Title: "Quantum advantage with shallow circuits"

Date: Apr 19, 2017 01:00 PM

URL: http://pirsa.org/17040021

Abstract: We prove that constant-depth quantum circuits are more powerful than their classical counterparts. We describe an explicit (i.e., non-oracular) computational problem which can be solved with certainty by a constant-depth quantum circuit composed of one- and two-qubit gates. In contrast, we prove that any classical probabilistic circuit composed of bounded fan-in gates that solves the problem with high probability must have depth logarithmic in the input size. This is joint work with Sergey Bravyi and Robert Koenig (arXiv:1704.00690).

Pirsa: 17040021 Page 1/43

# Quantum advantage with shallow circuits

arXiv:1704.00690

Sergey Bravyi (IBM) David Gosset (IBM) Robert Koenig (Munich)



Pirsa: 17040021 Page 3/43

## A depth-d quantum circuit consists of d time steps.

Each time step contains one- and two-qubit gates acting on disjoint qubits.



Pirsa: 17040021 Page 4/43

## A depth-d quantum circuit consists of d time steps.

Each time step contains one- and two-qubit gates acting on disjoint qubits.



Pirsa: 17040021 Page 5/43

#### A depth-d quantum circuit consists of d time steps.

Each time step contains one- and two-qubit gates acting on disjoint qubits.



Differs with some previous works which allow **n**-qubit "fanout" gates

We are interested in **constant-depth quantum circuits**, for which d = O(1).

# Constant-time quantum computation

How much can we gain with parallelism if we only have a fixed computation time?

#### Structure/Simulation

Cannot prepare codewords of good quantum codes
[Eldar, Harrow 2015]

Efficient classical simulation of depth-2 circuits [Terhal, Divincenzo 2002]

General simulation algorithms (superpolynomial)
[Aaronson, Chen 2016]



Constant-depth quantum circuits

## Quantum computers without error correction



#### Quantum supremacy?

Constant-depth unlikely to be classically simulable.
[Terhal, Divincenzo 02]

Beat the best classical computers for some task?
[Gao et al. 17]
[Bermejo-Vega et al. 17]
...uses IQP results...
[Bremner, Montanaro, Shepherd 16]

Pirsa: 17040021 Page 7/43

**This talk:** Can constant-depth quantum circuits solve a computational problem that constant-depth classical circuits cannot?

Pirsa: 17040021 Page 8/43



Pirsa: 17040021 Page 9/43

#### Classical circuits

A classical gate computes a boolean function  $f: \{0,1\}^k \to \{0,1\}$ 



We consider circuits composed of **bounded fan-in gates**, i.e., k = 0(1). We do not restrict the fan-out.

## Constant-depth classical circuits

A depth-d classical circuit consists of d layers (time steps) of gates.



We consider constant-depth circuits composed of bounded fan-in gates.

This class of circuits is known as  $NC^0$ .

We also allow the circuit to be probabilistic (random input bits are provided).

Can constant-depth quantum circuits solve a **computational problem** that constant-depth classical circuits cannot?

## Input Output



Decision problem

Bit-string **x** 

 $b_{x} \in \{0,1\}$ 

Reduced density matrix of any output qubit is determined by a constant-sized subcircuit (containing at most  $2^d$  qubits).

Example:



Can constant-depth quantum circuits solve a **computational problem** that constant-depth classical circuits cannot?



Reduced density matrix of any output qubit is determined by a constant-sized subcircuit (containing at most  $2^d$  qubits).

#### Example:



Pirsa: 17040021 Page 13/43

Can constant-depth quantum circuits solve a **computational problem** that constant-depth classical circuits cannot?

|                    | Input               | Output                                       |
|--------------------|---------------------|----------------------------------------------|
| X Decision problem | Bit-string <b>x</b> | $b_x \in \{0,1\}$                            |
| X Search problem   | Bit-string <b>x</b> | $z_x \in \{0,1\}^n$ (unique solution)        |
| ✓ Relation problem | Bit-string <b>x</b> | $z \in S_x \subseteq \{0,1\}^n$ (non-unique) |

Pirsa: 17040021 Page 14/43



#### Our result:

We describe a (relation) problem that is solved with certainty by a constant-depth quantum circuit.

We prove that any probabilistic classical circuit composed of bounded fan-in gates which solves the problem with high probability must have depth increasing logarithmically with input size.

Pirsa: 17040021 Page 15/43



Pirsa: 17040021 Page 16/43

## Hiding a linear function in an oracle [Bernstein-Vazirani 1993]

**Goal:** Find  $z \in \{0,1\}^n$  using few queries to a quantum oracle:



Linear Boolean function parameterized by a "secret" bit string *z* 

We only need to use the quantum oracle once:  $|z\rangle = H^{\bigotimes n} U_\ell H^{\bigotimes n} |0^n\rangle$ .

In contrast, a classical algorithm needs n queries to a classical oracle computing  $\ell$ .

The Bernstein-Vazirani speedup is relative to an oracle and is not guaranteed to translate into a real-world advantage. Where else can we hide a linear function?

Pirsa: 17040021 Page 18/43

## Quadratic form on a grid

Let G = (V, E) be an  $N \times N$  grid graph. Write  $n = N^2 = |V|$ 



Choose coefficients  $A_e \in \{0,1\}$  for each edge and  $b_v \in \{0,1\}$  for each vertex.

Any choice of coefficients defines a quadratic form  $q: \{0,1\}^n \to \mathbb{Z}_4$ 

$$q(x) = \sum_{e=(v,w)\in E} 2A_e x_v x_w + \sum_{v\in V} b_v x_v$$

## The quadratic form hides a linear function

Define a set

$$\mathcal{L}_q = \{x \in \mathbb{F}_2^n : q(x \oplus y) = q(x) + q(y) \text{ for all } y \in \mathbb{F}_2^n\}$$

#### Lemma

The set  $\mathcal{L}_q$  is a linear subspace of  $\mathbb{F}_2^n$ . Furthermore, there is a "secret" bit string  $z \in \{0,1\}^n$  such that

$$q(x) = 2z^T x \qquad \forall x \in \mathcal{L}_q$$

Pirsa: 17040021 Page 20/43

#### The 2D Hidden Linear Function Problem

**Input:** Coefficients  $A \in \{0,1\}^{|E|}$  and  $b \in \{0,1\}^{|V|}$ . Specifies a quadratic form q(x) and a subspace  $\mathcal{L}_q \subseteq \mathbb{F}_2^n$ 

**Output:** A "secret" bit string  $z \in \{0,1\}^n$  such that

$$q(x) = 2z^T x \quad \forall x \in \mathcal{L}_q$$

In general each instance has many valid solutions **z**.

## Quantum algorithm



Next we'll show that: 1. This algorithm solves the 2D Hidden Linear Function Problem.

2. It can be implemented in constant-depth.



**Lemma:** The output **z** is a uniformly random solution to the 2D HLF Problem.

#### **Proof Sketch:**

Define  $U_q = S(b)CZ(A)$ . It satisfies  $U_q|y\rangle = i^{q(y)}|y\rangle$ 

Output distribution: 
$$p(z) = \left| \left\langle z \middle| H^{\otimes n} U_q H^{\otimes n} \middle| 0^n \right\rangle \right|^2 = \frac{1}{4^n} \left| \sum_{y \in \mathbb{F}_2^n} (-1)^{z^T y} i^{q(y)} \right|^2$$
Square of Fourier Transform  $\mathcal{F}[i^{q(y)}, \mathbb{F}_2^n](z)$ 

Write  $\mathbb{F}_2^n = \mathcal{L}_q + \mathcal{M}$  and write the FT as a product of "partial" FTs.

$$\mathcal{F}\big[i^{\mathrm{q}(\mathrm{y})},\mathbb{F}_2^\mathrm{n}\big](\mathrm{z}) = \mathcal{F}\big[i^{\mathrm{q}(\mathrm{y})},\mathcal{L}_q\big](\mathrm{z}) \cdot \mathcal{F}\big[i^{\mathrm{q}(\mathrm{y})},\mathcal{M}\big](\mathrm{z})$$

Use basic properties of FT and quadratic forms:

Nonzero iff *z* is a solution Constant over solution set.

Constant (independent of *z*)

## The algorithm can be implemented in constant-depth



Four layers of CCZ gates. (even/odd vertical/horizontal edges) Decompose CCZ gates into 1- and 2-qubit gates.

Pirsa: 17040021 Page 24/43

## Example:



Place a qubit at each vertex Place input bits on vertices and edges:

--: Edge with  $A_e = 1$ 

## Example:



Place a qubit at each vertex Place input bits on vertices and edges:

--: Edge with  $A_e = 1$ 

## Example:



--: Edge with  $A_e = 1$ 

## Example:



--: Edge with  $A_e = 1$ 

## Example:



--: Edge with  $A_e = 1$ 

Example:



--: Edge with  $A_e = 1$ 

## Example:



-: Edge with  $A_e = 1$ 

Example:



-: Edge with  $A_e = 1$ 

The 2D HLF problem is solved by a constant-depth quantum circuit with gates acting locally in 2D.

Next we show that it cannot be solved by a constant-depth classical circuit...

Pirsa: 17040021 Page 33/43

**Theorem:** The following holds for all sufficiently large N. Let  $C_N$  be a classical probabilistic circuit composed of gates of fan-in  $\leq K$  which solves size-N instances of the 2D HLF Problem with probability greater than 7/8. Then

$$\operatorname{depth}(\mathcal{C}_N) \ge \frac{\log(N)}{8\log(K)}$$

Pirsa: 17040021 Page 34/43



Pirsa: 17040021 Page 35/43

#### **Proof Ideas**

Locality in shallow classical circuits Each output bit can only depend on O(1) input bits.



Vs.

## Quantum nonlocality

Measurement statistics of entangled quantum states cannot be reproduced by local hidden variable models





Pirsa: 17040021 Page 36/43

## Locality in classical circuits

Input bit  $x_j$  is **correlated** with output bit  $z_k$  iff flipping the jth input bit can flip the kth output bit. The **lightcone**  $L(z_k)$  is the set of input bits that are correlated with  $z_k$ .

$$|L(z_k)| \le K^d$$
 "Constant-depth locality"

We'll see that the 2D Hidden Linear Function problem cannot be solved by "constant-depth local" circuits. First consider simpler forms of locality...

## Quantum nonlocality beats completely local circuits

[Greenburger et al. 1990] [Mermin 1990]

$$|GHZ\rangle = \frac{1}{\sqrt{2}}(|000\rangle + |111\rangle)$$
 satisfies:  $P|GHZ\rangle = |GHZ\rangle$   
 $P \in \{XXX, -XYY, -YXY, -YYX\}$ 

Choose bits  $b_1, b_2, b_3$  and then measure each qubit of  $|GHZ\rangle$  in either the X basis (if  $b_j = 0$ ) or the Y basis (if  $b_j = 1$ ). Outcomes  $z_j \in \{-1, +1\}$  satisfy:

$$i^{b_1+b_2+b_3}z_1z_2z_3=1$$
 whenever  $b_1\oplus b_2\oplus b_3=0$  "GHZ relation"

The GHZ relation cannot be satisfied by a completely local classical probabilistic circuit where each output bit  $z_i$  is correlated with at most one of the input bits  $b_k$ .

## Quantum nonlocality beats geometrically local circuits

[Barrett et al. 2007]

Graph state on an 
$$M$$
-cycle ( $M$  even):  $|\Phi_M\rangle = \left(\prod_{j=1}^M CZ_{j,j+1}\right)H^{\otimes M}|0^M\rangle$ 

Choose 3 qubits u, v, w on the even sublattice. Measure u, v, w in X or Y basis and all other qubits in X basis.

Input Output 
$$b_u, b_v, b_w \in \{0,1\}$$
  $Z \in \{0,1\}^M$  Measurement bases Measurement outcomes



Fact: Input/output satisfy a "cycle relation"  $R(b_u, b_v, b_w, z) = 1$  similar to the GHZ relation.

**Lemma:** Suppose a classical circuit satisfies the cycle relation with probability > 7/8. Then some output bit  $z_k$  is correlated with a **distant** input bit  $b_u$ ,  $b_v$  or  $b_w$ . (this means it is not the nearest vertex of the triangle)

#### ... How is this related to the 2D Hidden Linear Function Problem?



Choosing A to describe the adjacency matrix of a cycle and choosing b appropriately we infer (from Barrett et al.) a cycle relation satisfied by input/output.

A classical circuit which solves the 2D HLF problem must also satisfy all such cycle relations....

Pirsa: 17040021 Page 40/43

## Quantum nonlocality beats "constant-depth local" circuits

We use constant-depth locality (every output bit has constant-sized lightcone) and a probabilistic argument to prove the following:

**Lemma:** Suppose a classical circuit has depth less than  $\frac{\log(N)}{8\log(K)}$ 

Then we can find 3 vertices u, v, w on the even sublattice of the  $N \times N$  grid and a cycle  $\Gamma$  which passes through them, such that **input** bits  $b_u, b_v, b_w$  are not correlated with any distant output bits on  $\Gamma$ .





The circuit does not w.h.p satisfy the cycle relation for  $\Gamma$ 



It does not w.h.p solve instances of 2D HLF problem where A is the adjacency matrix of  $\Gamma$ .

Pirsa: 17040021 Page 41/43

## Quantum nonlocality beats "constant-depth local" circuits

We use constant-depth locality (every output bit has constant-sized lightcone) and a probabilistic argument to prove the following:

**Lemma:** Suppose a classical circuit has depth less than  $\frac{\log(N)}{8\log(K)}$ 

Then we can find 3 vertices u, v, w on the even sublattice of the  $N \times N$  grid and a cycle  $\Gamma$  which passes through them, such that **input** bits  $b_u, b_v, b_w$  are not correlated with any distant output bits on  $\Gamma$ .





The circuit does not w.h.p satisfy the cycle relation for  $\Gamma$ 



It does not w.h.p solve instances of 2D HLF problem where A is the adjacency matrix of  $\Gamma$ .

This provides our lower bound on the depth of any classical circuit which solves the 2D HLF problem with probability greater than 7/8.

## Open questions

**Stronger classical circuits?** Can the 2D HLF be solved by  $AC^0$  circuits? (constant depth unbounded fan-in)

**Recursive HLF problems?** The recursive version of Bernstein-Vazirani gives a superpolynomial speedup in query complexity.

**Sampling problems?** Can constant-depth quantum circuits sample from a distribution that can't be sampled by classical constant depth circuits? A recent characterization of distributions sampled by  $NC^0$  circuits might be useful [Viola 2014].

Pirsa: 17040021 Page 43/43