Title: Bounding Milli-magnetic charged particles

Date: Mar 14, 2017 01:00 PM

URL: http://pirsa.org/17030083

Abstract: Just like how milli-electric charged particles can exist, so can milli-magnetic charged particles. We review simple ways of evading the standard quantization arguments and why there are no model independent constraints on magnetically charged particles, milli-charged or not. We then provide the first ever model independent bounds coming from magnetar cooling arguments.

Pirsa: 17030083 Page 1/62

Bounding milli-magnetic charged particles

Anson Hook Stanford

Work in Progress with Junwu Huang 170X.XXXX

Pirsa: 17030083 Page 2/62

New Particles

- Particle physics has been all about finding new particles
- Particles that make us up (leptons/quarks/ Higgs)
- Particles that carry forces (photon/gluon/W/ Z/graviton)

Pirsa: 17030083 Page 3/62

Where are they?

Heavy

- They have large masses so we haven't been able to produce them yet
- Light but weakly coupled
 - We can produce them, but they are weakly coupled so hard to produce and hard to see

Pirsa: 17030083 Page 4/62

How to find them

- Heavy
 - Collide things at higher and higher energies
- Light but weakly coupled
 - High intensity/luminosity (Do experiment many many many times)

Pirsa: 17030083 Page 5/62

- At high energies everything interconverts
- Just collide stuff, doesn't matter what it is

Pirsa: 17030083 Page 6/62

Light particles

- Need high intensity (of what?)
- Converting between particles rarer so what it couples to and how it couples matters
 - Electrons/muons/protons/dark matter/...
 - Gauge charge/dipole moments/Yukawa interactions/...
- Many options = many different experiments

Pirsa: 17030083 Page 7/62

High intensity colliders

- Standard collider but just run at very high luminosity
- Explores new particles weakly coupled to protons/electrons

Pirsa: 17030083 Page 8/62

1406.2698v2

- Collide a large number of protons or electrons or atoms with atoms
- Explores new particles weakly coupled to protons/electrons/atoms/...

Pirsa: 17030083 Page 9/62

High density

- Neutron stars
- Red Giants
- Supernova
- New particles as new sources of
 - Cooling
 - Energy transport
 - Production mechanism combined with direct detection

Pirsa: 17030083 Page 10/62

Direct detection: Dark matter

- Large energy flux of dark matter
- Collision of dark matter with nuclei
 - Nuclear recoils
 - Electron recoils in the future

Pirsa: 17030083 Page 11/62

Dark Matter

- If dark matter has macroscopic size look for time dependent processes
 - Time dependent dipole moments, charge, mass...

Pirsa: 17030083 Page 12/62

New light particles

- Many different scenarios
- New particle / old interactions
 - Gravity
 - Electricity and magnetism
- So what about new particles that carry charge and mass?

Pirsa: 17030083 Page 13/62

Milli-charged particles

1311.0029

Pirsa: 17030083 Page 14/62

Milli-charged particles

- Two types of charges under the photon
- Electric and magnetic (hence E+M)
- What about milli-magnetic charged particles?

Pirsa: 17030083 Page 15/62

Outline

- Milli-magnetic charged particles
- Constraints
- Conclusion

Pirsa: 17030083 Page 16/62

Milli-magnetic charge

- Monopoles : Yes
- Milli-magnetic charges: ???
- Why don't people look for this?
- Quantization of angular momentum

Pirsa: 17030083 Page 17/62

Angular momentum

$$L = \int d^3x \, x \times (E \times B) = \frac{eg}{4\pi} Q_e Q_m \hat{n}$$

Angular momentum

$$L = \int d^3x \, x \times (E \times B) = \frac{eg}{4\pi} Q_e Q_m \hat{n}$$

$$g = \frac{2\pi}{e}$$
 $L = \frac{\mathbb{Z}}{2}$ $Q_e Q_m = \mathbb{Z}$

- Given that electrons exist, there exists a minimum magnetic charge
- Most work directed towards this mimimim charge

Pirsa: 17030083

Example

	E	B	E'	B'
e	1	0	ϵ	0
$\mid m \mid$	0	$-\epsilon$	0	1

 Angular momentum in U(1) canceled by angular momentum in U(1)'

Pirsa: 17030083 Page 20/62

Plausible?

- Milli-magnetic charged particles are possible but are they plausible?
- Claim Just as plausible as any other scenario with dark photons
 - Fractional charges?
 - Monopoles at low energy?

Pirsa: 17030083 Page 21/62

Kinetic Mixing

$$\mathcal{L} = -\frac{1}{4}F^2 - \frac{1}{4}F_D^2 + 2\epsilon F_D F + \frac{1}{2}m_D^2 A_D^2$$

- Dark photon with kinetic mixing
- Electron has milli charge under dark U(1)

$$A \to A + \epsilon A_D$$

Kinetic Mixing

$$\mathcal{L}\supset \epsilon FF_D$$

$$E \leftrightarrow E_D$$
$$B \leftrightarrow B_D$$

- Dark Monopoles pick up milli-magnetic charge
 - Result required by consistency
 - Can be seen explicitly for 't Hooft Polyakov monopoles

	E	В	E'	B'
e	1	0	ϵ	0
m	0	$-\epsilon$	0	1

Magnetic transformation

$$\mathcal{L} \supset F^2 + F\tilde{G}$$

- Integrate out G
 - Theory of the photon
- Integrate out F
 - Theory of the dual photon

Pirsa: 17030083

Magnetic transformation

$$\mathcal{L} \supset F^2 + F_D^2 + \epsilon F_D F + F \tilde{G} + F_D \tilde{G}_D$$

Remove kinetic mixing by field redefinition

$$A \to A + \epsilon A_D$$

 $B_D \to B_D - \epsilon B$

 Their monopoles become charged under our E+M

$$\mathcal{L} \supset F^2 + F_D^2 + F\tilde{G} + F_D\tilde{G}_D$$

Pirsa: 17030083

Plausible?

- Milli-magnetic charged particles are possible but are they plausible?
- Claim Just as plausible as any other scenario with dark photons
 - Fractional charges?
 - Monopoles at low energy?

Pirsa: 17030083 Page 26/62

Light monopoles?

- Strong theory bias against light monopoles
- Due to the original discovery of monopoles in grand unified theories

Pirsa: 17030083 Page 27/62

Light monopoles?

$$\mathcal{L} \supset -\frac{1}{4}F^2 - \frac{1}{4}F_D^2 + 2\epsilon F\tilde{F}_D + \frac{1}{2}m_D^2B_D^2$$

- Perform E+M duality on the previous example
- Electron now: perfectly reasonable for it to be light!

Pirsa: 17030083

Light monopoles?

	E	В	E'	B'
e	1	0	0	$-\epsilon$
e_D	0	$-\epsilon$	1	0

- Just a dark electron with magnetic mixing
- Magnetic Stuckleberg mass

Pirsa: 17030083 Page 29/62

$$\mathcal{L} = -\frac{1}{4}F^2 - \frac{1}{4}F_D^2 + 2\epsilon F_D F + \frac{1}{2}m_D^2 A_D^2$$

 What is the physical picture of this Lagrangian?

Pirsa: 17030083

	E	B	E'	B'
h'	0	0	1	0
e	1	0	ϵ	0
m	0	$-\epsilon$	0	1

- Milli-magnetic charge
- Dark U(1) Higgsed so monopoles are confined
 - Like QCD, strings connecting monopole with anti-monopole

Pirsa: 17030083 Page 31/62

- Dark U(1) Higgsed so monopoles are confined
 - Like QCD, strings connecting monopole with anti-monopole

Pirsa: 17030083 Page 32/62

	E	B	E'	B'
h'	0	0	1	0
e	1	0	ϵ	0
m	0	$-\epsilon$	0	1

If dark photon mass is irrelevant

- Electron generates a field $E, B, E' = \epsilon E, B' = \epsilon B$
- Monopole feels a field $E_{ ext{eff}} = -\epsilon E + E' = 0$

$$B_{\text{eff}} = -\epsilon B + B' = 0$$

	E	B	E'	B'
h'	0	0	1	0
e	1	0	ϵ	0
m	0	$-\epsilon$	0	1

$$B' = \epsilon B e^{-m_{A'}r}$$

- Electron generates a field
- Monopole feels a field

$$B_{\text{eff}} = \epsilon B(e^{-m_{A'}r} - 1)$$

 As long as distance long enough that dark magnetic field is screened, then electron and monopole can interact

Pirsa: 17030083

Outline

- Milli-magnetic charged particles
- Constraints
- Conclusion

Pirsa: 17030083 Page 35/62

Constraints

- If magnetic charges already exist around us
 - Astrophysical constraints/experimental constraints/...
- If they are not surrounding us
 - 1. No constraints if they are non-perturbative ('t Hooft Polyakov monopoles)
 - Weak constraints if fundamental

Pirsa: 17030083 Page 36/62

Parker bound

$$\mathcal{F}_{\text{Parker}} = 10^{-16} \, \text{cm}^{-2} \, \text{s}^{-1} \, sr^{-1}$$

- Magnetic fields accelerate monopoles
 - Energy in monopoles comes from B field
 - If too much energy is taken, then B field of Milky Way neutralized
 - Usually applied to some cosmological abundance

Non-perturbative monopoles

 't Hooft Polyakov monopoles have size larger than Compton wavelength

Pirsa: 17030083 Page 38/62

Non-perturbative monopoles

- Magnetic charge conserved so pair produce monopoles
- De Broglie wavelength of colliding particles much smaller than physical size of monopoles
- Cross section for producing particles is exponentially suppressed due to decoupling

Pirsa: 17030083 Page 39/62

Goal

- Obtain model independent bounds on millimagnetic charged particles
- Perturbative production can be exponentially suppressed
- Need non-perturbative production
- Exponentially large number of initial states (photons)
- Extremely large electric and magnetic fields

Pirsa: 17030083 Page 40/62

Schwinger pair production

 Production of electric (magnetic) particles in a strong electric (magnetic) field

$$\frac{P}{Vt} = \frac{e^2 E^2}{4\pi^3} e^{\frac{-\pi m^2}{eE}}$$

$$\frac{P}{Vt} = \frac{\epsilon^2 g^2 B^2}{8\pi^3} e^{\frac{-\pi m^2}{\epsilon g B} + \frac{g^2}{4}} \qquad g = \frac{4\pi}{e}$$

Schwinger pair production

$$\frac{P}{Vt} = \frac{e^2 E^2}{4\pi^3} e^{\frac{-\pi m^2}{eE}}$$

- If electric field larger than mass of fermion, then unsuppressed production of fermions
- As mentioned before, everything can always be understood physically

Pirsa: 17030083

2D example

Two equal energy configurations

E

$$\begin{array}{c|cccc}
E & E - e & E \\
\hline
e^+ & e^-
\end{array}$$

$$eEd = 2m_e$$

2D example

- As mentioned before, things are exponentially suppressed if length scales don't match
- Creating a pair of electrons a distance $d = \frac{2m_e}{eE}$
- Quantum mechanical size associated with an electron is 1/m_e
- Process is no longer exponentially suppressed if $d < \frac{1}{m_e}$

Schwinger pair production

$$\frac{P}{Vt} = \frac{e^2 E^2}{4\pi^3} e^{\frac{-\pi m^2}{eE}}$$

- Intuitive understanding of formula in terms of distance scales
- Milli-magnetic charged particles have strings attached

2D example

Energetically string energy is

$$E_{\text{string}} = m_A^2 d$$

Unsuppressed production occurs when

$$d \sim 1/m$$

String irrelevant to pair production when

$$E_{\text{string}} = m_A^2/m < E_{\text{else}} = 2m$$

$$m_A < m$$

Schwinger pair production

- Unsuppressed production of milli-magnetic charged particles if there is a large magnetic field
- Largest magnetic fields in the universe are at magnetars
- Production of magnetic particles neutralizes magnetic field
 - Require that it is not neutralized over the lifetime of magnetar

Pirsa: 17030083 Page 47/62

Magnetars

- Neutron stars with extremely large magnetic fields
 - Size ~ 10 km
 - B ~ 10¹³⁻¹⁶ gauss ~ MeV²
 - Age ~ 10³⁻⁵ years
 - Luminosity (persistent x-rays) ~ 10³³⁻³⁶ ergs/s ~ B² V/t
 - ~ 20 observed, ~ kiloparsec away
 - Not much known about them

Pirsa: 17030083 Page 48/62

Magnetars

- Anomalous x-ray pulsars
 - Emit soft x rays
 - Anomalous because not powered by standard means
- Soft gamma-ray repeaters
 - Peak luminosity larger than Eddington limit

Pirsa: 17030083 Page 49/62

Magnetic Field

- Evidence for magnetic field is from soft gamma-ray bursts
 - Strong magnetic fields allow for super Eddington luminosity emissions
 - Fall off of burst depends on magnetic instabilities of the magnetar
- Crude estimate of the magnetic field can be made via loss of angular momentum

Pirsa: 17030083 Page 50/62

Pirsa: 17030083 Page 51/62

Magnetic Field

$$B \approx 3 \times 10^{19} \sqrt{\frac{P}{\text{second}} \dot{P}} \text{ Gauss}$$

- Observed periods of a few seconds
- dP/dt ~ 10-11
- B ~ 10¹⁵ gauss ~ MeV²
- More refined estimates change results by only O(1) factors

Pirsa: 17030083

Magnetars

- Given huge uncertainties, we will take the following values
 - Radius = 10 km
 - $B = 10^{15}$ gauss
 - Age = 10⁴ years

Pirsa: 17030083 Page 53/62

Pirsa: 17030083 Page 55/62

Magnetars

$$10 \,\mathrm{km} = r > 1/m_A > 1/m$$

Magnetic field needs to extend more than 1/m_A away so that milli-magnetic charged particle feels B field and can screen it

Bound

$$E_{\rm loss} = 2Q_m g B r$$

- Energy loss due to production of monopoles
- After pair production, monopoles carry away energy

Pirsa: 17030083 Page 57/62

Bound

$$\frac{dE}{dVdt} = \frac{Q_m^2 g^2 B^2}{4\pi^3} e^{-\frac{\pi m^2}{Q_m g B}} E_{\text{loss}} < \frac{B^2}{2t_{\text{lifetime}}}$$

- Magnetic field is not neutralized by pair production during the lifetime of magnetar
- Equivalent to saying that total energy loss must be smaller than observed energy loss

Pirsa: 17030083

Pirsa: 17030083 Page 59/62

Pirsa: 17030083 Page 60/62

Conclusion

- Just like there can be milli-electric charged particles, there can be milli-magnetic charged particles
- Currently NO model independent bounds
 - Model dependent bounds are weak and often come from cosmology
- Magnetars have large magnetic fields that let one place new very strong model independent bounds

Pirsa: 17030083 Page 61/62

Pirsa: 17030083