boldsymbol{\sigma}^{\alpha}, \boldsymbol{\sigma}^{\beta}\right]\right) \cdot \boldsymbol{\sigma}^{\gamma}\right), f^{\alpha \beta \gamma}=\frac{1}{4 i} \operatorname{Tr}\left(\left[\boldsymbol{\lambda}^{\alpha}, \boldsymbol{\lambda}^{\beta}\right]\right) \cdot \boldsymbol{\lambda}^{\gamma}\right)
$$

Welcome to the 8-dimensional world!

Crash course of SU(3)

$$
\begin{gathered}
3 \times S U(2)\left\{\begin{array}{l}
\vec{s}_{1}=\frac{1}{2}\left(\lambda_{1} \lambda_{2} \lambda_{3}\right) \\
\vec{s}_{2}=\frac{1}{2}\left(\lambda_{4} \lambda_{5} \lambda_{+}\right) \\
\vec{s}_{3}=\frac{1}{2}\left(\lambda_{6} \lambda_{7} \lambda_{-}\right) \\
\lambda_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \lambda_{2}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \lambda_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) \\
\lambda_{4}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), \lambda_{5}=\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right), \lambda_{+}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right) \\
\lambda_{6}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \lambda_{7}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right), \lambda_{-}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right) \\
\lambda_{ \pm}=\left(\sqrt{3} \lambda_{8} \pm \lambda_{3}\right) / 2
\end{array},\right.
\end{gathered}
$$

Reduction of the 8-dimensional world

$$
\begin{gathered}
\rho_{11}(t)=\frac{1}{3}\left(1+\frac{R(t)}{2}+\frac{3 Q(t)}{2}\right) \quad \rho_{33}(t)=\frac{1}{3}\left(1+\frac{R(t)}{2}-\frac{3 Q(t)}{2}\right) \\
\rho_{22}(t)=\frac{1}{3}(1-R(t)) \\
\frac{d Q}{d t}=-\int_{-\infty}^{t} f(t) f\left(t_{1}\right)\left[K r^{-}\left(t, t_{1}\right) R\left(t_{1}\right)+K r^{+}\left(t, t_{1}\right) Q\left(t_{1}\right)\right] d t_{1}+\Phi_{-}(t), \\
\frac{d R}{d t}=-3 \int_{-\infty}^{t} f(t) f\left(t_{1}\right)\left[K r^{+}\left(t, t_{1}\right) R\left(t_{1}\right)+K r^{-}\left(t, t_{1}\right) Q\left(t_{1}\right)\right] d t_{1}+3 \Phi_{+}(t), \\
\frac{d W}{d t}=\int_{-\infty}^{t} f\left(t_{1}\right)\left[K i^{+}\left(t, t_{1}\right) R\left(t_{1}\right)+K i^{-}\left(t, t_{1}\right) Q\left(t_{1}\right)\right] d t_{1}+\Phi_{0}(t) . \\
K \mu^{ \pm}\left(t, t_{1}\right)=K \mu^{\Omega^{+}}\left(t, t_{1}\right) \pm K \mu^{\Omega^{-}}\left(t, t_{1}\right) \quad K \mu^{\xi}\left(t, t_{1}\right)=\mathrm{L} \mu\left[\exp \left[i\left(\xi(t)-\xi\left(t_{1}\right)\right)\right]\right] \\
\xi(t)=\left(\Omega^{+}(t), \Omega^{-}(t)\right) \\
\mu=r, i \text { and } \mathrm{L} r=\operatorname{Re}, \mathrm{L} i=\operatorname{Im}
\end{gathered}
$$

SU(3) LZ interferometer: the beats

What is the period of the beats?

SU(3) LZ interferometer : steps

What is the time scale for the steps?

SU(3) beats and steps: non-adiabatic passage

Blue - numerical solution of $S E$. Red - perturbative analytic solution of $B E$.

$$
\begin{gathered}
P_{2 \rightarrow 2}(t) \approx 1-p_{+}(t)-p_{-}(t)+\mathcal{O}\left(\delta^{2}\right) \\
p_{+}(t)=\pi \delta F\left(t+\frac{D}{\alpha}, t+\frac{D}{\alpha}\right) \quad p_{-}(t)=\pi \delta F\left(t-\frac{D}{\alpha}, t-\frac{D}{\alpha}\right) \\
F(x, y)=\frac{1}{2}\left[\left(\frac{1}{2}+C\left(\sqrt{\frac{\alpha}{\pi}} x\right)\right)\left(\frac{1}{2}+C\left(\sqrt{\frac{\alpha}{\pi}} y\right)\right)+\left(\frac{1}{2}+S\left(\sqrt{\frac{\alpha}{\pi}} x\right)\right)\left(\frac{1}{2}+S\left(\sqrt{\frac{\alpha}{\pi}} y\right)\right)\right] \\
G(x, y)=\frac{1}{2}\left[\left(\frac{1}{2}+C\left(\sqrt{\frac{\alpha}{\pi}} x\right)\right)\left(\frac{1}{2}+S\left(\sqrt{\frac{\alpha}{\pi}} y\right)\right)-\left(\frac{1}{2}+S\left(\sqrt{\frac{\alpha}{\pi}} x\right)\right)\left(\frac{1}{2}+C\left(\sqrt{\frac{\alpha}{\pi}} y\right)\right)\right]
\end{gathered}
$$

SU(3) LZ interferometry with transverse drive

Monochromatic signal
$+2(t)=\alpha t S^{z}+f(t) S^{x}+D\left(S^{z}\right)^{2}$,
$+2 F\left(t \pm \frac{D \pm \omega}{\alpha}, t \pm \frac{D \mp \omega}{\alpha}\right) \cos 2 \vartheta^{\mp}+2 G\left(t \pm \frac{D \pm \omega}{\alpha}, t \pm \frac{D \mp \omega}{\alpha}\right) \sin 2 \vartheta^{\mp}$
$\delta=\frac{A^{2}}{4 \alpha}, \quad$ Phase accumulated durina a linear sweep

Numerical versus analytical results

Two-step, coexistence of beat and steps

Numerical versus analytical results

Numerical versus analytical results

Five- and Six- Steps
$f(t) \rightarrow f(t)=\Delta+A \cos (\omega t+\phi)$

How do we understand these behaviors?

Quantized fields: Three-level system in a QED cavity

$$
\begin{gathered}
\mathcal{H}(t)=\alpha t S^{z}+\mathcal{H}_{\mathrm{cav}}+\mathcal{H}_{\text {ThLS-cav }}+D\left(S^{z}\right)^{2} \\
\mathcal{H}_{\mathrm{cav}}=\omega\left(\hat{b}_{1}^{\dagger} \hat{b}_{1}-\hat{b}_{2}^{\dagger} \hat{b}_{2}\right) \\
\mathcal{H}_{\mathrm{ThLS}-\mathrm{cav}}=\sum_{j=1,2} g_{j}\left(\hat{b}_{j}^{\dagger}+\hat{b}_{j}\right) S^{x}
\end{gathered}
$$

$$
\hat{b}_{1,2}=\sqrt{n_{1,2}} e^{i\left(\omega t+\phi_{q}\right)}, \quad \text { Mean field approximation }
$$

$$
S U(3) \rightarrow S U(5)
$$

$$
\{|1, \omega\rangle,|1,-\omega\rangle,|2\rangle,|3,-\omega\rangle,|3, \omega\rangle\}
$$

SU(3) LZ interferometry with transverse drive

 Polychromatic signal$$
\begin{gathered}
f(t)=\sum_{n=0}^{N} A_{n} \cos \left(\omega_{n} t+\phi_{n}\right), \\
p_{ \pm}(t)=\sum_{n=0}^{N} \sum_{m=0}^{N} \pi \delta_{m n}\left(\cos \left[\Psi_{n}^{\mp}-\Psi_{m}^{\mp}\right] F\left(t \pm \frac{D \mp \omega_{n}}{\alpha}, t \pm \frac{D \mp \omega_{m}}{\alpha}\right)+\cos \left[\Psi_{n}^{\mp}+\varphi_{m}^{ \pm}\right] F\left(t \pm \frac{D \mp \omega_{n}}{\alpha}, t \pm \frac{D \pm \omega_{m}}{\alpha}\right)\right. \\
+\cos \left[\varphi_{n}^{ \pm}+\Psi_{m}^{\mp}\right] F\left(t \pm \frac{D \pm \omega_{n}}{\alpha}, t \pm \frac{D \mp \omega_{m}}{\alpha}\right)+\cos \left[\varphi_{n}^{ \pm}-\varphi_{m}^{ \pm}\right] F\left(t \pm \frac{D \pm \omega_{n}}{\alpha}, t \pm \frac{D \pm \omega_{m}}{\alpha}\right) \\
-\sin \left[\Psi_{n}^{\mp}-\Psi_{m}^{\mp}\right] G\left(t \pm \frac{D \mp \omega_{n}}{\alpha}, t \pm \frac{D \mp \omega_{m}}{\alpha}\right)+\sin \left[\varphi_{n}^{ \pm}+\Psi_{m}^{\mp}\right] G\left(t \pm \frac{D \pm \omega_{n}}{\alpha}, t \pm \frac{D \mp \omega_{m}}{\alpha}\right) \\
\left.-\sin \left[\Psi_{n}^{\mp}+\varphi_{m}^{ \pm}\right] G\left(t \pm \frac{D \mp \omega_{n}}{\alpha}, t \pm \frac{D \pm \omega_{m}}{\alpha}\right)+\sin \left[\varphi_{n}^{ \pm}-\varphi_{m}^{ \pm}\right] G\left(t \pm \frac{D \pm \omega_{n}}{\alpha}, t \pm \frac{D \pm \omega_{m}}{\alpha}\right)\right)
\end{gathered}
$$

$$
\Psi_{n}^{(i)}=\phi_{n}+\int_{0}^{t_{\Psi, n}^{(i)}} \alpha t^{\prime} d t^{\prime} \quad \varphi_{n}^{(i)}=\phi_{n}-\int_{0}^{t_{\varphi, n}^{(i)}} \alpha t^{\prime} d t^{\prime}
$$

Phases picked up by the ThLS during a linear sweep

N -dependence of the number of steps Analytical versus Numerics

Concluding Remarks

- When in a QT the couplings are constants:
the number of steps maximizes to 2
- When the couplings periodically change as a monochromatic signal: the number of steps maximize two 4
- When the couplings periodically change as a shifted monochromatic signal: the number of steps maximize two 6
- When the couplings periodically change as a polychromatic signal : the number of steps increases with the number N of monochromatic signals composing the main signal
- Steps are useful for the statistics of atoms in a Bose-Einstein condensate
- Beats are useful markers for manipulating spins for Quantum Information Processing

Outlook (to do list)

- SU(3) Landau-Zener Interferometry with dissipation
- SU(3) Landau-Zener Interferometry with "Longitudinal" and "transverse" drives
- Statistics of atoms in Bose-Einstein Condensate
- Dynamics of two entangled qubits
- Dynamics of two entangled qutrits
- etc

To pioneers: M. N. Kiselev
(ICTP)
K. K. Kikoin
(University of Telaviv)

To collaborators: A. B. Tchapda and L. C. Fai (UDs, Cameroon)

To institutions: Perimeter Institute
AIMS-Ghana

To pioneers: M. N. Kiselev
(ICTP)
K. K. Kikoin
(University of Telaviv)

To collaborators: A. B. Tchapda and L. C. Fai (UDs, Cameroon)

To institutions: Perimeter Institute
AIMS-Ghana

