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Abstract: <p>Hayden and Van Dam showed that starting with a separable state in Alice and Bob&€™ s state space and a shared entangled state in a
common bipartite resource space, then using local unitary operations, it is possible to produce an entangled pair in the state space while at the same
time only perturbing the shared entangled state by a small amount, which can be made arbitrarily small as the dimension of the resource space
grows. They referred to this as &€osembezzling entanglementa€e since numerically it &€asappears’ that the resource state was returned exactly.</p>

<p>It is natural to wonder if using an infinite dimensiona resource space and local operations, one can return the resource state exactly while
producing an entangled state in their state space. Whether or not you can achieve this phenomenon of &ogerfect embezzlement of an entangled
state&€e depends on which mathematical model one uses to describe &€od ocal &€s.</p>

<p>We prove that perfect embezzlement is impossible in the tensor model but is possible in the commuting model. We then relate this to current
work on the conjectures of Connes and Tsirelson about different models for quantum conditional probabilities.</p>

<p>Thistalk isbased on joint work with R. Cleve, L. Liu and S. Harris.</p>
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Approximate Embezzlement of A Bell State

It is well-known that entangled states cannot be produced from
separable states by local operations. But Van Dam and Hayden
showed a method that, in a certain sense, appears to produce
entanglement by local methods. Hence, their term embezzlement.
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Approximate Embezzlement of A Bell State

It is well-known that entangled states cannot be produced from
separable states by local operations. But Van Dam and Hayden
showed a method that, in a certain sense, appears to produce
entanglement by local methods. Hence, their term embezzlement.
They showed that by sharing an entangled catalyst vector v in a
bipartite resource space R = R4 ® Rp one could use local unitary
operations to transform

Al0) s + [1)all)B) ® 1he

1
730

where ||¢) — )| < € for any € > 0.
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More precisely, given H4 = Hg = C?, there are finite dimensional
spaces R4, Rg and unitaries, Us on Ha ® Ra, Ug on Rg ® Hp
such that on (Ha ® Ra) ® (R ® Hp),
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More precisely, given H4 = Hg = C?, there are finite dimensional
spaces R4, Rg and unitaries, Us on Ha ® Ra, Ug on Rg ® Hp

such that on (Ha ® Ra) ® (R ® Hg),

(Ua®ide)(ida® Ug)((0)6:810) = —=(0)84:810)+{1) 2w L)
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More precisely, given H4 = Hg = C?, there are finite dimensional
spaces R4, Rg and unitaries, Us on Ha ® Ra, Ug on Rg ® Hp
such that on (Ha ® Ra) ® (R ® Hp),

(Ua®idp)(ida®Up)(|0)@y®|0)) = %(\0>®%®\0)+1)®¢e®1>)-

Van Dam and Hayden even proved that as € — 0 necessarily
dim(Ra), dim(Rg) — +oo with particular bounds.
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More precisely, given H4 = Hg = C?, there are finite dimensional
spaces R4, Rg and unitaries, Us on Ha ® Ra, Ug on Rg ® Hp
such that on (Ha ® Ra) ® (R ® Hp),

LS
V2

(Ua®idg)(ida®Ug)(|0)®y®]0)) =

(10)@¢@|0)+[1)®c®[1)).

Van Dam and Hayden even proved that as € — 0 necessarily
dim(Ra), dim(Rg) — +oo with particular bounds.

This leaves open the possibility that by taking

dim(Ra) = dim(Rg) = 400 one could achieve perfect
embezzlement, by which we mean, have 1) = ).
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More precisely, given H4 = Hg = C?, there are finite dimensional
spaces R4, Rg and unitaries, Us on Ha ® Ra, Ug on Rg ® Hp
such that on (Ha ® Ra) ® (R ® Hp),

L

ﬁ(\0>®¢e®\0>+1>®¢e®1>)-

(Ua®idg)(ida®Ug)(|0)®y®]0)) =

Van Dam and Hayden even proved that as € — 0 necessarily
dim(Ra), dim(Rg) — +oo with particular bounds.

This leaves open the possibility that by taking

dim(Ra) = dim(Rg) = 400 one could achieve perfect
embezzlement, by which we mean, have 1) = ).

We now show why perfect embezzlement is impossible, in this
tensor product framework.
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Proposition (CLP)

Perfect embezzlement is impossible in the above tensor product
framework.

Proof: Write a Schmidt decomposition

0@y ®[0) = £(|0) ® ) @ (v ®10)),

J

with uj € R 4 orthonormal and v; € Rg orthonormal.
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Proposition (CLP)
Perfect embezzlement is impossible in the above tensor product
framework.

Proof: Write a Schmidt decomposition

0@y ®[0) = £(|0) ® ) @ (v ®10)),

J

with uj € R 4 orthonormal and v; € Rg orthonormal.
The operators Uy ® idg and idy ® Ug act locally and so preserve
Schmidt coefficients.
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Proposition (CLP)
Perfect embezzlement is impossible in the above tensor product
framework.

Proof: Write a Schmidt decomposition

0@y ®[0) = £(|0) ® ) @ (v ®10)),

J

with uj € R 4 orthonormal and v; € Rg orthonormal.

The operators Uy ® idg and idy ® Ug act locally and so preserve
Schmidt coefficients.

But the Schmidt coefficients of \%(\0) RY|0)+ 1) @Y & (1))

1. t, ta to

dare ﬁ’ V32 \ﬁ’ V_@’
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The Commuting Operator Framework

We no longer require that the resource space have a bipartite
structure.
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The Commuting Operator Framework

We no longer require that the resource space have a bipartite
structure.

Instead, we only ask for a resource space R, and unitaries, Ua on

Ha®R and Ug on R ® Hp such that (Us ® idg) commutes with
(ida ® Ug).
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The Commuting Operator Framework

We no longer require that the resource space have a bipartite
structure.
Instead, we only ask for a resource space R, and unitaries, Ua on

Ha®R and Ug on R ® Hp such that (Us ® idg) commutes with
(ida ® Ug).
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Given a commuting operator framework, we say that ¢ € R is a
catalyst vector for perfect embezzlement of a Bell state provided
that

1

(Uawidg)(ida® Up)(|0)@920)) = —

(I0)@9®[0)+|1)@1p®|1)).
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Given a commuting operator framework, we say that ¢ € R is a
catalyst vector for perfect embezzlement of a Bell state provided
that

(Ua®idg)(ida®Ug)(|0)®9®(0)) = 12

(I0)@9®[0)+|1)@1p®|1)).

Theorem (CLP)

Perfect embezzlement of a Bell state is possible in a commuting
operator framework.
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Given a commuting operator framework, we say that ¢ € R is a
catalyst vector for perfect embezzlement of a Bell state provided
that

(Ua®ids)(ida®Ug)(|0)®¢®|0)) = 12

(I0)@9®|0)+[1)@1¥®|1)).

Theorem (CLP)

Perfect embezzlement of a Bell state is possible in a commuting
operator framework.

In the rest of this talk, | want to outline the proof and show why
the fact that perfect embezzlement is possible in this commuting
framework but not possible in a tensor product framework is
closely related to the Tsirelson conjectures and to Connes’
embedding conjecture.
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Suppose that Ha = C" and identify C"@R =R @ -+ ® R(n
times). Using this identification, we can write an operator on
C"® R as Us = (U;;) where U;j € B(R),0<i,j<n-—1.
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Suppose that Ha = C" and identify C"@R =R @ -+ ® R(n
times). Using this identification, we can write an operator on
C"® R as Us = (U;;) where U;j € B(R),0<i,j<n—1.
Similarly, if Hg = C™, then we may identify Ug = (Vi ) where
Vi € B(R), 0 < k,/ <m-—1.

Lemma
(Ua ® idg) commutes with (ida ® Ug) if and only if

UijVk,1 = Vi, Ui ; and U;'tj Vi) = Vk,{U;"J for all i,j, k,|.
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Suppose that Ha4 = C" and identify C"@R =R @ --- ® R(n
times). Using this identification, we can write an operator on
C"® R as Us = (U;;) where U;j € B(R),0<i,j<n-—1.
Similarly, if Hg = C™, then we may identify Ug = (Vi) where
Vi1 € B(R),0 < k,/ < m—1.

Lemma
(Ua ® idg) commutes with (ida ® Ug) if and only if

UijVk,1 = Vi, Ui ; and U;-kd- Vi) = Vk,{U;';; for all i,j, k,|.

This last condition is called *-commuting.

Thus, we see that having commuting operator frameworks as
above is exactly the same as having operator matrices Uj = (U; )
and Ug = (V) that yield unitaries and whose entries pairwise
*-commute.
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The C*-algebra U,(n)

L. Brown introduced a C*-algebra denoted Upc(n). It has n?
generators u; ; and the "universal” property that whenever there
are n® operators U;; on a Hilbert space R such that (U; ;) defines
a unitary operator on C" ® R then there is a *-homomorphism

7 2 Unc(n) = B(R) with 7(u; ;) = Ui

Thus, a representation of Upc(n) @ max Unc(m) corresponds to
operators U, j, Vi, where the U;;'s *-commute with the V 's
such that (U; ;) and (Vi) are unitary operator matrices.
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The C*-algebra U,(n)

L. Brown introduced a C*-algebra denoted Upc(n). It has n?
generators u; ; and the "universal” property that whenever there
are n® operators U;; on a Hilbert space R such that (U; ;) defines
a unitary operator on C" ® R then there is a ¥*-homomorphism

7 o Unc(n) = B(R) with 7(u; ;) = Ui ;.

Thus, a representation of Upc(n) ®@max Unc(m) corresponds to
operators U, j, Vi, where the U;;'s *-commute with the V 's
such that (U; ;) and (Vi ) are unitary operator matrices.

Recall that a state on a C*-algebra is just a positive linear
functional s with s(1) = 1.
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Theorem (CLP)

Perfect embezzlement of a Bell state is possible in a commuting
operator framework if and only if there is a state s on

Unc(2) @max Unc(2) satisfying s(uoo ® voo) = s(u10 ® vig) = 1/v/2
and S(UOO @ VlO) = S(Ulo @ Voo) = 0.

To prove, take the GNS representation of any such state then

1 = [1] is a catalyst vector for perfect embezzlement of a state in
a commuting operator framework.
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Theorem (CLP)

Perfect embezzlement of a Bell state is possible in a commuting
operator framework if and only if there is a state s on

Unc(2) @max Unc(2) satisfying s(uoo ® voo) = s(u10 ® vig) = 1/v/2
and S(UOO @ VlO) = S(Ulo @ Voo) = 0.

To prove, take the GNS representation of any such state then

1 = [1] is a catalyst vector for perfect embezzlement of a state in
a commuting operator framework.

Corollary

The van Dam-Hayden approximate embezzlement results imply
that there exists a state on Upc(2) ®@min Unc(2) satisfying the
above equations.
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The representation of Unc(2) @min Unc(2) given by the Corollary
can not decompose as a spatial tensor product of a representation
of each factor or else we would contradict the fact that perfect
embezzlement is impossible in a tensor product framework!
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The representation of Unc(2) @min Unc(2) given by the Corollary
can not decompose as a spatial tensor product of a representation
of each factor or else we would contradict the fact that perfect
embezzlement is impossible in a tensor product framework!

We now want to draw an analogy with quantum correlation
matrices.
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Tsirelson, Connes and all that

Suppose that Alice and Bob each have n quantum experiments
and each experiment has m outcomes. We let p(a, b|x, y) denote
the conditional probability that Alice gets outcome a and Bob gets
outcome b given that they perform experiments x and y,
respectively. There are several possible models for describing the
set of all such tuples.

One model is that Alice and Bob have finite dimensional state
spaces Ha and Hpg. For each experiment x, Alice has projections
{Ex,a;1 < a< m} such that ), Ex . = la. Similarly, for each y,
Bob has projections {F, , : 1 < b < m} such that ) , F, ;, = I.
They share an entangled state 1) € Ha ® Hp and

p(a, blx,y) = (Y|Ex,a ® Fy b|9).
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We let Cq(n,m) = {p(a, b|x,y) : obtained as above } C R™ ™
We let Cgs(n, m) denote the possibly larger set that we could
obtain if we allowed the spaces H 4 and Hp to also be infinite
dimensional.

We let Cg4e(n, m) denote the possibly larger set that we could
obtain if instead of requiring the common state space to be a
tensor product, we just required one common state space, and

demanded that Ex ,F, , = Fy pExa for all a,b,x,y, i.e., a
commuting model.

Tsirelson was the first to examine these sets and study the relations
between them. In fact, he wondered if they could all be equal.
Here are some of the things that we know/don't know about these
sets.
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Cq(n,m) € Cgs(n, m) C Cyc(n, m).
We don't know if the sets C4(n, m) and Cgs(n, m) are closed,
but Cg4c(n, m) is closed.

Cq(n,m)™ = Cgs(n, m)~ and this can be identified with the
states on a minimal tensor product.

Werner-Scholz speculated that Cgs(n, m) = Cq(n, m)~.
(JNPPSW + Ozawa)Cq(n, m)~ = Cqc(n, m), Vn, m iff
Connes’ Embedding conjecture has an affirmative answer.

(Slofstra, April 2016) there exists an n, m(very large) such
that Cys(n, m) # Cqc(n, m).
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We let Cq(n,m) = {p(a, b|x,y) : obtained as above } C R™m
We let Cgs(n, m) denote the possibly larger set that we could
obtain if we allowed the spaces H 4 and Hp to also be infinite
dimensional.

We let Cgye(n, m) denote the possibly larger set that we could
obtain if instead of requiring the common state space to be a
tensor product, we just required one common state space, and

demanded that Ex ,F, , = Fy pExa for all a,b,x,y, i.e., a
commuting model.
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Unitary Tensors

Theorem (Harris)
The following are equivalent.
1. Connes' Embedding conjecture is true.
2. Unc(n) @min Unc(m) = Unc(n) @max Upc(m), Yn, m.
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Unitary Tensors

Theorem (Harris)
The following are equivalent.

1. Connes' Embedding conjecture is true.

2. Unc(n) & min Unc(m) = Unc(n) & max Unc(m): Vn, m.
3. Unc(z) @ min Unc(z) - Unc(2) & max Unc(2)-
4

. The unitary correlation sets(defined later) satisfy
UCq(n,m)~ = UCqc(n, m), ¥Yn, m.

The equivalence of the first three, is the analogue of Kirchberg's
theorem relating Connes to tensor products of free group
C*-algebras. The equivalence of the first and last is the analogue
of the result of [Junge - -+ Ozawa].
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Unitary Correlation Sets

We set

UCq(n, m) = {{®|U; @ Vig|v) : (Ui;), (Vk,) are unitary,

so these are (n?)(m?)-tuples.

For the set UCys(n, m) we drop the requirement that each U;; and
Vi1 act on finite dimensional spaces.

For the set UCyc(n, m) we replace the tensor product of two
spaces by a single space and instead demand that the U;;'s
¥.commute with the Vi /'s.
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Unitary Correlation Sets

We set

UCq(n, m) = {{®|U; @ Vig|v) : (Ui;), (Vk,) are unitary,

so these are (n?)(m?)-tuples.
For the set UCys(n, m) we drop the requirement that each U;; and

Vi1 act on finite dimensional spaces.
For the set UCyc(n, m) we replace the tensor product of two
spaces by a single space and instead demand that the U;;'s

*.commute with the Vi /'s.
Here are some of the things that we know/don’t know about these

sets.
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UCq(n, m) C UCqs(n, m) C UCqyc(n, m).

For each n,m, UCq4(n, m) and UCgys(n, m) are not closed.
UCqc(n, m) is closed.

UCq(n,m)~ = UCqs(n,m)~ = {(s(x @ y)) :

S Unc(n) @min Unc(m) — C is a state, x, y as above }.

UCqs(2,2) # UCyc(2,2), a consequence of the embezzlement
results.

(Harris) UCq(n, m)™ = UCq4c(n, m), Vn,m <= Connes
Embedding is true.

Vern Paulsen UWaterloo

Pirsa: 17020096 Page 43/50



The Coherent Embezzlement Game

This game was introduced by Regev and Vidick, also known as the
T> game.
The Referee prepares one of two states, ¢, p1 € Ha ® Hpg where

1 1 1
be = Eyoo> ®|00) + —=(—1)°(—=

V2
c € {0,1}.
Alice and Bob each output a classical bit a, b.
They win if input ¢9 => a+ b =20, and input ¢y => a+b = 1.

1
\/510) ®]01) + E\ll) ® [11)),
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Assume that they are allowed to share a state ¢ € R and act with
unitaries on Ha ® R and R ® Hpg, respectively, where necessarily
these unitaries commute.
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Assume that they are allowed to share a state ¢ € R and act with
unitaries on Ha ® R and R ® Hpg, respectively, where necessarily
these unitaries commute.

Theorem (CLP)

There is a perfect strategy for the coherent embezzlement game in
the commuting framework. But there is no perfect strategy if we
require that R = Ra ® R and that their unitaries act locally,
even when we allow R 5 and Rg to be infinite dimensional.

|dea of proof: 1)This game is embezzlement in reverse!
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The Referee prepares one of two states, ¢, p1 € Ha ® Hpg where
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Assume that they are allowed to share a state ¢ € R and act with
unitaries on Ha ® R and R ® Hpg, respectively, where necessarily
these unitaries commute.

Theorem (CLP)

There is a perfect strategy for the coherent embezzlement game in
the commuting framework. But there is no perfect strategy if we
require that R = Ra ® R and that their unitaries act locally,
even when we allow R 5 and Rg to be infinite dimensional.

|dea of proof: 1)This game is embezzlement in reverse!
2) Unitaries are reversible, i.e., invertible.
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Summary: Problems of Connes and Tsirelson are closely tied to
unitary correlations.

Techniques from embezzlement can be used to produce some
elements of these unitary correlation sets.

Continuing to study geometry of these unitary correlation sets.
Unitary correlation sets should determine if perfect strategies exist

for games with finite quantum inputs—finite classical outputs in the
same way that probabilistic correlations are used in finite
input-output non-local games.
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