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RG fixed points and sinks

Each stable sink fixed point corresponds to a phase
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Example: Ising critical point
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The general problem

Given a RG fixed point and a set of relevant operators {®;}

H=H"+)_> goix)
J X

where do the RG flows end up for different choices of the {g;}?
What is the phase diagram in the vicinity of the critical point?

How do we relate UV and IR physics?
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The field theory perspective

Each RG fixed point corresponds to a Conformal Field Theory

The relevant operators are scaling fields of the CFT with
dimensions A < d

Fl = FICFT +- Z/\j / &)j(X)dDX

J
Each relevant flow line ending at a sink corresponds to a
massive Quantum Field Theory

In general, understanding this requires non-perturbative
methods
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Boundary states

Another way of understanding the physics is through the
different possible boundary conditions which may be imposed
on the CFT.

A special set of boundary conditions are conformal,
corresponding to fixed points of the boundary RG flows.

In the language of QFTs in D + 1 dimensions, these
correspond to boundary states |B) satisfying

Tok(x) |B) = 0
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We conjecture that the conformal boundary states label the
possible sinks of bulk RG flows,

e.g. for Ising there are 3 such states, |free), |+),|—):

|+>
h N
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So we can rephrase the question as

"Which boundary state best approximates

the ground state of H at strong coupling?"
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One way around this is to consider smeared boundary states

e THCFT ‘B)

These have finite correlation length o 7 and finite energy o« 1/7

They can be viewed as a continuum version of matrix product
states
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Motivation: quantum quenches

In a quantum quench, a system is prepared in a state |Wy) and
evolves unitarily with a hamiltonian H.

One question is whether subsystems reach a stationary state
and, if so, what?

In 2006 Calabrese + JC chose |V() to be a smeared boundary

state, evolved with Hger, and showed that subsystems then
thermalize after a time « their length.

This can be seen as a consequence of the propagation of
entangled EPR pairs, a picture which holds much more widely.

A motivation for the current study is which smeared boundary
state |B) should be chosen to best approximate the case when
'Wp) is the ground state of a gapped theory?
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Back to the problem

The problem then reduces to a variational one: take a general
smeared boundary state

‘W) _ Z(}ae Ta ICICFT‘Ba>

a

and minimize

(W| Horr + 32 A7 [ (x)dPx |w)
(W)

Evar —

with {aga}, {72} as variational parameters.
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Normalization (V|W¥)

(Bale TaHcrr @—=70Herr ‘Bb>

is the partition function Z, in a long strip.

If a = b this is dominated by the Casimir energy
Zaa ~ eXp (Ua(L/2Ta)D)

For a # b, Z, is exponentially smaller than (ZzaZy)'/? as
L — oo due to the interfacial energy.

So the off-diagonal terms are suppressed — similarly in the
numerator.
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Back to the problem

The problem then reduces to a variational one: take a general
smeared boundary state

W) = 3" age o |B,)

a

and minimize

(W| Horr + 32 A7 [ (x)dPx |w)
(W)

Evar —

with {aga}, {72} as variational parameters.
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So the problem simplifies for L > 75:

5
Evar/L° = Z”ﬁg (27_3)3041 t Z Aj{®))a
/

a

where >~ a2 = 1 and

AT

(P)a = (2T3)Al

is the one-point function of ®; in the center of a strip of width
275 With boundary condition a on each edge.
Af Is a universal amplitude.

The minimum occurs when all but one of the {a;} vanish (i.e. a
pure physical state.)
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We should minimize each term

Ca _

wrt 75 and choose the a which gives the smallest value.

SinceAj<D+1,Cq — +ooas 73— 0

As 73 — oo Cz — 0 and is dominated by the most relevant
operator with A; # 0. [At least in 2d] we can show that there
always exists an a such that the approach is from below, so that
there is always a minimum at finite 7

Ca
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RG flows

C4 scales multiplicatively under

)\] — G(DH A‘r){/\j. Ta — € lﬁ.'f—a

so once we have found the absolute minimum a for a particular
set of couplings {);}, it is the same along the RG trajectory ©
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2d minimal CFTs

Unitary 2d CFTs with ¢ < 1 are well understood, and give the
scaling limits of simple 2d universality classes.

Bulk operators ®; are labelled by entries j = (r, s) in the Kac
table with 1 < s < r < m— 1, with man integer > 3 and
c=1-6/m(m+1).

In the diagonal A;; models each value of (r, s) occurs just once.

The physical boundary states 53, are also labelled by entries in
the Kac table, one for each value of (r, s).
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1-point amplitudes are also known [Lewellen + JC 1991]:

- Sé 38 1/2
“a sg(so)

/

where Sj; is the modular S-matrix — symmetric, orthogonal, with
SP >0

o rr’ 788’
SEE o (—1)r+9)(r+s) gin T sin
fS ( ) m m + 1

Note that for any j we can always choose a so that /\,-Afé <0, so
there is always a minimum for some a.

We can also show that for a particular state b there is a choice
of the {A,} so that

Z,\A’<O ZAA">O £ b)

So all boundary states b represent an achievable RG sink.
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Example: the Ising model

ﬁf QCFT t l‘_IIEdX t h.].ddx

{®;} = (¢,0), boundary states (+, —, f).

1
4872
1

& 482 "

1
4872

C, + -

o7

[In units where 27 = 1.]

Fort> 0, h=0, fwins
Fort <0, h>0,— wins
Fort <0, h<0, + wins.

Pirsa: 17010060 Page 23/28



Y_hSIIS

The + sinks do not extend all the wayto h =0 fort > 0
There is an unphysical phase boundary along h8/1°/t ~ 0.1.

A general feature of this simple variational approximation:
1st-order transitions between different sinks. ® @
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A lattice models

The A, RSOS models are simple integrable lattice realizations
of the diagonal A, 2d CFTs.

At each site r of a square lattice is a height h(r) € Ay, Dynkin
diagram.
Neighboring heights satisfy RSOS condition |h(r) — h(r")| = 1.

Boltzmann weights and local operators are defined in terms of
the matrix s2 of eigenvectors of the adjacency matrix

b . mrab
S, o SIn
m+ 1
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UV divergences

If we switch on a single operator A\® of dimension A, simple
scaling implies
(E)/L x \2/(2—A)

and this is what comes out of the variational approach (with a
definite value for the coefficient).

However, although for A < 2 there are no new UV divergences

in correlation functions, there are in the ground state energy.
E.g. to second order
N [ d?x
0E/L=—— | —=
/ 2 ‘X‘ZA

which is UV divergent for A > 1.

So the variational calculation is bounding something which is in
fact —oc
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The solution is to incorporate these as counterterms

o A2(7/€)? 24 in the variational energy, where ¢ is the UV
cut-off.

When taken into account, they give the expected terms in the
energy which are analytic in .

For the thermal perturbation of the Ising model (A = 1), they
give the well-known 2 log |t| behavior.
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Summary

smeared boundary states give a simple way of
understanding the end points of relevant RG flows for CFTs

they give a rigorous upper bound on the free energy
(ground state energy) of the massive theory

for 2d minimal models every boundary state corresponds
to the end point of an RG flow, but these have finite width
with possibly unphysical first-order transitions between
them

the variational states could be improved, and this feature
possibly removed, at a considerable cost in computational
effort.
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