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Nonlinear Field Space Theory

Standard Field Theory - Linear Field Space:

. = Rx K

&

Nonlinear Field Space Theory!:

e # Rxik

M

.1“J. M. & T. Trzesniewski “The Nonlinear Field Space Theory”, Physics
Letters B 759 (2016) 424.

Jakub Mielczarek Spin-Field Correspondence

Pirsa: 17010056 Page 3/29



Relations/inpirations

@ A compact field space is a natural way to implement the
“Principle of finiteness” of physical theories, which once
motivated the Born-Infeld theory (1938). Dynamical
constraint on the field values.

NFST is similar to the case of a relativistic particle, where the
maximal speed of propagation is a result of the spacetime
gedmetry.

Lattice field theories — compact field spaces on discrete
lattice.

Non-linear sigma models (GellMann,1960; Witten,1984) -
multi-component scalar field (but usually not field velocities or
momenta) are constrained to lie on a Riemannian manifold.
Born reciprocity (1949).

Relative Locality, curved particle momentum spaces.

Loop Quantum Gravity, polymer quantization.

Understanding an origin of the Hamiltonian/Lagrangian
functions for fields.
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Spherical phase space

The phase space of a classical spin is a two-sphere, 52.

Kirillov orbit method

“If an orbit is the phase space of a G-invariant classical mechanical
system then the corresponding quantum mechanical system ought

to be described via an irreducible unitary representation of G.”
Here, G = SU(2) and the orbit $* = SU(2)/U(1).

The phase space is a symplectic manifold and it has to be
equipped with the closed symplectic form w = Ssinfdo A dfl. Let
us consider the following change of coordinates:

Ril € (—m, ),
m

(0,7),

p
8

where Ry and R, are constants.
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Using the new variables, the symplectic form can be written as

where we fixed R1R» = S.

Except the poles § = 0,7, the symplectic form w is well defined
and invertible, allowing for determination of the Poisson tensor
PY = (w 1), and then we can define the Poisson bracket:

1 (c’?f og Of 8g)

{f,g} =PY(0if)(9;8) cos(p/R2) \Oqdp Opdq

Such that the bracket of the canonical (g, p) variables is

1
cos(p/R2)
The Hamilton equation can then be defined as %f = {f,H},
where f is some phase space function and H is the Hamiltonian.

Jakub Mielczarek Spin-Field Correspondence

{q,p} =

Page 6/29



Pirsa: 17010056

Using the new variables, the symplectic form can be written as

where we fixed R1R» = S.

Except the poles § = 0,7, the symplectic form w is well defined
and invertible, allowing for determination of the Poisson tensor
PY = (w 1), and then we can define the Poisson bracket:

{f, g} =PU0if)(9;8) =

1 (c’?f og Of 8g)

cos(p/Rx) \Oqdp  9p dq

Such that the bracket of the canonical (g, p) variables is

1
cos(p/R2)
The Hamilton equation can th_”_.., -defined as jtf = {f,H},
where f is some phase space function and H is the Hamiltonian.

Jakub Mielczarek Spin-Field Correspondence

{q,p} =

Page 7/29



Pirsa: 17010056

Using the new variables, the symplectic form can be written as

where we fixed R1R» = S.

Except the poles § = 0,7, the symplectic form w is well defined
and invertible, allowing for determination of the Poisson tensor
PY = (w 1), and then we can define the Poisson bracket:

1 (c’?f og Of 8g)

{f,g} =PY(0if)(9;8) cos(p/R2) \Oqdp Opdq

Such that the bracket of the canonical (g, p) variables is

1
cos(p/R2)
The Hamilton equation can then be defined as %f = {f,H},
where f is some phase space function and H is the Hamiltonian.

Jakub Mielczarek Spin-Field Correspondence

{q,p} =

Page 8/29



Pirsa: 17010056

In case of S2 it is convenient to work with the components of the
angular momentum vector S = (54, S, S;), which are globally
defined functions:

Ssinfcos¢ = S cos (Rﬂ

2 2
p q
s(i RE IR +O(4)) ,

Ssin@sin¢ = S cos (Rﬂg) sin (Ril) =15 (Ril + 0(3)) ,

=~ A
ScosB—Ssm(Rz) S(R2+O(3)),

together with the condition S? + S7 + S7 = §% = const. With use
of the Poisson bracket one can easily show that the S; components
satisfy the su(2) algebra bracket {5;, S;} = €k Sk.

Jakub Mielczarek Spin-Field Correspondence

Page 9/29



Pirsa: 17010056

In case of S2 it is convenient to work with the components of the
angular momentum vector S = (54, S, S;), which are globally
defined functions:

Ssinfcos¢ = S cos (Rﬂ

2 2
p q
s(i RE IR +O(4)) ,

Ssin@sin¢ = S cos (Rﬂg) sin (Ril) =15 (Ril + 0(3)) ,

=~ A
ScosB—Ssm(Rz) S(R2+O(3)),

together with the condition S? + S7 + S7 = §% = const. With use
of the Poisson bracket one can easily show that the S; components
satisfy the su(2) algebra bracket {5;, S;} = €k Sk.

Jakub Mielczarek Spin-Field Correspondence

Page 10/29



Dynamics - spin precession

In the atomic physics, magnetic moment couples to an external
magnetic field B via the vector S. In such a case, the Hamiltonian

of interaction is

_ _He,
H = SS B,

where i is the value of the magnetic moment, which can be both
positive and negative. Based on the above Hamiltonian we obtain
the spin precession equation S = {S,H} = —&B x S.

Let us fix B = (Bx,0,0) so that precession takes place around the
origin of the (g, p) coordinate system. Then, for small spin
displacements from the equilibrium point, the Hamiltonian

2 2

~ P a ) _
H ~ — 1By (1— 2R22 — 2R12) = > + const,

R2
where the constants m := ;TBL and w =
X

Jakub Mielczarek Spin-Field Correspondence

Pirsa: 17010056 Page 11/29



The precession of the vector S corresponds to an ellipse in the
(g, p) phase space. The precession (for small precession angles) is,
therefore, described by harmonic oscillator.
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The picture can be generalized to the area of field theory. For this
purpose, let us consider a continuous spin distribution. Then, at
any space point the following identification can be performed:

q — o(x, 1),
p — To(x, t).

1
The continuous spin system is, therefore, in correspondence with

the scalar field theory with the spherical field phase space. This is
basically because dimension of the scalar field phase space '} at
any point is equal to the dimension of the spin phase space:

dim(r¢) = dimS2.

Depending on the particular form of the interactions between the
spins, different types of the field theories with the bounded field
spaces can be reconstructed.
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An example: The XXZ Heisenberg model

The XXX Heisenberg model (A = 1) ("Spin-Field
Correspondence” J. M. 2016 arXiv:1612.04355)

Generalization to the XXZ case (J. M., S. Brahma, J. Bilski,
A. Marciano, to appear very soon).

The discrete XXZ Heisenberg model can be introduced by the
following Hamiltonian:

Hxxz = =4 (SKSf+ S/ + ASEST) —ud_Si-B,
iy i

where the first sum is performed over the nearest neighbors and J
and u are the coupling constants. B denotes an external magnetic
field vector.
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Continuous case

In the continuum limit the discrete Hamiltonian becomes

e — — / Px [(VS)? + (VS,)2 + A(VS,)2] i / xS B,

For B = (Bx,0,0), the lowest order Hamiltonian in the
representation of the field variables is:

together with the condition S = R R5.
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The field theoretical Poisson bracket

32z X X
(o) = [ o e (100 Bt 4109t

cos(mp(2)/ Re) \8p(2) dmp(z)  om(2) b(2)

based on which, the leading order equations of motion are:

. A
2 {o,Hp} = Wsomzvz'”cpv

I

Tp = {Tp, Hp} = —mPp+ Vo,

which lead to the following modified version of the Klein-Gordon
equation:

. A
¢ —(1+A) Vo + mip + ?V‘lcpzo.

The relativistic case is recovered in the A — 0 limit (XX or XY
Heisenberg model).
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Performing the Fourier transform

the following dispersion relation

k* k2
= (1+A)k2+m2+am2 = (k* + m?) (1+Amz) .
I
is satisfied. From here, the group velocity

w  k k2
L= e = S 1A (1425 )],
o= gr = 1ra(ivag)

and in consequence, the following relation holds

VgrVph = 1 +A(

which might be both greater and smaller that than one depending
on the sign of A.
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The Spin-Field Correspondence conjecture

Observation:

dim(r'?) = dimS2.
Spin precession = a scalar field oscillation at the phase plane.
Spin wave = a scalar field excitation.

Generalization to the different types of fields is possible:
o (s=0) scalar field - dim(Ix) = 2 < 1-spin (S?)
o (s=1/2) spinor field - dim(l'y) = 4 < 2-spins (S? x S?)
o (s=1) vector field - dim('y) = 6 < 3-spins (52 x S? x S?)
@ (s=3/2) Rarita-Schwinger field - dim(['x) = 8 < 4-spins
o (s=2) tensor field - dim(I'y) = 10 < 5-spins ((S5?)°)

A method to design condensed matter systems corresponding to
given field theories.

Are fields excitations of some more fundamental spin structure?
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The Nonlinear Field Space Cosmology

(“Nonlinear Field Space Cosmology,” J. M. & T. Trzesniewski,
February 2017)

A cosmology from the condensed matter system Hamiltonian.

The matter Hamiltonian which reduces to the massive scalar field
case in the leading order is:

I

Hs me-sg:aniw-sg

N (6 4 L2 1 o
9| 9g2 T3 (4).

The Friedmann equation:

1qg ;
H? = = —
(3Q) 37

with the matter energy denmtﬁ (5 Sx). Here g = a3
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The equations of motion (for N = 1):

3 S SxS:

Sx  |/S2- 82

z

4
Sy = {Sy, Htot} = 4+m Sz

3 S 5,5 S
— —Kp (SX arctan £ + —X=— arcsin z) ,
I

S, = {Sx, Hiot} = ——kp (—Sy arctan -2 +

4 st e s
: _ 3  Jer o Sz
Sz = '{Sz, Htot} = —m Sy -+ Zh?p S2 — 522 arcsin ? )

together with

3

4= —5Kpg,

4 2q

3 1 S 5. S S
p="Kkp>+m— (—Sy arctan =X + ——==£__ arcsin —z) .

S, /s7_s? S
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A scalar field in the Fourier representation

Assuming that the original spin Hamiltonian is of the form

H xS B = 5,B,, the scalar field Hamiltonian in the Fourier
space can be written as:

= ZHk, where
k

— Sk cos (\%) cos (\/gcpk)

1 k
“Sk+ L (mE 4 K26) — g
1 R
sagi (T T KiGk) +0O(572),
together canonical bracket

{ék, T } = sec (\%) Ok K’ -
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The obtained Hamiltonian can be perturbatively diagonalized (at
least up to the order S—1) with the use of creation and annihilation
operators. Due to the deformation of the canonical commutation
relation, the expressions for the creation and annihilation operators
é‘i, ak will differ from the usual ones. Furthermore, the é‘l and ak
fulfill the g-deformed version of their commutation relation:

5al —qals =1

This allows us to express the field operators as follows:

A (ék + él)

b=

At
. fik(ak—ak)
1/1-1-55 \/1‘|‘2—§

where the g-deformation factor:

-t .
=1 O
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The total Hilbert space of the system is H = ), Hk, where

Hyk = span {|0k), |1k),- - -, |Mmaxk)}. The actions of the ai and 3y
operators on the |n) basrs states are found to have the form:

1 — qﬂ+1
1-—

1—q"

1), adn) =[5

\n—1>

giving the g-deformed expression for the occupation number
operator é‘lé‘klnk) = 11__‘2 |nk). Based on this, the Hamiltonian can
be expanded as follows:

- . 1. h - RY 3.
Fh —SkI[+(2—R) kﬁH+kﬁ(1—§) EIPY

— 6(5}4¢)2 — 6515 — ﬁﬁ)
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Propagator

Assuming statistical isotropy of the spatial field configurations, the
two-point correlation function is given by

2 7 1 ike-(x—w)—7 4t
(O(x, )p(y, )[0) = 1 D _ [eaf2e by aELE)
k,n

1 dw ik-(x—y)—iw(t—t'
| :szgp(w,k)ek(x y)-iw(t—t)
=

where (for a given wave number) AE, = M — Eél) and, denoting

p? = —w? + k?, we calculate the propagator:

D(w k) +0(57?%)

L f_ k? + 2w?
S (—w? + k?2)2

+0O(S7?).
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Renormalized constants

From the propagator given as the single term one can deduce that
the “renormalized” speed of light reads

3h =
Cren — 1 — §§+O(S 2).

Furthermore, the propagator can be used to predict the form of
interaction potential between two point sources of the scalar field:

A ke Qo A o
V(r) = 4ri (27rh',)3e Do) Q@ = - (1 + S +O(S )) ;

where Qg is the charge of a field source. The difference with the
standard case can be absorbed into “renormalized” charge

Qren = QO (1 = ”g‘ + 0(5-2)) :
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Summary

NFTS - linear field space is only an approximation.

Compactness of the field space allows to implement “Principle
of finiteness”.

Spin-Field correspondence - dim(I'?) = dimS2. Spin
precession = scalar field oscillations.

I
Generalization to the different types of fields is naturally

possible - to be done.

Numerous interesting predictions, including: generalization of
the uncertainty relations, algebra deformations, constrained
maximal occupation number, shifting of the vacuum energy
and renormalization of constants, deformation of the Lorentz
covariance.

Relation of field theories with the condensed matter physics.

Nonlinear Field Space Cosmology.
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