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Abstract: <p>General relativity taught us that space time is dynamical and quantum theory posits that dynamical objects are quantum. Hence the
Newtonian notion of space time as a passive stage where physics takes place needs to be replaced by a notion of guantum space time which is
interacting with all other quantum matter fields.<br />

<br />

| will present recent developments that aim at constructing quantum space time. In particular 1 will explain how & nbsp;topological quantum field
theories give rise to new guantum geometry realizations and how these serve as starting points & nbsp;for the construction of a & nbsp;dynamics
& nbsp;of quantum gravity, which is consistent over al scales. & nbsp;Such a dynamics will then determine the properties of quantum space time.
& nbsp;</p>
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Do space time points exist!

To resolve two nearby space time points: need fast clocks, that is high energy.

8 A high energy density will lead to formation
b
' of black holes.

Need to change classical notion of space time.
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Many exciting questions

What is time? J

Is there Is causality
fundamental fundamental?

discreteness’
What is scale?

How will it end?

What is quantum
space time!

How did it all start?

Quantum black
holes and worm
holes?
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How to construct a theory of quantum space time!

A quantum field theory needs a regulator.
But usually regulators need a space time background:
* energy: needs notion of time, breaks diffeomorphism symmetry
* lattice: assumes usually a background, breaks diffeomorphism symmetry
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How to define a theory of quantum space time!?

A quantum field theory needs a regulator.
But usually regulators need a space time background:
* energy: needs notion of time, breaks diffeomorphism symmetry
* lattice: assumes usually a background, breaks diffeomorphism symmetry

A diffeomorphism invariant regulator?
= Sum over geometries assigned to a (random) lattice (Quantum Regge calculus)

Z(bdry) = Z exp(2S(length))

length

* Where is the cut-off! Here we seem to integrate over arbitrarily small and large length.

We will see how we can obtain a quantum induced cut-off.
In the main part of the talk.
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Diffeomorphism symmetry!?

+ Diffeomorphism symmetry is typically broken! [Bahr BD CQG09]
This cannot define a fundamental theory of
quantum general relativity.

* Reason:
Diffeomorphism action can change locally scales of
discretization: probes all scales.
Discrete amplitudes usually constructed as approximations
(reliable on scales larger than the discretization scale).
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Diffeomorphism symmetry requires

to construct the dynamics on all scales.
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Consistent boundary formalism

[BD NJP 12,BD 14]

A formalism to construct better and better approximations to the exact
dynamics of the theory.
Emphasis on boundary amplitudes allows to deal with non-local features,
which are unavoidable for obtaining diffeomorphism invariance.
[BD, Kaminski, Steinhaus CQG 2014]
Important point:
Getting reliable approximations for “low excited states” (~large scales) first.
Contrary to the usual viewpoint, which rather defines theory at UV.
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Consistent boundary formalism

[BD NJP 12,BD 14]

A formalism to construct better and better approximations to the exact
dynamics of the theory.
Emphasis on boundary amplitudes allows to deal with non-local features,
which are unavoidable for obtaining diffeomorphism invariance.
[BD, Kaminski, Steinhaus CQG 2014]
Important point:
Getting reliable approximations for “low excited states” (~large scales) first.
Contrary to the usual viewpoint, which rather defines theory at UV.

What do vacuum and low excitations mean?
In the main part of the talk.
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Mind map

* new quantum geometries * developing tensor network * constructing dual field
* new basis for coarse graining techniques theories for 3D theories
lattice gauge theories * testing models numerically * exploring 4D

* Entanglement entropy
for lattice gauge theories

w/ C. Delcamp, M. Geiller, A. Riello w/ C. Delcamp, F. Eckert, W. Kaminski, w/ S.Asante, V. Bonzom, C. Goeller,
M. Martin-Benito, S. Mizera, E. Schnetter, E. Livine, S. Mizera, A. Riello
C.Seth, S.Steinhaus
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Discrete observables in a continuum theory:

Hilbert space formalism

Using a lattice to pick a set of observables.

Wilson loop

measures
(magnetic)
field strength Such (generalized to SU(2)) electromagnetic
\ variables can also describe phase space of
- :
gravity .
Cj [Ashtelar 86]
electric

flux through l
surface (in (3+1)D)
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Discrete observables in a continuum theory

To specify a continuum state need to specify
behaviour of observables on all possible lattices.
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Need to specify the state for the finer degrees of freedom.
Ideally: find vacuum state.
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Impose symmetries

For a background independent theory we
want to impose that:

\___,

action of spatial
diffeomorphism
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Only one choice (?)

F-LOST [Fleischhaclk; Lewandowski-Okolow-5ahlmann- T hiemann 06] Uniqueness theorem:

® |f you want a (irreducible) representation of
* Wilson loops and electric flux operators
(kinematical observable algebra of general relativity)
 with an action of spatial diffeomorphism

a7 NS

® there is only one choice:
* the Ashtekar-Lewandowski representation [Ashtelar-Lewandowski-Isham 92-95]
* which prescribes that all finer electric flux operators vanish sharply
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First spatially diffeomorphism invariant realization of quantum geometry.
Since the 90’s basis of loop quantum gravity.
And it seemed to be the only one.
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Key accomplishment of loop quantum gravity

A quantum geometry

Determined ‘typical LQG states’.
Key property and structure:

* spatial geometry operators (length, area, volume)
had discrete spectra: [RovelliSmolin 94]

= Quantization-induced UV cut-off.

* spin network basis: [Rovelli,Smolin 95]
also gauge invariant basis for lattice gauge theory,
diagonalizing electric flux operators

Area operator
(from electric
fluxes)
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Typical LQG states: degenerate geometries

vanishing States are generated (by Wilson loop operators)

from a vacuum state, describing totally degenerate
spatial geometry E=0.

area

States describing ‘smooth geometry’ need to
be very highly excited states.

Makes investigations of large scale physics extremely
difficult.

Is there another possibility?
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Topological QFTs with defects

o Topological QFT: do not need background metric.

Defects: by definition do not interact and thus do not see
B the distance between each other.

= |deal setting for the kinematics of a background independent theory.
Defects encode degrees of freedom of a gravitational theory.

Indeed one can interpret the Ashtekar-Lewandowski representation
as a

: * (trivial) TQFT which imposes vanishing electric fluxes
* where arbitrarily many line defects (non-vanishing fluxes) are
allowed

[BD NJP 2012; BD, Steinhaus NJP 2014 ]

We can use TQFTs with suitable defect structure for the
construction of quantum geometry realizations by:
* using TQFT amplitudes to define vacuum state

and associated refinement maps
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A new quantum geometry realization

[BD, Geiller CQG 2014; BD, Geiller CQG 2015; Bahr, BD, Geiller 2015]

A very different

quantum geometry Based on BF theory:
vanishing vacuum state peaked on vanishing curvature F=0.

curvature

of SU(2) States with curvature defects are generated by

connection exponentiate electric flux operators (t'Hooft operators)

from the vacuum state.

For (2+1)D: solution to dynamics (with point particles).

Can now describe large scale geometries as low
excited states.

curvature basis:

eigenstates of Much stronger connection to spin foams, which
Wilson loop provides a covariant definition of dynamics for
operators loop quantum gravity.
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Spectra of geometric observables

Lattice gauge theory and Ashtekar-Lewandowski representation

Phase space

Configuration space: Momentum space:
curvature via holonomies - electrical fluxes
exponentiated connection

, __;;\\
exp / A € SU(2) S |

path

e

non-compact and flat

~__ -

compact and curved

Holonomy operators: electric flux operators:
continuous spectra and commutative discrete spectra and non-commutative
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A new quantum geometry realization

[BD, Geiller CQG 2014; BD, Geiller CQG 2015; Bahr, BD, Geiller 2015]

A very different

quantum geometry Based on BF theory:
vanishing vacuum state peaked on vanishing curvature F=0.

curvature

of SU(2) States with curvature defects are generated by

connection exponentiate electric flux operators (t'Hooft operators)
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Spectra of geometric observables

The BF representation

Configuration space: Momentum space:

curvature via holonomies - exponentiated electrical fluxes

exponentiated connection clreumvents
unigueness

theorem

N exp n-'/ I
Js

Boh
compactificatior

exp / A € SU(2) 5°)

path

compact and curved compact

~ /

\ exp. electric flux operators:

spectra looking discrete but
mathematically continuous (mostly)
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Is there a more natural way of compactifying?

BF representation: Wish list for the new representation:

' , * piecewise homogeneously curved geometry
* piecewise flat geometry * with positive curvature:
* pieces can be arbltraryllarg'la pieces cannot be arbitrarily large:
* appropriate fo!' approximating ' Induces a compactification!
general relativity without a cosmological .

R lcul appropriate for approximating
constant (Regge calculus) general relativity with a cosmological constant

Regge calculus with curved building blocks
g8 g
[Bahr, BD NJP 09]

Can we implement this in
the quantum theory?
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Yes, we can!

[BD, Geiller NJP2017] A (2+1)D quantum geometry based on Turaev-Viro TQFT

Configuration space: Momentum space:

curvature via holonomies - exponentiated electrical fluxes
exponentiated connection

SU(2) ""] SU(2) ( . )

compact and curved compact and curved

~__ -

Holonomy operators: exp. electric flux operators:
spectra discrete and bounded, spectra discrete and bounded,
operators non-commutative operators non-commutative
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Yes, we can!

[BD, Geiller NJP2017] A (2+1)D quantum geometry based on Turaev-Viro TQFT

Configuration space: Momentum space:

curvature via holonomies - exponentiated electrical fluxes
exponentiated connection

SU(2) ""] SU(2) ( . )

compact and curved compact and curved

~_ -

Holonomy operators: exp. electric flux operators:
spectra discrete and bounded, spectra discrete and bounded,
operators non-commutative operators non-commutative

Feeding two birds with one scone:
* UV and IR finiteness: discrete and bounded spectra for all geometric operators
* implementation of a (positive) cosmological constant
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Two main achievements:
* UV and IR finiteness:

discrete and bounded spectra for all geometric operators
* implementation of a (positive) cosmological constant

But what about (3+1)D?
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Towards (3+1)D:

\ / Two problems for (3+1)D:
7£ * the non-commutativity of Wilson loops needs 2D space:
\ / How to generalize to three dimensions?

* need a polarization: set of commuting operators
—>connection and flux combined to a pair of new
(still non-commuting) connections

—>parallel Wilson loops in these two connections define a
polarization (in (2+1)D)

Non-contractible curves encode degrees of freedom.

How to apply this in (3+1) dimensions?
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Lifting (2+1)D TQFTs to (3+1)D theories

[Delcamp, BD JMP 2017, BD JHEP 2017]

* Consider surface surrounding a defect graph in 3D: here tetrahedron.
* Use state space of the (2+1)D Turaev-Viro theory for this surface.

* Impose constraints that ensure:
No degrees of freedom are associated to curves
contractible in surrounding 3D space.

* These constraints trivialize one copy in the pair of Wilson loops.

(We are left with the state space of the Witten-Reshetikhin-Turaev TQFT.)
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A finite and self-dual quantum geometry

[BD JHEP 2017]

Wilson loops around an
edge measures (excess)
curvature on this edge.

Wilson loops around a
face measure area of this
face.

< | d S't. (f
Diagonalized by generatize e Diagonalized by curvature

spin network basis. basis.

Spectrum of (exponentiated) area and curvature operator
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What does this achieve!?

¢ A new family of (3+1)D quantum geometry realizations
based on vacuum peaked on homogeneously curved geometry: Crane-Yetter TQFT.

® Rigorous implementation of quantum group structure into (3+1)D LQG.

[Smolin, Major, Noui, Perez, Pranzetti, Dupuis, Girelli, Bonzom,
Quantum group: S[T(z)]( Livine, Haggard, Han, Kaminski, Riello, Rovelli,Vidotto, ...]
6
e A

[Smolin, Major 95]

where k =

® Hilbert spaces (associated to fixed triangulations/ graphs) are finite dimensional:
® which is important for (numerical) coarse graining efforts.
® and leads to geometric operators having discrete and bounded spectra:
UV and IR cut-off

® New bases adapted to coarse graining.
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How does it help for the dynamics of quantum gravity ?

87

® spin foam models: relatives of TQFTs that encode quantum gravity amplitudes

® the different quantum geometries will show up in a phase diagram for spin foams;

s

encodes their behaviour in the refinement limit

Condensation of (curvature) defects

® Are there even more geometrically
interesting phases’
* explicit numerical investigation
* construction via lifting technique

® Phase transition:
* condensation of defects

* propagating degrees of freedom
+ diffeomorphism symmetry

Page 35/39



Applications

[Haggard, Han,
Kaminski, Riello 14-15]

[BD, Martin-Benito,
Steinhaus, NJP 2014

BD, Schnetter,

Seth, Steinhaus, PRD 2016;
Delcamp, BD 2016]

mp, BD, Riello JHP 201 6;
camp BD to appear]

condensed
math. physics: matter:
new 4D topological (3+1)D \ [3D:Barrett 02, Barrett, Garcia-
invariants : Islas, Martins 04, Freidel, Louapre
tOpIO|OglcaI - 04, Freidel, Noui, Roche 06,
‘ Dupuis, Girelli, Freidel 17;
: [Walker-Wang 201 | Keyserlingk
[Fasrenz. Earrett.2016) etal PRB 2013] 4D: Delcamp, BD to appear]
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Conclusions

® restore close relation of LQG to TQFT [Barrett, Crane, Smolin]
* could be crucial for continuum limit (do we already have a geometric phase?)
 exchange of elegant techniques between (now also canonical) quantum gravity and TQFT

® new vacua can serve as starting point of approximation scheme for dynamics  [BD 2012-14]
(Consistent Boundary Framework)

® the new family of quantum geometry realization offers many advantages
* spectra of intrinsic and extrinsic geometric operators are discrete and bounded
* self-duality
* finiteness properties important for (numerical) coarse graining schemes
* new bases important for coarse graining

® new view on quantum geornetries [BD, Steinhaus 2013: From TQFT to quantum geometry]
* many new directions
* are there other quantum geometries (4D TQFTs) out there?
* how do predictions depend on choice of representation?
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Thank you!

N I I L
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