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Abstract: <p>We prove that constant-depth quantum circuits are more powerful than their classical counterparts. We describe an explicit (i.e.,
non-oracular) computational problem which can be solved with certainty by a constant-depth quantum circuit composed of one- and two-qubit gates.
In contrast, we prove that any classical probabilistic circuit composed of bounded fan-in gates that solves the problem with high probability must
have depth logarithmic in the input size. Thisisjoint work with Sergey Bravyi and Robert Koenig (arXiv:1704.00690).</p>
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I. Overview
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A depth-d quantum circuit consists of d time steps.
Each time step contains one- and two-qubit gates acting on disjoint qubits.
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A depth-d quantum circuit consists of d time steps.
Each time step contains one- and two-qubit gates acting on disjoint qubits.

Time step 3
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A depth-d quantum circuit consists of d time steps.
Each time step contains one- and two-qubit gates acting on disjoint qubits.

We are interested in constant-depth quantum circuits, for which d = 0(1).
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/ Constant-time quantum \

ﬁuantum computers \
computation

without error correction
How much can we gain with

parallelism it we only have a e o,

fixed computation time? B e | : '
\ I 8 \ : /
/Structure /Simulation \ Constant-depth Quantum supremacy?

Cannot prepare codewords of | quantum circuits, [Ke ~onstant-depth unlikely to be
good quantum C(?dcs classically simulable.
[Eldar, Harrow 2015 | [Terhal, Divincenzo 02]

Etticient classical simulation of
depth-2 circuits
[Terhal, Divincenzo 2002]

Beat the best classical computers
for some task?
|Gao et al. 17]

‘ 7 7 [Bermejo-Vega et al. 17]
General simulation algorithms

...uses IQP results. ..

@)crpolyno?’nﬂ) [Bremner, Montanaro, Shepherd 16]
[Aaronson, Chen 2010]
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This talk: Can constant-depth quantum circuits solve a
computational problem that constant-depth classical circuits cannot?
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This talk: Can constant-depth quantum circuits solve a
computational problem that constant-depth classical circuits cannot?
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Classical circuits

A classical gate computes a boolean function f:{0,1}* - {0,1}

Number of input bits K 1s xl\ f(X) Number of times the

called the fan-in output 1s used 1s called the

f FOO famon

We consider circuits composed of bounded fan-in gates, 1.e., k = 0(1).
We do not restrict the fan-out.
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Constant-depth classical circuits

A depth-d classical circuit consists of d layers (ime steps) of gates.

OR AND

N\
&

AND

We consider constant-depth circuits composed of bounded fan-in gates.
This class of circuits is known as NCP.
We also allow the circuit to be probabilistic (random input bits are provided).
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Can constant-depth quantum circuits solve a computational problem
that constant-depth classical circuits cannot?

Input Output

x Decision problem  Bit-string X b, € {0,1}

Reduced density matrix of any output qubit 1s determined by a constant-sized
subcircuit (containing at most 2% qubits).

Example:
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Can constant-depth quantum circuits solve a computational problem
that constant-depth classical circuits cannot?

Input Output

x Decision problem  Bit-string X b, € {0,1}

Reduced density matrix of any output qubit 1s determined by a constant-sized
subcircuit (containing at most 2% qubits).

Example:

i
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Can constant-depth quantum circuits solve a computational problem
that constant-depth classical circuits cannot?

Input Output
x Decision problem  Bit-string X b, € {0,1}
x Search problem Bit-string X z, € {0,1}" (unique solution)
/ Relation problem Bit-string X z €Sy €{0,1}" (non-unique)
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Our result:

We describe a (relation) problem that 1s solved with certainty by a constant-depth
quantum circuit.

We prove that any probabilistic classical circuit composed of bounded fan-1n gates

which solves the problem with high probability must have depth increasing
logarithmically with input size.
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II. Hidden Linear Function Problems
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Hiding a linear function in an oracle [Bernstein-Vazirani 1993]

Goal: Find z € {0,1}" using few queries to a quantum oracle:
Linear Boolean tunction

parameterized by a “secret” bit
string Z

%) (—1)7"*|x)

We only need to use the quantum oracle once: |z) = H Oy, HO™|0") .

In contrast, a classical algorithm needs n queries to a classical oracle computing €.
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The Bernstein-Vazirani Speedup 1s relative to an oracle and i1s not guar;mteed to translate into

a real-world adv;mtage.

Where else can we hide a linear function?
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Quadratic form on a grid

Let G = (V,E) be an N X N grid graph. Writen = N2 = |V/|

A, Choose coetticients A, € {0,1}
for each edge and b,, € {0,1} for each
vertex.
b,
O

Any choice of coefficients defines a quadratic form q: {0,1}" = Z,

q(x) = Z 2A,x,xy + Z b,x,

e=(v,w)EE veEV
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The quadratic form hides a linear function

Define a set

Lo={x€Fy: qx®y)=qkx) +q(y) foraly € F}}

/ Lemma N
The set £ 4 is a linear subspace of Fj. Furthermore, there is a “secret” bit string z € {0,1}"
such that

B
g(x)=2z"x VxeL,

\_ P,
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The 2D Hidden Linear Function Problem

Specifies a quadratic form q(x) and

Input: Coeftticients A € {0;1}|E| and b € {Oﬁl}lvl' - asubspace L ;, € [}
a o [¢ 4 q — y

Output: A “secret” bit string Z € {0,1}" such that

E o) =22"3 VxELq]

In general each instance has many valid solutions Z.
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Quantum algorithm

|b) ? |b)

|4) 14)

C Output
z € {0,1}"

A qubit for |On) H®n
each vertex of
the N X N grid

1

Apply CZ,, \, for edges Apply phase gate S, to S=(1 0 )

e ={v,w}withA, =1 qubits with b, = 1 0 —i

Next we’ll show that: 1. This algorithm solves the 2D Hidden Linear Function Problem.
2. It can be implemented in constant-depth.
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D) I |b)
|A) 1A)
0™ CZ(A)gm S(b) | z € {0,1}"

[Lemma: The output Z 1s a uniformly random solution to the 2D HLF Problem. }

Proof Sketch:
Define Uy = S(b)CZ(A). It satisfies Uy|y) = i90)]y)

. 2 Square of Fourier
Zyeu?g(_l)z ny(y)I — Transform
FLAY, 1)

Output distribution: p(z) = |(z|H®n UqH®n|0n)|2 = b

411

Write [Fy=L , +M and write the FT as a product of “partial” FTs.
g:[iq(y), [Fg](z) = g—"[gq(y)’g q](z) -.‘F[iQ(Y),M](z)

Use basic properties of FT Nonzero iff z is a solution Constant
and quadratic forms: Constant over solution set. (independent of 2)
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The algorithm can be implemented in constant-depth

) i b @ ™
|b) D)
|A) |4)
o I8 (O O
GaTemeyy \ ¥ & o
1 time-step I 1 time-step 1 time-step
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Four layers of CCZ gates.
(even/odd vertical/horizontal edges)

Decompose CCZ gates into 1- and 2-qubit gates.
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...it only requires classically controlled Clifford gates between nearest
neighbor qubits on a 2D grid.

Example:

Place a qubit at each vertex
Place input bits on vertices and edges:

= : Edgewith A, =1

. . Vertex with b, =1
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...it only requires classically controlled Clifford gates between nearest
neighbor qubits on a 2D grid.

Example:

Place a qubit at each vertex
Place input bits on vertices and edges:

== Edgewith A, =1

. . Vertex with b, =1
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...it only requires classically controlled Clifford gates between nearest
neighbor qubits on a 2D grid.

Example:

=== : Edgewith A, =1

. . Vertex with b, =1
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Example:
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. . Vertex with b, =1
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...it only requires classically controlled Clifford gates between nearest
neighbor qubits on a 2D grid.

Example:
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. . Vertex with b, =1
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...it only requires classically controlled Clifford gates between nearest
neighbor qubits on a 2D grid.

Example:

== : Edgewith A, =1

. . Vertex with by, =1
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...it only requires classically controlled Clifford gates between nearest
neighbor qubits on a 2D grid.

Example:

== : EdgewithA, =1

. . Vertex with b, =1
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...it only requires classically controlled Clifford gates between nearest

neighbor qubits on a 2D grid.

Example: lc_'A

Pirsa: 17040021
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DD

BHA

== Edgewith A, =1

. . Vertex with b, =1



The 2D HLF problem is solved by a constant-depth quantum circuit with gates acting
locally in 2D.

Next we show that it cannot be solved by a constant-depth classical circuit...
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(- Theorem: The following holds for all sufficiently large N. Let Cy be a classical probabilistic )
circutt composed of gates of fan-in < K which solves size-N instances ot the 2D HLF
Problem with probability greater than 7/8. Then

log(N)
depth(Cy) > —=—2
S epth(Cy) = 8log(K) y
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Input A € {0,1}Fl Output
(instance on
NxNerd) b €{0,1}/V z e {0,131

Solution with

Random bits r € {0,1}¢ probability > 7/8

(drawn from any

joint distribution) 4mmm———)

Circuit must have

depth Q(log(N))
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Proof Ideas

Locality in shallow classical circuits
Each output bit can only depend on

O(1) input bits.

OR

AND

Pirsa: 17040021

Vs.

Quantum nonlocality

Measurement statistics of entangled
o

quantum states cannot be reproduced

by local hidden variable models
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Locality in classical circuits

C

& depth d, z =F(x)

(Includes random biuts) fan-in < K

Input bit X; is correlated with output bit zj ift flipping the jth input bit can flip the kth
output bit. The lightcone L(zy) 1s the set of mnput bits that are correlated with z.

£ IL(z;)| < K d } “Constant-depth locality”

We’ll see that the 2D Hidden Linear Function problem cannot be solved by “constant-
depth local” circuits. First consider simpler forms of locality...
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Quantum nonlocality beats completely local circuits
[Greenburger et al. 1990] [Mermin 1990}

1 PIGHZ) = |GHZ)
—(]000) + |111))  satisfies:

|GHZ) = 7
2 P e {XXX,—-XYY,-YXY,-YYX}

Choose bits by, by, b3 and then measure each qubit of |GHZ) in either the X basis (if b; =
0) or the Y basis (if bj = 1). Outcomes z; € {—1, +1} satisfy:

[ ib1+b2+bgzlzzz3 =1 whenever bl @ b2 @ b3 = () } “GHZ relation”

The GHZ relation cannot be satisfied by a completely local classical probabilistic circuit
where each output bit Z; is correlated with at most one of the input bits by,.
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Quantum nonlocality beats geometrically local circuits
[Barrett et al. 2007]

Graph state on an M-cycle (M even): |d,,) = 1_[ CZ;

Choose 3 qubits u, v, W on the even sublattice. Measure
u, v, w in X or Y basis and all other qubits in X basis.

Input Output
by, by, b, € {0,1} ) € {0,1}M
Measurement bases Measurement outcomes

{ Fact: Input/output satisfy a “cycle relation” R(by, b, b, z) = 1 similar to the GHZ relation.}

Lemma: Suppose a classical circuit satisfies the cycle relation with probability > 7/8. Then
some output bit Zj, is correlated with a distant input bit by, b,, or b,,,.
(this means it 1s not the nearest vertex ot the triangle)
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..How is this related to the 2D Hidden Linear Function Problem?

|b) ]’ |b)

4) 14)

z € {0,1}"

Prepare graph state for graph with Measure jth qubit in X or Y basis
adjacency matrix A depending on b;

Choosing A to describe the adjacency matrix of a cycle and choosing b appropriately
we infer (from Barrett et al.) a cycle relation satisfied by input/output.

A classical circuit which solves the 2D HLF problem must also satisfy all such cycle

relations....
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Quantum nonlocality beats “constant-depth local” circuits

We use constant-depth locality (every output bit has constant-sized lightcone) and a probabilistic

argument to prove the following:
[ o

L

log(N) \

8log(K)’ v w

emma: Suppose a classical circuit has depth less than

Then we can find 3 vertices U, v, W on the even sublattice of the N X N
grid and a cycle I' which passes through them, such that input
\bits b,,b,, b, are not correlated with any distant output bits on I'. u

- The circuit does not w.h.p satisty - [t does not w.h.p solve instances ot 2D HLF
the cycle relation for I problem where A is the adjacency matrix of T'.
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Quantum nonlocality beats “constant-depth local” circuits

We use constant-depth locality (every output bit has constant-sized lightcone) and a probabilistic
argument to prove the following:

L

log(N) \

8log(K)

emma: Suppose a classical circuit has depth less than

Then we can find 3 vertices U, V, W on the even sublattice of the N X N
grid and a cycle I' which passes through them, such that input
bits by, b,, b,, are not correlated with any distant output bits on I. u

- The circuit does not w.h.p satisty - It does not w.h.p solve instances of 2D HLF
the cycle relation for I problem where A is the adjacency matrix of T'.

This provides our lower bound on the depth of any classical circuit which solves the 2D
HLF problem with probability greater than 7 /8.
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Open questions

Stronger classical circuits? Can the 2D HLF be solved by AC? circuits? (constant depth
unbounded fan-in)

Recursive HLF problems? The recursive version ot Bernstein-Vazirani gives a
superpolynomuial speedup in query complexity.

Sampling problems? Can constant-depth quantum circuits sample from a distribution that

can’t be sampled by classical constant depth circuits? A recent characterization of distributions
sampled by NC© circuits might be useful [Viola 2014].
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