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Abstract: <p>What is the essence of quantum theory? In the present talk | want to approach this question from a particular operationalist
perspective. | take advantage of arecent convergence between operational approaches to quantum theory and axiomatic approaches to quantum field
theory. Removing anything special to particular physical models, including underlying notions of space and (crucialy) time, what remainsis what |
shall call "abstract quantum theory”. This embeds into a more general framework that also includes classical theory, with classical and quantum
theory representing two extremes in a spectrum of possible theories. | shall present this within a"hierarchy of abstraction”, where adding structure
leads to more specialized frameworks. In particular, adding topological spacetime and locality leads to the recently proposed positive formalism and
recovers quantum field theory. Further rigidifying time and adding causality recovers the standard formulation of quantum theory. There are other
promising specializations such as Hardy's proposal to work in op-space.</p>
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Origins

Quantum Field Theory
e Dirac (1933): generalized transformation functions
e Feynman (1948): path integral
e Witten, Segal, Atiyah (1988): TQFT aka. FQFT
Foundations of QT
@ convex operational framework

e quantum information theory: quantum operation, channel
e specific approaches:
» Hardy: causaloid (2005), formalism locality (2010)

» Brukner, Oreshkov, ...: process matrix (2011), timeless approach (2014)
» Selinger, ...: categorical approach (2005)
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Processes and interfaces

Operational approach:
Fundamental notions

Y o experiment

@ measurement

@ observation
@ preparation
@ intervention

Subsume instance as:

@ process
Processes have
outcomes.
Represent processes as
boxes.
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Processes and interfaces

i
Processes are not
isolated. Outcomes
depend on other
‘:\]? processes. We want to
O W predict correlations.
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Processes and interfaces

O
11n1
O
The outcome of a given
AB
L set of processes depends
L™ generally on a large
‘:U? number of other
O [ . processes.
1
i AB |
| -
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Processes and interfaces

We introduce the notion
of interface to model
interaction between
processes. An interface
A B enCOdeS communication
L1 or information exchange
O || mi: between processes. we
depict this as a link.
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Processes and interfaces

23
LRy Processes are of specific
: types.
2.2
5., - Interfaces are of a
X i specific type depending
AB on the processes which
—— they connect.
O / | y
= 20
' M 5, We indicate this with
M; labels.
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Processes and probes

Associated to each process of type M is a space Py of probes.

A probe provides a finer description of a process, specifying e.g. a
e specific experimental outcome

e specific apparatus settings

There is always a null-probe 1 € P, representing the absence of any
apparatus, observation or intervention.
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Hierarchies of probes

Probes form hierarchies of generality. This induces a partial order on
the space of probes .

Consider an apparatus with one light that shows either red or green,
encoded in three different probes:

@ P(r) for outcome red O
e P(g) for outcome green
. P(r) | <

e P(x) for an unspecified outcome O
The unspecified state is more general < P(x)
than the others. Encode this in a O
partial order on P, setting P(g)
P(r) < P(x) and P(g) < P(x). -
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Hierarchies of boundary conditions

Boundary conditions also form ]
hierarchies of generality. This gives rise

to a partial order on .‘BA'A Here: <
by I
by <b <
by < b (] b
b;g
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Composition

A set of processes joined by interfaces may be considered itself a
process. Say we have a process of type M and one of type N. We say
the composite process has type M U N.

—1 £ & — = — Po(Q —

M NI MUN |

This induces a composition of associated probes P € £y with Q € Py.
We write for the composite probe P ¢ Q € Ppun.
This yields a composition map ¢ : Py X Py — Pumun.
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Interfaces and boundary conditions

We associate to each interface ¥ a

SR . space of boundary conditions 5.’

CF R T R R

Z]IZB ZH
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This parametrizes possible
signals/information exchange
between adjacent processes.

Interfaces between the same pair of processes can be combined
arbitrarily. Write: ¥ = ¥, U Xy U---UX,.

- e o

Induces a map between spaces of

= boundary conditions:

By x B x---x B
Ld i J"z P

— B

Y

1

We denote the joint interface for a process of type M by dM.
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Values

Consider a process of type M.

To a probe P € #); and a boundary
condition b € B, we associate a
[[P b]] — P I b oM

VM value [P, b]y. We shall take this to be a
real number. Formally, there is a
pairing [, -]y : Py x 8;,, = R.

M

[P, b]p € RT quantifies compatibility between the apparatus or
outcome represented by the (primitive) probe P € £ and the

fps R+
boundary condition b € 8/, .

Pairing and partial order structures are compatible:

P < Q i [[P, bHM < [[Qa bﬂM Vb € Br’)IM

b<c <<= [P,blm <[P, c]m VPE?)/\LI
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From values to measurements

A measurement is encoded by at least two probes:
@ One non-selective probe Q encodes the measurement apparatus.

@ One selective probe P encodes the measurement apparatus with a
selected outcome.

[Q,b]m € RY quantifies compatibility of the boundary condition
b € B, , with the presence of the apparatus.

[P, b]m € RT quantifies compatibility of the boundary condition
b € B, , with the presence of the apparatus with selected outcome.
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Measurement probabilities

In M consider the probe P(x) € P, encoding a measurement device
and P(g) encoding in addition a selected outcome.

- +
Given b € ZﬁHM the

probability II for an
affirmative outcome is: O O
- [P@). bl Z
[P(%), b]m Plg) 7 P ()

Since 0 < P(g) < P(x) we have 0 < IT < 1 (if [P(x),b]pm # 0).
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Processes and interfaces

We introduce the notion
of interface to model
interaction between
processes. An interface
A B enCOdeS communication
L1 or information exchange
O || mi: between processes. we
depict this as a link.
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Convexity

In a probabilistic setting it makes sense to combine different probes
probabilistically, even when they correspond to different experimental
situations. Say we have probes Py,.. ., P, and probabilities py, ..., p,
such that }}; pr = 1. Then we can consider P := } ;. prP as a probe.

Since an arbitrary real multiple of a probe is a probe, this equips the
space Py of probes with the structure of a real vector space. The
subset of primitive probes P, ¢ Py is a positive cone making # into
a partially ordered vector space.

Similarly, the set of boundary conditions B, forms a positive cone in
the partially ordered vector space By, generated by it. We call this the
space of generalized boundary conditions.

We extend the pairing, [, ‘[|m : Pm X Bam — R
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Slice processes and inner product

For any type ¥ of interface we postulate a type of slice process >:
e X =3UX
e the null probe “passes signals through”

— ] — =
2 > 2

~

2
Putting boundary conditions on the two
sides allows evaluation. This yields an inner

product By, X By, — R on the space of
boundary conditions. b 12 ¢
(b, o)y, = [, b®Cﬂ‘(J 3

This should be symmetric and positive-definite.
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Composition rule for probes

As a generalization we obtain the composition rule for probes.

b—EE— ¢ = kD —J— & &—— C

M UN M N

[PoQb®clpmun = Z[[PJ?@&]]M[[Q»E/(@CHN

kel

Here, {&; }er is an ON-basis of By;.
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Slice processes and inner product

For any type ¥ of interface we postulate a type of slice process >:
e X =3UX
e the null probe “passes signals through”

— ] — =
2 > 2

~

2
Putting boundary conditions on the two
sides allows evaluation. This yields an inner

product By, X By, — R on the space of
boundary conditions. b 12 ¢
(b, o)y, = [, b®Cﬂ‘(J 3

This should be symmetric and positive-definite.

Abstract quantum theory 2017-04-20 18 / 35

Pirsa: 17040024 Page 23/40



(Abstract) Positive Formalism

We obtain an axiomatic framework for encoding physical theories that
requires no notion of space or time.
Adding structure as necessary (but no new rules!) this specializes to:

@ the convex operational framework

e the spacetime positive formalism

e “abstract” quantum theory

e quantum field theory (as axiomatized in the sense of Segal)

o the standard formulation of quantum theory
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abstract
positive
formalism

+ + spacetime + locality

spacetime
positive
formalism
+ + time + causality
[1 convex

b]“‘ \TLI operational
| ;? é framework
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classical quantum

(lattices) (anti-lattices)
abstract abstract abstract
classical positive guantum
statistical formalism theory

theory
+ + spacetime + locality
general
spacetime spacetime boundary
statistical positive formulation
field theory formalism /
axiomatic
QFT
+ + time + causality
statistical i Q convex f stancliatr.d
mechanics \7J aperational C;qu ntum
o framework of quantum
E é theory
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Adding spacetime and locality

Spacetime locality
...... provides a powerful
organizing principle.

. Processes only interface

Mj ™, with adjacent processes.
This decreases

considerably the
interconnectivity of the
graph.
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Adding spacetime and locality

We may forget about the
graph and identify
process types with
regions and interface
types with
hypersurfaces.

This framework is called
the spacetime version of
the positive formalism.

2]IZ
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Time-evolution

Specialize to a global factorizing spacetime R x ¥ and restrict the
spacetime system to equal-time hyperplanes >); and time-interval
regions [t, to] = [ty 2] X 2.

Write 8, := By, and call this the (generalized) state space at time .

ko | (bz
I

by (:bl
>

Consider probe P € ¥y, ,1. Define the probe map P: B, — B, via

(bg, P(b1))s, = [P, by ® ba i1, 1) Vb, € By,, by € By,.
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Primitive probe maps and positivity

Probe maps for primitive probes are positive. They map proper states
to proper states, 8," — B,'. They even have the stronger property of
boundary positivity,

T - . e B B+ @ B
Z(}c,—, P(bi)), =0 if be- ®C; € Biﬁlh,!zﬁl 2 .B!1 @.8!2
l I
In classical theory, positivity and boundary positivity are equivalent.

In quantum theory, boundary positivity is complete positivity.

Abstract quantum theory 2017-04-20 26 / 35

Pirsa: 17040024 Page 30/40



Time-evolution maps

The probe map associated to the null-probe is the time-evolution map
T[M,!Q] : Bf’] = Z;l'gf

(b2, Tt 11 (b1)Dey = [@, 01 ® Da] 1, 1,)
The time-evolution maps compose for t; <ty < t3 as,

T[h,!' - Tll'.‘i,a"zl = TI“»"H]'

3]

Usually, time-evolution preserves the state space. Thus, 8 = B;. Probe
maps become operators on 8. Assume this from now on.

Many systems are also time-translation symmetric meaning that
Tt +4] = Tityt,4+4] = Ta. We then get a one-parameter semigroup of
boundary positive operators,

Tay+a, = Tay 0 Ta,.
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The state of maximal uncertainty

Recall that the boundary conditions form a hierarchy of generality.

We assume that there exists a state e € 8" that is maximally general,
call this the state of maximal uncertainty. This encodes a complete
lack of knowledge.

Mathematically, for any b € 87 there exists A > 0 such that b < Ae. This
is called an order unit.

Most often in a measurement, we are only interested in the outcome
given a fixed initial state by, but do not care about the state after the
measurement.

This is encoded by setting the final state by = e.
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Measurement without post-selection

Consider a binary measurement in [}, f5| encoded by a non-selective
probe Q and a selective probe P.

A

2y -
1 :
f]' (b
P
X

The probability II for an affirmative outcome given an initial state
b € B, but disregarding the final fate of the system is thus,

_[P.b®elp (e P(D))
[Qb@eli,,) (e Qb))

[1

One also says that this is a measurement without post-selection.
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Normalization

The positivity and positive-definiteness of the inner product implies
that for any b € 8" with b # 0 we have (e, b) > 0.

b € B is normalized iff (e, b) = 1.
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Normalization

The positivity and positive-definiteness of the inner product implies
that for any b € 8" with b # 0 we have (e, b) > 0.

b € B is normalized iff (e, b) = 1.
This suggests corresponding notions for probe maps P : 8 — 8.

P : 8 — B is normalization preserving iff (e, P(b))
b e B.

(e, b) for all

P : 8 — B is normalization decreasing iff (e, P(b)) < (e, b) forall b € 8.
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Causality

Require that non-selective probe maps are normalization preserving. |

This implies that selective probe maps are normalization decreasing.
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Causality

ok Eroa e
t 4
Q
e
) -
P o P
h fl
Y~ b Y~b
- »
X 2

Consider a binary measurement given by non-selective probe P, and
selective probe P,. Possibly, a later measurement is performed given by
non-selective probe Q.

The probability II of an affirmative outcome of the first measurement
does not depend on the second measurement being performed or not.

7 (&P _ (e Q(Pr(b)))

(e Pu(b)) (e, Q(P.(D)))

Note: If b is normalized the denominators are equal to 1.
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Time-asymmetry

The normalization conditions for probe maps are time-asymmetric.
The normalization preserving condition,

(e, b) = (e, P(b)) Vb e B
reads in the general formalism as,
[n,b®e] =[P b®e| Vb € B.

The time-reversed condition reads,

[, e®b] = [P,e® b] Vb € B.
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Classical and quantum theory

If we take B to be a lattice, i.e., the space of real valued functions on a
set (phase space) we obtain classical statistical mechanics.
e e = 1 the constant function with value 1.
o () = [--duthe L? inner product
@ certain probe maps describe observables, others describe
modified dynamics

If we take B to be an anti-lattice, i.e., the space of self-adjoint operators
on a Hilbert space H, we obtain quantum statistical mechanics.

@ e = idys the identity operator
@ () = tr(-:) the Hilbert-Schmidt inner product

e primitive probe maps are quantum operations
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