Title: FQHE and Hitchin Systems on Modular Curves
Date: Feb 17, 2017 02:00 PM

URL: http://pirsa.org/17020035

Abstract:

Pirsa: 17020035 Page 1/33



FQHE and Hitchin systems on modular curves J

S.C. [work in progress ]

Hitchin Systems in Mathematics and Physics
Perimeter Institute, February 17 2017

S.C. [work in progress| FQHE and Hitchin systems on modular curves

Pirsa: 17020035 Page 2/33



Pirsa: 17020035 Page 3/33



Pirsa: 17020035

e The way we think of the Hitchin systems in this talk is somewhat
different from most of the other talks

k
e The tt* equations (in 2d for one coupling) are the Hitchin equations

F+[¢,$]=0, DA$:5A¢’:O

or, more generally, the condition that a connection on a hyperKahler
manifold is hyperholomorphic and invariant under translation in some
number of directions [SC, D. Gaiotto, C. Vafa, JHEP 1405 (2014) 055]

e in tt™ we are interested in the connection A per se and the fiber metric
G (A= GOG™1) since from G, A we read the tt* physical observables.
A is the Berry connection on the vacuum bundle over coupling constant
space. The Higgs field is given by the underlying TFT (the t in tt*)

e in most applications of Hitchin systems one is happy if its moduli of
solutions is an interesting space

in tt* one is happy if the moduli space is trivial (one point) since in that
case we uniquely predict the physical observables we are interested in
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Cumrun Vafa [arXiv:1511.03372] has suggested that the
Fractional Quantum Hall Effect (FQHE),

as actually observed in the laboratory, may be modeled by the
tt* geometry of some complicated N’ = 4 SQM systems

Object of main interest: the Berry holonomy of the vacuum bundle
¥ — U = (space of universal parameters)

e {4 a complex manifold

e 7 a holomorphic Hermitian bundle whose fiber .% is the vector space
of vacua (zero energy states) of the SQM model specified by parameters
e the associated TFT defines a holomorphic ® € Q(End ¥) given by the
action of the chiral fields on the vacua: Z C End ¥ and ® € Q(%)

e the Berry connection A satisfies

[Da, DAl 4 [@,®] = Da® = Dp® = Dp® = Dp® =0

e These are Hitchin systems with actual technological implications
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One of his motivations:

in FQHE phenomenology central role amplitudes of the form

/e—Z,’-"_l V(xi) H (x,--;g)lf"dxl---de
Y

1<i<j<N

V/(z) one-particle potential

‘ Z log(z — Z )log(z — s)

yeA SES

A C C a lattice, S C C a discrete set where defects (quasi-holes) of

various charges e(s) € Z are placed. 0 < v < 1 is the filling fraction.

Proper definition: finite volume and then thermodynamical limit
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Amplitudes of the form

fe 1 V(x) IT xi—x)""dx - dx, (%)
N

1<i<j<N

arise in (2,2) systems as BPS brane amplitudes in a double scaling limit
A — 0, ¢ = 0 with A/{ = fixed (A mass scale, ¢ € P! twistor parameter)
Idea: take seriously the SQM and its tt* which give (x) in the limit

Many possibilities for the N = 4 SQM which yields (x): Basically,
possible N = 4 models classified by their Witten index as function of N
[w(1) = #(one-particle low-lying states)]

_(N-I-W(l)-l

) “Bose statistics”

“Fermi statistics”

We focus on the “fermionic” version: much simpler! (but still quite hard)
Defined if v > 0, natural when 0 < v <1 (physical range)
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In the “fermionic” model we are effectively reduced to study the
one-particle tt* geometry, i.e. the LG model with superpotential

‘ Z log(z — Z )log(z — s)

y€EA sES

Solving tt* (= Hitchin eqns.) is simpler when the SQM model has:
Abelian symmetry group A acting freely and transitively on the vacua
Fiber .# of vacuum bundle ¥ regular representation of A

F = [2(A) ~ [(Hom(A, U(1))

e &/ centralizes tt* metric and Berry holonomy

= both are diagonal in the character basis

e infinite number of vacua (in the thermodynamic limit)
= A should also get infinite: a group of translations:

AUS =L C C a lattice, e: L/N — U(1) an additive character
e(s+s') = e(s) e(s’), e(s +A\) = e(s)

e position of quasi-holes well-defined on the elliptic curve E(A) = C/A
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¢(z,7) Weierstrass (-function, {(z + 27, 7) = ((2) + 2n;.

To preserve invariance under translation by the lattice A, V/(z, 7) should
be an elliptic function <> e(s) not the trivial character

Unfortunately e(s) trivial is the most interesting case for FQHE
e(s) roots of 1: OK for SQM. Quadratic characters: real charges

Superpotential V/(z,7) still multi-valued on E(A) for 2 reasons:
i) 01 just quasi-periodic for A,
ii) branches of log

= SQM model has the symmetry L but in a very subtle way
the group L/A acts as discrete R-symmetry
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Classification: We may assume e to be faithful (otherwise A — kere).
L/IN~Z/MZ O ZLZ/MZ with M| M,.
L/A has a faithful character iff gcd(M;, M) =1 so
L/N~Z/MZ, M >2

Models with the required symmetry are parametrized by
1) an elliptic curve E = E(N)
2) a torsion subgroup T=L/NCE, T~Z/MZ, (M >2)

3) a faithful character e: T — U(1) up to equivalence e ~ e~

Equivalently by the pairs (E, p) with p € E the unique point of order
strictly M such that e(p) = e?™'/M (a fixed primitive M-root)

Pairs (E, p): elliptic curve with a level M structure of type '} (M)
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Space of models of given level M = moduli space of elliptic curves
with structure ;(M) (mod isomorphism)

r(M) = {(i 3) = ((1) t{) mod M} C SL(2,7Z)

moduli space of elliptic curve with I'{(M) structure = Y1(M) =H/I (M)

better compactify the space: H = H U P}(Q)

compactified moduli space X;(M) = H/I (M)

added points: cusps P1(Q)/l;(M)

Modular curve X;(M) is the space of models (coupling constant space)

X1(M) a Riemann surface of genus
2

M - 1
g(X1(M) [[a-p2) - ZZ(ﬁ(d) ¢(M/d),
pIM d|M
(¢ Euler totient function ¢(n) = |(Z/nZ)*|)
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To compactify the coupling constant space Y;(M) we added the cusps

eusps(X(M)) = 3 3 6(d) p(M/d)

d|M

Cusps: points at infinite distance in the natural hyperbolic metric from
any regular theory. They are singular limits. Various kinds:

U type cusps: a BPS particle gets zero mass closing the mass-gap
| type cusps: a BPS particle gets infinite mass and decouples
|/U type cusps: both mechanisms. Not possible for M prime

Other “bad” points in Y;(M) = X;(M) \ {cusps} where the mass
gap closes or states decouple?

e Not expected since they are at finite distance from regular models
e for M = 2 one checks that all non-cusp points are regular

e likely to be true for general M
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Additional structures

The modular curve X;(M) has an important group of automorphisms
(Z/MZ)* [{+1} = Gal(Q[cos(2r/ M)]/Q)
given by the diamond automorphisms
(m): Xo(M) = Xi(M),  m e (Z/MZ)*, (m)(E,p) = (E,mp)

Since the curve X;(M) is the space of theories, (m) send one theory to
another: it is a duality. Its effect is to change the character (charge
assignment of ‘quasi-holes’) e — e™. All models with a given E obtained
from any one by acting with Gal(Q[cos(27/M)]/Q):

weakly-coupled model with charges e is a strongly-coupled limit of the
model with charges e™ for all choices of m # 1

Solutions to tt* should be Gal(Q[cos(27/M)]/Q)-covariant

Similar story with Hecke correspondences T,, (m € N) (subtler dualities)

X1 (M) +—— XXM, m) —— X1 (M)
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tt* equations same as Hitchin equations in coupling space

The tt* equations for the level M models: a family of
Hitchin systems parametrized by the characters of A,

Hom(A, U(1)) ~ S* x S,

over the modular curve Xi(M) with prescribed singu-
larities at the cusps and covariant under the diamond
automorphisms {m) (Hecke ?)

e Hom(A, U(1)) ~ S* x S* depends on a choice of generators for A (or L)

on the family of Hitchin systems:

5 action of I'y(M)
) N
an invariance
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Using the symmetry L,
End(&#) ~ End(L*(S! x §')) ® End(L?(Hom(L/A, U(1))

In the TFT trivialization, both A and ® act as multiplicative operators on
End(L?(S! x S')) and & is proportional to Id € End(L?(S?! x S?))

Ais a St x S! family of connections in the Cartan of s{(M)

A((,f), 9) = diag(A(¢= 9)17 A(qba 9)23 B A(qba G)M):
¢ € Q(sl(M))

The spectral curve in Kx, (v has the form

det[h — ] =AM —p

for a meromorphic M-differential p € F(Xl(M), K)’}’f(M)) which has an

arithmetic construction:
Topological side is “arithmetic”
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Arithmetic construction of spectral cover

Notation: e(k) = e2""*k/M with ¢ € (Z/MZ)*, £ ~ (M — {)
By a spectral cover X T» X;(M) | mean a cover over which the
eigenvalue of ®; is a globally defined holomorphic one-form i,

M-1

* det[/\ - ¢g] = H (Ti'*/\ _ ewak/MNJE)
k=0

In physical terms the spectral cover is a curve parametrizing pairs

(SQM model, vacuum mod A) = (point in X;(M), eigenvalue of ®)

V'(z,7) is an elliptic function with simple poles at z =27k /M,
k € Z/MZ, such that V'(z +2n/M, 1) = e(1) V'(z,7). Thus vacua
2o+ 2nk/M, k € Z/MZ, and Mzy = 0 (Abel's thm)

classical vacua have a simple characterization in terms of the Weil pairing
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Arithmetic construction of spectral cover

E[M] C E the group of M-torsion points,
(=, —weil: E[M] x E[M] — Z/MZ is the Weil pairing

SQM model parametrized by (E,p) p € T C E[M], e(p) = e*™/M

‘ q € E is a classical vacuum < q € E[M] and (p, q)weil = 1 ‘

’ (model, vacuum) = (E, p,q : p,q € E[M], {p, @)weil = 1) ’

Spectral cover: moduli space of such triples (E, p, g) which are called
Elliptic curves with a level M structure of type I'(M)

moduli space of such triples is yet another modular curve
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Arithmetic construction of spectral cover

Principal congruence subgroup (M) C SL(2,7Z)

[(M) = {(i 3) = (é (1)) mod M} C SL(2,7Z)

1 — [(M) = (M) 2 Z/MZ — 0,
[F1(M) : T(M)] = M,

spectral cover = Y(M) = H/T' (M) =225 X(M) = H/T(M)

the (compactified) spectral cover is the principal modular curve
of level M, X(M). The M-fold spectral cover

X(M) =5 X1(M) is the canonical projection
H/T (M) 5 H/T1(M), M-fold cover

On X(M) the eigenvalue i, of @, is well defined i, € Q}((M)(Iog Dy),
D, = divisor of type | cusps

S.C. [work in progress] FQHE and Hitchin systems on modular curves

Pirsa: 17020035 Page 18/33



Pirsa: 17020035

Explicit form of eigenvalue one-form i, on X(M) = H/[(M)

M—1
fe = Z p2mitk/M dZk

Z
k=0 bk

where Z; () is the partition function of a complex free chiral fermion
on a torus of periods (27, 277) subjected to the boundary conditions

W(z +2m) = "My(z), Yz +2mr) = —e2My(2),

Zpp= Bt/ M)/2 H (1 _ e21Tfk/qu—£/M) (1 _ e—27rik/qu—(M—£)/M)
m=1

dZ{‘,k

meromorphic one-form on X(M)
Zp K
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Modular properties

= X(M) = H/r(M)
@™ g =1Fg(7') dr

F¢(7) is a meromorphic (poles at cusps) modular function with character
for the congruence subgroup '1(M) and good properties under ['q( M)

Fo(M) {(i s) - (g 3) mod M} C 5L(2,2)

15 TM(M) = To(M) 25 (Z/MZ)* =1

ar+b\ _ 2> _2miabl(M—£)/M
F_e(m d) —(cr + d)e Fus(7),
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Behavior at cusps

At cusps on X(M) (A(¢p,0),d) have regular singularities

A,0) = 2 a(é, 9)(% . %) + regular,

d 1
¢ =C ?Z + regular

U cusp {q(gb, 6) non-trivial

C nilpotent

cusp { a($,0) =0

C semi-simple

e Eigenvalues of q(¢,0): the states which become massless at a U cusp
are described by a SCFT, the q(0, ) are the U(1)g charges of the susy

vacua in this SCFT
e C: action on chiral ring Zscet of operator O perturbing away from

cusp point
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U vs. | cusps: Example

X(5) has 12 cusps which map into 4 inequivalent cusps for the physical
coupling curve X;(5). Which ones are U respectively | type?

Schur (1917) considered the infinite product:

B 1_ 5n+1 1 — I5n+3 G 1/5
—q 1/5 H )( q ) (9) - q

g>+2)(1 — g5*3) ~ q/5H(q) |1+ _q__

n>0 14 1+

G(q), H(q) Rogers-Ramanujan funct. = characters of (2,5) minimal CFT

and asked for which roots of unity it converges. Answer:
it converges at g = €?™/ (2 € Q) <> 2 a | cusp for the M = 5 model

K(q) Hauptmodul of X(5). Eigenvalue p, rational differential in K(q). lcosahedral
group SL(2,7Z)/I(5) acts on K(q) by Mobius maps. Its action determines fip

| cusps (width 5) = {0,3}, U cusps (width 1) = {Z,00}

M odd prime: 5¢(M) U cusps (width 1), 1¢(M) | cusps (width M)
width of cusp related to emergent U(1)g symmetry in the limit theory
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Behavior at cusps

Residue of u¢ at cusp (a:c¢) € PY(Q), ged(a,c) =1
=
M
Eg(x) = {x}? - {x} + %, with  {x} = x — [x].
The cusp (a:c) is U type iff Ky e(a:c) =0

kme(a+ sM:c+ tM) = kpe(a:c) Vs, teZ,
kme(aic)=0 if and only if gcd(M,c) > 1,
gcd(M,c) =1 = kme(a+a :c) = 0(a'¢) kme(a:c),
ged(M,b) =1 = kme(a:c) = kmpe(ab: be)

(3 = inverse in Z/MZ, 3a=1 mod M, g(k) = e2mke(M=£)/M)

T = ioo always a U cusp, 7 = 0 always a | cusp
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pe: expressions are much simpler when M <5

genus covering curve X(M)

L+ Mo M2 [ (1= p72) M >2
0 M =2,

I

g(X(M)) ={

For M <5, g =0 and X(M) ~ P, isomorphism given by Hauptmodul
z = z(7). There exists a Hauptmodul such that

z(1 +1) = ®™/Mz(1)
¢ rational differential of the form
M-1 2mike(M—£) 45

e
H’f —] Z K’f(a:c) Z z — ez'ﬂ'fk/Mz(a:C)

(a:c) I type k=0
cusp of X; (M)

Example: M =5, z( ) — K(e2mfr)-——1; z(a:c) — (%) [e2wiac/5 _»%](g)
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Example M = 2: z(7) =1 — \(7)

where A\(7) Legendre modular function

z(0) =0, z(1) = oo, z(ioco) = 1.

z(7) modular invariant for '(2) and in fact a Hauptmodul

z: X(2) = P,
z2(TT)=2z(t+1) = L
- —z(1)
In terms of the P! coordinate z = z(7), projection X(2) — X1(2) is
z~z L

e z =0 and z = oo map to the unique | type cusp on Xi(2) = Xp(2)
e z=1is a U type cusp

The eigenvalue 1-form p on P! ~ X(2) has simple poles at z = 0 and
Z = 00, this fixed it up to overall coefficient
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tt* equations/Hitchin equations for M = 2 ‘

Zfonﬁﬂcﬁber G(9,0,2) = |rr) — e{m(7 +1)) | exp(03L(,0,2))

0:0,L(¢,0,2) = | 6‘]*22- sinh(2L(qb, 9,2))

L(¢,0,z) = —L(—¢, -0, 2)
Setting x = -% log z we reduce to the well known ,2\"1 Toda equation
8;0,L(, 6, x) = sinh (2L(¢5, 0, x))

many special solutions are known (often reduces to Painlevé I11)

x not univalued on X(2), but univalued when pulled back to H
We need an automorphic family of solutions to A; Toda

L(@,Q,X(T)) = L(ad)—l—bé?, c¢+d9,x(j:j__ Z)), v(j 3) € ri(2)

S.C. [work in progress| FQHE and Hitchin systems on modular curves

Page 26/33



Pirsa: 17020035

No solution to Toda (known to me) has the right automorphic properties

We can solve the equations near the cusps:
e z=1is a U type cusp. The model is asymptotic to the LG model

W(X) = —2q'/? (ex-e'x), qg=e’"" 0, (related to the P! o-model)

whose tt* equations are also ElTodé
820, L(0, x) = sinh(2L(9,x))
where L(6,x), 0 < 6 < 2m, is the family of all solutions which vanish at

infinity and are regular for x # 0 (they are Painlevé transcendents)

setting L(¢,0,x) = L(0, x) solves the equations, reality constraints,
regularity conditions, has the right asymptotics as z — 1, and passes
other consistency checks

yet it cannot be the correct solution since it is not automorphic

e = the solution cannot become trivial at the | cusp z =0
tt* eqns. linearize. Their solutions very reminiscent of Maass form

S.C. [work in progress| FQHE and Hitchin systems on modular curves

Page 27/33



Pirsa: 17020035 Page 28/33




Pirsa: 17020035
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The case of general M similar: tt* eqns. are /EM_1 Toda equations

2mitk /M (ZW(F;{/’- k)) exp[diag(Lk(@ga)‘))]

M I
Y Li($,0,x) =0,  Li(¢,0;7) + Lm—e—k(—¢,—0;7) =0
k=1

Change of variable

T+ x(7) = / Je,
axaka(an G,X) -
= exp[L(6,0, %) — Lis1(,0,%)] — exp|Li-1(6,0,%) — Lu(6,0,)|

The solutions which are everywhere regular and vanish at oo are more or
less known (and fully determined as a by-product of the present analysis)
but they are not automorphic
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Asymptotics at U cusps more interesting:
non-trivial action of the diamond duality group

e it has important implications for general tt* geometry as well as for the
theory of regular solutions to Toda eqns. (cfr. A. Its and co-worker)

e For M an odd prime U cusps form a single orbit of (Z/MZ)* /{£1}
The (M) [1(M)-inequivalent U cusps are

T =00, and 7= a/M with2 <a<(M—1)/2=¢(M)/2

The asymptotic behavior of model with character e(k) = e?™¢k/M

i o{M—£)/M elM-0X  g=tX
o = €T ~0 W(X)~ —M -

.ar — s
Ga/M = €xp [—2%: My — a‘ ~0

€] (M—|ae]) /M e(“”*laﬂ)x e—lal1x
/M M — | af] i lal] |’

W(X)~ -Mgq

|n]: the integer n mod M such that 0 < |n| < M — 1.
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In other words: for M odd prime we get at the several U type cusps all

~~

affine A(p, q) models with p + g = M and ged(p,q) =1
These models form an orbit of the duality (Z/MZ)* /{£1}

They play a crucial role in classificatlion of N = 2 susy in 2d and 4d:

o if X ~ X + 2mi they are mirror to the o-model with target the
weighted projective line P(p, q)

o if X ~ X +2miK (K an integer K — 0o in the thermodynamic limit)

they are associated to the (mutation class of the) quiver obtained by
orienting the affine Dynkin graph Ayk—1 with pK (gK) arrows in the
positive (negative) direction

e the 2d BPS spectrum (in some chamber) is the Dynkin quiver
e the 2d quantum monodromy is minus the Coxeter of the affine quiver

e in 4d: SU(2) SYM coupled to two Argyres-Douglas of types D, and D
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The tt* equations of all these models are the same ﬁM_l Toda equations

B30 L(6, x) = exp [Lk(e,x)-Lk+1(9,x)] _exp [Lk_l(e,x)-Lk(a,x)]

but with different reality constraints for different p
1

Lk(ﬁ,x) - Lpfk(—g,x) =0
and different regularity conditions

It was a surprise that the regular solutions to these different PDE
system are indeed related by the diamond duality (Z/MZ)* /{£1}

Regular solutions to the PDE recently described for M =5 by A. Its et a/

Unexpected action of (Z/MZ)* /{£1} explains their results
and generalize them to arbitrary M

The automorphic property of solutions to tt* for the modular N = 4
SQM models is actually useful (for a totally different problem)
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