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Abstract: <p>We are currently entering the era of precisson CMB polarization observations. The most exciting scientific targets are a possible
detection of primordial gravitational waves and a measurement of the sum of the neutrino masses. The former depends on the extensive landscape of
early Universe models, while the latter has been forecasted to present a clear, and reachable, scientific target. First, if large angular B modes are
detected, we should firmly establish that these are sourced by primordia gravitational waves. | will discuss that cross correlating the B-mode signal
with the curl-lensing field could help establish the nature of the detected B-modes. Second, | will propose to look beyond Gaussianity in the tensor
sector. Scalar non-Gaussianities are tightly constrained by Planck, but couplings between tensors and scalars are currently not constrained and future
CMB polarization surveys could open a new window into the early Universe, by searching for tensor non-Gaussianites. Finally, a detection of the
normal hierarchy of the neutrino mass requires an excellent measurement of the amplitude of primordial fluctuations. The required measurement can
only be achieved if we are able to measure the large angle E-mode polarization spectrum, which currently lies beyond reach, at least within the
foreseeable future. | will present a possible solution and show how this simple methodology can be used to constrain exotic primordial physics at the
same time.</p>
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The next Decade of CMB cosmology

Based on work in collaboration with Alex van Engelen, Joel
Meyers, Yacine Ali-Haimoud, Kendrick Smith, Adri
Duivenvoorden and Connor Sheere: 1603.02243,

1701.06992, 1610.09365, 1702.xxxxx and CMB-S4
collaboration
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Outline

Introduction
-Establishing the Origin of B-modes
-Tensors and Non-Gaussianities

-Neutrinos and the ‘tau’ problem

Conclusions
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Introduction
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Introduction
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Introduction

Schematically:

AT/T — E Agm YF-m % ("W'l-ml Afomsy- - - u-é',,-'m,,,>
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Introduction

Schematically:
AT/T = Z Upm Y’F‘)'n = <(-Ié"1-f?11 ("'é'g-mg S aé',,’m,, >

Can be done for intensity (1), but also for E and B mode
polarization e.g.
3 G o a0, €. ¢
<aé'-mu"é”-m’> =, (é

and
<a£§n.n}€’ ’aﬁ?’m”> = B:E")((’j\(

e

X ={T,E, B}
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Introduction

Schematically:
AT/T — Z Apm Y’F‘m — <(-lé"1-rrzl ("'é'g-mg st aé',,-’;n,, >

Can be done for intensity (1), but also for E and B mode
polarization e.qg.

X XX e |
<”hn”é"m > = (Y ( Cl )
and
X X X 0.0, €0. 6
<a£m'ﬂ e 1 af”‘m,”> — BM.”({‘” (bispectra)

A= {T E, B}
Throughout this talk | will refer to these as “I'| ' etc
vand e e, JEEE ete.
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Introduction

Paradigm
E.g. LCDM
Observables Initial Cond.
C; " CyP CPP Scalar, vector, tensor
/;}!1-{.}[{__: /3{[:{‘{,7-’/(:; P& (/\.) >, (/\) P. (’/1,)
Pyg(k) ..... Beee(ky, ko, ks)
Projecton ...

Reheating (6¢ — dp),
‘physics’: gravity,
interactions (e.g.
scatterings) etc.
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Observables
( *{/ [ ( ff/’. E ( rff)/;
) T'TT YEE
/)" 1 €263 /){ 1 €263

Introduction

Paradigm
E.g. LCDM
Initial Cond.
Scalar, vector, tensor
Pc(k) Pr(k) Ps(k)
Bece(ky, ko, k3)
Projection .

Transfer

Function
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Introduction

Transfer

Function

E.g.:
CXX o [dkk Y [Pens(K)] AF (k)AF

&

and

B,‘_\l'{'i;;i\'” x [ drxa=]]. "] dkik?je. (/x‘,-_.r)A;\;”\r % (A,)l > Bens(ki, ko, ks)
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Introduction
QOur Universe
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Introduction
Our Universe

. <;1 1_1-‘>

s

() pge—tetiey a®ge

(TE)

f\/\/\fw

Only |

‘requwed
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Introduction
Our Universe

Only 6 parameters required
4 late time: Qu, Q., 7, Hy — A (k)

ns—1
2 primordial time:  n.. A, — P oc 2% (Li)
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Introduction
Our Universe

Only 6 parameters required
4 late time: Q,, Q., 7, Hy — AF (k)

ns—1
2 primordial time:  n.. A, — P oc 2% (L’"—)

Caveat: Many more params e.g. k, Yp, G, recomb etc
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Introduction
Our Universe

Only 6 parameters required
4 late time: ., Q., 7, Hy — AX (k)

ns—1
2 primordial time:  n.. A, — P; o 45 (A)

Caveat: Many more params e.g. k, Yp, G, recomb etc

Inmal cond|t|ons abatic. scalar-like. scal

earch for dewahons from this S|mp|e picture:

c.Jd. Pr | Ol | ‘ > Al'l1Q el :||’
1« | CA w I
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Introduction

- for deviations from this simple picture:

ACDM+
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State of the Art

Angular scale ¢ [degrees]
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Moore’s Law

T T
Space based experiments
1 0—1 I Stage-| — = 100 detectors

< Stage-1l - = 1,000 detectors
= Stage-lll - = 10,000 detectors
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Sensitivity Dark Energy

o(r) O(Ner) o(Zmy)

(MK?) F.O.M
2015 : Boss BAO DES+BOSS
2016 =105 0.035 0.14 0.15eV ~180
2017
2018
2019 Boss BAO DES + DESI

SZ Cluslers

2020 0.006 0.06 0.06eV ~300-600
2021
2022

DESI +LSST

2023 detec —
. 5S4 Cluslers

‘ DESI BAO
Target - 108 0.0005 0.027  0.015eV 1250
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Next decade of CMB cosmology

Clear targets for future CMB missions:

*Tensor to scalar ratio r

*Sum of mass of neutrinos E m,,

*Number of relativistic species N g
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Establishing the Origin of B-modes

Inflation and gravitational waves: LCDM + r

>Inflation naturally produces scalar and tensors degrees of freedom
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Establishing the Origin of B-modes

Inflation and gravitational waves: LCDM + r

>|nflation naturally produces scalar and tensors degrees of freedom
>How much? Depends on energy scale of inflation (energy + =>
tensors +)

>Can compute distribution:

|) -~

. ‘ A (%
Pu(k) = rAgk™ ()
I"l] y

‘- 2m)d - - Ny

>with:
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Establishing the Origin of B-modes

L7 : = Eaa
Pt 4 ok Al
¥ % “ - RN vy Sty ok
AT . & PR -
tL MW T ry 23 > it
. ¢ o PN A9
K. I, TN o
. AN [ ) Ve
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R =y = el S, 4
o e \ 3 s 5 AR S
b &1
A 5

Scalars --> {T,E}
Tensors --> {T,E,B}
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Establishing the Origin of B-modes

Scalars --> {T,E}
Tensors --> {T,E,B}
B = Divergence Free

E = Curl Free
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Establishing the Origin of B-modes

Scalars --> {T,E}
Tensors --> {T,E,B}
B = Divergence Free

E = Curl Free

B is cleanest channel for tensors
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Establishing the Origin of B-modes
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Scalars --> {T,E}
Tensors --> {T,E,B}

E = Curl Free
B is cleanest channel for tensors

However, once measured it is extremely important to

establish that these are truly of primordial origin!
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Establishing the Origin of B-modes

>Consider another tracer of tensors: Curl lensing modes:

~

Xn)=Xn+Ven)+V x(n))
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Establishing the Origin of B-modes

>Consider another tracer of tensors: Curl lensing modes:

X(n) =X+ Ven) + V x Q(n))
>And: 1 .
w(n) = —GVEQ(ﬁ)

oss-correlate fields:

cPv == / Ak Py (k)T (k)T (k)
-
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Establishing the Origin of B-modes

>Consider another tracer of tensors: Curl lensing modes:

Xn)=Xn+Ve¢n)+ V x Q(n))
>And: 1 .
w(n) = —GVEQ(I'])

oss-correlate fields:

2 . 2 / I B FIL) %
CP¥ == / dkk? Py, (k)TP (K)T#* (k)
g

>Directly proportional to r
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Establishing the Origin of B-modes

>Consider another tracer of tensors: Curl lensing modes:

X(n)= XN+ Vo(n) + V x Q(n))
>And: 1 .
w(n) = —5V2S2(fl)

Cross-correlate fields:

chv==2 / dkk? Py (K)YTE (k)T#* (k)
.

>Directly proportional to r

>Redshift dependent
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Establishing the Origin of B-modes

20 .
= = = =
g < 2 ) :
@ S = & “| >Best detectable at high 7z
g8 2 =
£ >Post-SKA experiment with 100 km
O &

baseline (for r = 0.01)

L0

\AJ~y o]~ o o | + o0 nowstn o el o 1
>\Would establish the primordial

Signal-to-Noise

10 _ l_l_»-' ' -””-]-I-l;
redshift source

Sheere, van Engelen, Meerburg and Meyer
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Tensors and Non-Gaussianities

Inflation, gravitational waves and NGs: LCDM + r + fNI

Consider 2 additional primordial parameters:
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Tensors and Non-Gaussianities

Inflation, gravitational waves and NGs: LCDM + r + fNI

Consider 2 additional primordial parameters:

Tensor to scalar ratio: » = Py (k,)/Pe (k)
Non-Gaussianity:  fr o« (¢¢C)/ P2 (k)
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Tensors and Non-Gaussianities

Inflation, gravitational waves and NGs: LCDM + r + fNI

Consider 2 additional primordial parameters:

P (k.)/ P (k)

Tensor to scalar ratio: r»
Non-Gaussianity:  fr o« (¢¢C)/ P2 (k)

V1T / = 17 Y Fal alaVTalde
\/ '(t )i — 1 SO I <

| \/ L ) " 1 .1 J O

1Ly AW, L\ 1V 1 JJ

1SS|3
looidl \

This talk: Non-Ga

I = Q) /(PR

Should be sensitive to the tensor to scale

I ~
e \ AT/ ' A \ | A
A0 W\~ 4 \J | 1 <
AL v V 11 CAND oA .
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Tensors and Non-Gaussianities

-lensors affect T, E and B modes
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Tensors and Non-Gaussianities

-lensors affect T, E and B modes
-We can constrain tensors using TT (WMAP/Planck)

-Similarly ['TT can be used to constrain tensors as well
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Tensors and Non-Gaussianities

-lensors affect T, E and B modes

-We can constrain tensors using TT (WMAP/Planck)
-Similarly 1T can be used to constrain tensors as well
-However, just as TT, it suffers from large cos

-Hence we choose BB over T

-Likewise, we should consider BT T (or BEE, BTE) over TTT
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Tensors and Non-Gaussianities

Does BT T vanish? No!
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Tensors and Non-Gaussianities
Does BT T vanish? No!

B1 s aspecial case (only non-zero in a parity violating
Universe)

All higher order correlation functions containing B/T/E
in anv combpination w 1ave NoON-Zero contriouuons

In flat-sky:

Page 42/97



Pirsa: 17020124

Motivation

Theoretical

-Non-Gaussianities predicted
by a scalar tensor coupling are
relati large (Maldacena 2002)

-Could possibly be used as
N ncy test (Bordin (2016))

Observational
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Motivation

Theoretical

-Non-Gaussianities predicted
by a scalar tensor coupling are
atively large (Maldacena 2002)

-Could possibly be used as
N ncy test (Bordin (2016))

-Would be a smoking gun for

new phySiCS (e.g. Hayden, Baumann
& Pimentel (2016))

Observational
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Motivation

Theoretical

-Non-Gaussianities predicted
by a scalar tensor coupling are
relat large (Maldacena 2002)

-Could possibly be used as
nsistency test Bordin (2016))

-Would be a smoking gun for

new phySiCS (e.g. Hayden, Baumann
& Pimentel (2016))

Observational

-Right time: Constraints on B-
modes are not
limited

et cosmic variance
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Motivation

Theoretical

-Non-Gaussianities predicted
by a scalar tensor coupling are
relatively large (Maldacena 2002)

-Could possibly be used as
nsistency test Bordin (2016))

-Would be a smoking gun for

new phySiCS (e.g. Hayden, Baumann
& Pimentel (2016))

Observational

-Right time: Constraints on B-

modes are not vet cosmic variance

limited

ess systematics if you cross

correlate

Distinguish from
"?
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Motivation

Theoretical

-Non-Gaussianities predicted
by a scalar tensor coupling are
relatively large (Maldacena 2002)

-Could possibly be used as
nsistency test Bordin (2016))

-Would be a smoking gun for

new phySiCS (e.g. Hayden, Baumann
& Pimentel (2016))

Observational

-Right time: Constraints on B-
modes are not vet cosmic variance
limited

ess systematics if you cross
correlate
Distinguish from non-primordial
ources?
Have total of 10 tracers (as

opposed to just 4 for scalars)
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Graviton-Scalar-Scalar interaction
What does it look like (generally)?

Schematically:
(hC) o VP N1 0( k)T (K, ko, s ey (k) ke
With
T(k,k k) oc k=°

And €;; the transverse
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Graviton-Scalar-Scalar interaction
What does it look like (generally)?

Schematically:
<]?CC> X \/I_/QTg ()(E ;1’, )l ( /1‘1 : f»_) /x';), )FU (i‘i)iii‘i)
With
T(k,k k) oc k=°

And €ij the transverse

Vanishes if scalar mode is aligned with tensor
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S|gnal to Noise
Compute observable bispectrum By, ¢, ¢, for different
shapes I(A A A ;)

Compute F,; = >~

all modes

(B!f'l"!')‘..’

variance

for 3 experiments:

-Planck(B) x Planck (TT)
-BICEP/Keck(B) x SPTpol (TT)
-CMBS4(B) x CMBS4(TT)

1) Noise limited in B

2) And cosmic variance limited (B and T)
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1)t
-' —  B(Planck) x T'T(Planck)

& 10 ’\ —  B(BK) x TT(SPTpol)
X 107 —  B(CMB-S4) x TT(CMB-S4)
— 10 CV limit, r = 0.01
7 10
<
l""‘-ﬁ T
g [0) .
~ 10 ¥
\b, l”
S SFSR shape
10) 1l .
1000 d*[o 2 \.f’rf',/'QT_\]’].‘-""f“;:(”1 '
3000
30010)
2500
=~ 2000]
[ H00)
100)0)
00
> >
100 200 300 100 10- "0 " 10" 10 % 10" 10" 10" 10!

(1 dlo (/T £159)] /dey
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Signal to Noise

CMB-S4xCMB-54
BICEP-KECKxSPTpol
—————— PlanckxPlanck

PDM, Mey En I Al
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Signal to Noise

For noise dominated B-modes:

o (VT fEC) ~ O(0.1)

PDM, Meyer Eng I All
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Signal to Noise

For noise dominated B-modes:

o (VT fEC) ~ 0(0.1)

For cosmic val > limited B-
modes gray contours e.qg. forr
=0.01

o(Vrfse) ~ 0(0.3)

Will get more difficult to
measure as r gets smaller

PDM, Meyi Engelen and Ali

Pirsa: 17020124 Page 54/97



Forecast CMB-S4

Future constraints on scalar NGs (TTT,TTE, TEE,EEE)

Type Planck actual (forecast) CMB-54 CMB-54 + low-¢ Planck | Rel. improvement

Local ' o(fxL) = 5(4.5) o(fnL) = 2.6 o(fnL) = 1.8 2.5 ?
Equilateral | o(fa) = 43(45.2) | o(fxs) = 21.2 | o(far) = 21.2 2.1
Orthogonal | o(fxs) =21(21.9) | o(fxi) = 9.2 | o(fxr) = 9.1 | 2.4

Future constraints on tensor NGs (BTT only)

Type ‘ Planck CMIB-54 ‘ rel. improvement
local a(vrfsn) = 152 o(Vrfnr) = 0.3 H0.7
equilateral ' o(vrfyn) = 2005 | o(/r ,v'\; l 27.1
local (r = 0.01) | a(vrInL) 15.2 a1 ' 25.3
equilateral (r = 0.01) || o(/rfyp) = 2008 | o(/r !\1 ) — 14.7 1 13.7

CMB-S4 Science book.

Relative mprovement compared to ‘current’ best
constraints is « st 2 orders of magnitude
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Neutrinos

Neutrinos: LCDM + mnu

normal hierarchy (NH) inverted hierarchy (IH)
m> 4 A2
[T = ] V3 1 | | 12
"Amf |
I |
‘A”’flm
A”"flllk
== ) 1)
".lmf | |
] v E 1 ] U3
I/ ‘“;f Vr
Normal Hierarchy: Inverted Hierarchy:
E m, > 58 meV E m,, > 105 meV
T, = 20 meV for 3o detection Om., = 35 meV for 30 detection

Page 56/97



Neutrinos

The effect of massive Neutrinos:

Suppress formation on small scales
Add to matter density
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Neutrinos

The effect of massive Neutrinos:

Suppress formation on small scales
Add to matter density

Matter Power (3D) relative
310" , ' ' 12 " . ;
[ Ym,=00¢eV
Ym,=0.1eV 1.0+ S |

Ym,=02eV

A | fm,=03eV
2 2:107p Ym,=04eV 1 08F )
= Ym,=05eV
& Ym,=0.6¢cV 0.6F ]
= Ym,=0.7eV '
o Ym,=0.8¢eV
= 1-1{)"{ 51::" - (1)'3 o/ ] 0.4F 3
0.2F :
0k 1 e 0.0 " " "
0.0 0.1 0.2 0.3 0.4 0.0001 0.0010 0.0100 0.1000 1.0000
k (h/ Mpc) k (h/ Mpc)

Pirsa: 17020124 Page 58/97



Neutrinos and the optical depth

Measuring the mass of the neutrinos requires an
exquisite measure of overall power A,
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Neutrinos and the optical depth

Measuring the mass of the neutrinos requires an
exquisite measure of overall power A,

However power is measured as A,e =7
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Neutrinos and the optical depth

Measuring the mass of the neutrinos requires an
exquisite measure of overall power A,

However power is measured as A,e =7
This is a degeneracy

Can only be broken using large scale E-mode
polarization; E « 7 reionization bump

v ). 100 r=01

- Y (VS () r = 0065
— r=003
) O S A

(EE) b
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Neutrinos and the optical depth

The problem at hand:

0.010 : \I |
0.009 ¢ 30 JUEV\

0.008

007 \ ol
0.00 25 mel
0 0006pesesssssessssscsssses m

©  0.005 \
20 mev
0.004 |- i \

0.003

0.002 f”(il:_,

0.001 L \ 1 1

Temp Noise (pK—arcmin)
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Neutrinos and the optical depth

What to do?

1) Measure directly from the ground
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Neutrinos and the optical depth

What to do?

1) Measure directly from the ground

2) Build a new satellite

3) Find alternative measures
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Neutrinos and the optical depth

What to do?

1) Measure directly from the ground

*Large foregrounds in T, T to E leakage
*Rotating Half-wave plates E.g. BICEP/KECK (Imin = 50)
*Need Imin = 2-5. CLASS

2) Build a new satellite

3) Find alternative measures
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Neutrinos and the optical depth

What to do?

1) Measure directly from the ground

*Large foregrounds in T, T to E leakage
*Rotating Half-wave plates E.g. BICEP/KECK (Imin = 50)
*Need Imin = 2-5. CLASS

2) Build a new satellite

*CORE (no funds)
"Litebird (no funds yet?)
*PIXIE (no funds yet?)

3) Find alternative measures
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Neutrinos and the optical depth

What to do?

1) Measure directly from the ground

*Large foregrounds in T, T to E leakage
*Rotating Half-wave plates E.g. BICEP/KECK (Imin = 50)
*Need Imin = 2-5. CLASS

2) Build a new satellite

*CORE (no funds)
*Litebird (no funds yet?)
*PIXIE (no funds yet?)

3) Find alternative measures

*21cm? Will depend on modeling of the signal

"Using small scale CMB?
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Reconstructing CMB fluctuations

|dea:

>E-modes are be ‘converted’ into B-modes
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Reconstructing CMB fluctuations

ldea:
>E-modes are be ‘converted’ into B-modes

>This happens on all scales in E to all scales in B
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Reconstructing CMB fluctuations

ldea:
>E-modes are be ‘converted’ into B-modes

>This happens on all scales in E to all scales in B

>Most well-known example is lensing B-modes
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Reconstructing CMB fluctuations

ldea:
>E-modes are be ‘converted’ into B-modes

>This happens on all scales in E to all scales in B

>Most well-known example is lensing B-modes

>|n a no-tensor Universe, there are only lensing B-modes
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Reconstructing CMB fluctuations

ldea:

>E-modes are be ‘converted’ into B-modes

>This happens on all scales in E to all scales in B

>Most well-known example is lensing B-modes
>|n a no-tensor Universe, there are only lensing B-modes
>Specifically, there is a non-zero 3p function
(EB®) # 0
first detected by the SPT collaboration in 2013
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Reconstructing CMB fluctuations

ldea:

>E-modes are be ‘converted’ into B-modes

>This happens on all scales in E to all scales in B

>Most well-known example is lensing B-modes
>|n a no-tensor Universe, there are only lensing B-modes
>Specifically, there is a non-zero 3p function
(EB¢®) # 0
first detected by the SPT collaboration in 2013

>We will use this non-zero 3p function to ‘reconstruct’ E
modes on large scales using only small scale B modes.
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Reconstructing CMB fluctuations

Idea:
>E-modes are be ‘converted’ into B-modes
>This happens on all scales in E to all scales in B
>Most well-known example is lensing B-modes

>|n a no-tensor Universe, there are only lensing B-modes

>Specifically, there is a non-zero 3p function
(EB¢®) # 0
first detected by the SPT collaboration in 2013

>We will use this non-zero 3p function to ‘reconstruct’ E
modes on large scales using only small scale B modes.

>>Also works for screened B-modes and Birefringence.
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Reconstructing CMB fluctuations

Angular scale # [degrees]
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Reconstructing CMB fluctuations

Can derive minimum variance quadratic estimator for E and
reconstruction Noise:

rEE (20, + 1)(202 + 1) 5 1 S(e O En
_\; X Z”H‘:I'_‘ ]— L.];,,-:,-] (BB | NBB o N2

1€
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Reconstructing CMB fluctuations

Can derive minimum variance quadratic estimator for E and
reconstruction Noise:

EE (201 +1)(202 + 1) : | o I
N, X Zr)“u; - . [.]s,“r-l (BB | NBB o Vo
I’,p‘l £ Y A ’ \ ) y y

-Depends on B noise

-Depends on lensing noise

-Strong function of cosmic variance
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Reconstructing CMB fluctuations

Can derive minimum variance quadratic estimator for E and
reconstruction Noise:

TEE (26, +1)(262 + 1) 5 ] (¢ 2\
.\[ X Zr)“f:f ]}‘; [-]llj-:r'] ('““ , 7\7!;!: p - A :

1€

-Depends on B noise
-Depends on lensing noise
-Strong function of cosmic variance

-Can ‘delens’ as much as possible (using all information
including T), i.e. P8 — ¢jeBP
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Reconstructing CMB fluctuations

Can derive minimum variance quadratic estimator for E and
reconstruction Noise:

EE (26 + 1)(202 + 1) > 1 (CE)T
N, X Zr)“uf I (.],,,-:,-] (BB | NBB PrTRNNT

1€

-Depends on B noise

-Depends on lensing noise

-Strong function of cosmic variance

-Can ‘delens’ as much as possible (using all information
including T), i.e. P8 — ¢y BP

-caveat: reionization bump is created at z ~ 10. Can not
use lensing potential from CMB directly (z ~ 1100), use
cross correlation coefficient (see paper)
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Reconstructing CMB fluctuations
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Reconstructing CMB fluctuations
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Reconstructing CMB fluctuations

Reconstruction could work!

-mitigates need for a satellite or possible foreground
leakage (T to E) or detailed modeling (21cm)
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Reconstructing CMB fluctuations

Reconstruction could work!

-mitigates need for a satellite or possible foreground
leakage (T to E) or detailed modeling (21cm)

Need very low noise (beyond CMB-S4)

Possible improvements can be achieved:
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Reconstructing CMB fluctuations

Reconstruction could work!

-mitigates need for a satellite or possible foreground
leakage (T to E) or detailed modeling (21cm)

Need very low noise (beyond CMB-S4)

Possible improvements can be achieved:

>Having a map of the lensing potential at
low z (e.g. using 21cm lensing)

>Having a direct measurement of the low z patchy screening
signal (e.g. using direct measurement of dusty galaxies)

>Could improve this by a factor 2 for very low noise if also
using E (lensed into E)
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Reconstructing CMB fluctuations

Reconstruction could work!

-mitigates need for a satellite or possible foreground
leakage (T to E) or detailed modeling (21cm)

Need very low noise (beyond CMB-S4)
Possible improvements can be achieved:

>Having a map of the lensing potential at
low z (e.g. using 21cm lensing)

>Having a direct measurement of the low z patchy screening
signal (e.g. using direct measurement of dusty galaxies)

>Could improve this by a factor 2 for very low noise if also
using E (lensed into E)

Other applications??

Page 85/97



Pirsa: 17020124

Reconstructing CMB fluctuations

Yes: primordial dipole.

‘ " )ole Now Col | N SwadAl H IH MmaltiC aipole

from our movement through the galaxy (relative to the CMB
rest frame)

Not the case for lensed TT into small TT. Not as clear as
lensing B modes since there is large cosmic variance from
the scalar mode

Still, can use all modes measured above | = 1, l.e. | = 2 and
up
Write down estimator, very similar (even bispectrum instead

of odd): (TT'¢)
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Reconstructing CMB fluctuations

Preliminary
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Meerburg, Meyers, van Engelen, in prep 2017
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Reconstructing CMB fluctuations

What could you do with this?

>map out the earliest times when the largest modes left
the horizon during inflation

Meerburg, Meyers, van Engelen, in prep 2017
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Reconstructing CMB fluctuations

What could you do with this?

>map out the earliest times when the largest modes left
the horizon during inflation

>test early universe models that predict specific dipole (e.g.
bubble Universe)

Meerburg, Meyers, van Engelen, in prep 2017
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Reconstructing CMB fluctuations

What could you do with this?

>map out the earliest times when the largest modes left
the horizon during inflation

>test early universe models that predict specific dipole (e.g.
bubble Universe)

>measure local NG with a 10% improvement (just having
this single mode to cosmic variance)

Meerburg, Meyers, van Engelen, in prep 2017
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Reconstructing CMB fluctuations

What could you do with this?

>map out the earliest times when the largest modes left
the horizon during inflation

>test early universe models that predict specific dipole (e.g.
bubble Universe)

>measure local NG with a 10% improvement (just having
this single mode to cosmic variance)

>constraining super horizon isocurvature modes

Meerburg, Meyers, van Engelen, in prep 2017
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Conclusions

>Next decade of CMB cosmology will aim for a detection of
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Conclusions

>Next decade of CMB cosmology will aim for a detection of

the tensor-to-scalar ratio
sum of the neutrino masses
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Conclusions

>Next decade of CMB cosmology will aim for a detection of

the tensor-to-scalar ratio
sum of the neutrino masses
deviations from the standard number of relativistic species
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Conclusions

>Next decade of CMB cosmology will aim for a detection of

the tensor-to-scalar ratio
sum of the neutrino masses
deviations from the standard number of relativistic species

>0Once detected, cross-correlating B-modes with curl lensing field
could confirm primordial origin
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Conclusions

>Next decade of CMB cosmology will aim for a detection of

the tensor-to-scalar ratio
sum of the neutrino masses
deviations from the standard number of relativistic species

>0Once detected, cross-correlating B-modes with curl lensing field
could confirm primordial origin

>Looking beyond the power spectrum, couplings between tensors
and scalars present a new window into the early Universe

>Sum of the neutrino masses depends on our constraint of the
optical depth

>We proposed a new method to obtain constraints on large angle
E-modes
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Conclusions

>Next decade of CMB cosmology will aim for a detection of

the tensor-to-scalar ratio

sum of the neutrino masses

deviations from the standard number of relativistic species
>0Once detected, cross-correlating B-modes with curl lensing
could confirm primordial origin

>Looking beyond the power spectrum, couplings between tensors
and scalars present a new window into the early Universe

>Sum of the neutrino masses depends on our constraint of the
optical depth

>We proposed a new method to obtain constraints on large angle
E-modes

>Could have other practical applications (features, dipole)
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