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The SYK model

N Majorana fermions y;, 2 =1,... N

- Sachdev, Ye (1993): Fermions in complex representation of SU(M)
with two-site interaction.

- Kitaev (2015):
- Single large N parameter, identical Green function.
- Suppressed disorder (replica-off-diagonal terms).
- Black hole behaviour of out-of-time-order four-point function.

- Maldacena, Stanford (2016): Detailed calculations.
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Solvable limit

Restriction to replica-diagonal sector

o |Z.” ‘ |(._\ h)"'{lr‘rll:u:.l
—fF =InZ = lim — = lim ————— = -84,
f R0 R R0 IR f diag
q
/D\(\P (_E - /”’T\ "Xy L/dm’r (—\-1 )\:(T’)) ) Gos(r. 1) Y‘\;v[_})\:f(_}r‘_) :
o, 3 __‘_-'.__ —
J— N
B / DEDG exp (‘2 E / drdr’ (Lq (":}‘.; adGay f))(/ Y eXp ( T‘ /!ﬂT e 9 L /rhrh VasX” ))
= (/ DYDG exp (:‘\-’ (ln PE[8" (7t — 7') + (7, 7 = /,jﬂh- ( G(r, 7)1 - X(r ))))
'\'—:fl_;" Ef’in‘;i | Z(“ilg = BE diag ‘

("‘n;ﬂ' = (“‘fs('l,n' .
" — / dr' G(r, 7"y (B0, 7"y + 8 (7', 7)) = 8(r — ) ‘
Y(r, 7" = J*G(r, ') !

« Complete analytic solution for N > 3J \:;1

small quantum fluctuations <~ analytic solution to
_saddle-point equations
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Outline
. Diff(S') PSL(2,R) symmetries in the IR

Decomposition of fluctuations into irreducible unitary
representations of SL(2,R)

- Conformal time ¢;
the non-linear soft mode €(¢) and its action

- RG analysis and resulting action for soft mode

- Corresponding dilaton theory
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Preview of results
%) Termq in the action of SYK, written for the soft mode
and resulting from integrating out least irrelevant

O(BJ)"
) ~ (8) SL :
2/ 1n ‘pfz
' (L( '))

e(p)
perturbation.
Seoft _‘ A / dpy dps e(p1)e(p2)
N | ] 27 27 gpllu, e(p1)e(@a
| P P — P _
non-local, dominant in the IR 19 = 2sin 22— > (BJ)"!
o fdp (o e'(¢)?
— | o= lelp) +2e"(p) — +.
A | 2w 2e(p)
~ ~ N \
(T ‘ UV regularization of
the non-local term |

Dual action in D
N

S, =
f 47

2 dilaton gravity
(/ d*z\/g (¢(R + 2) +|f1r/>2D + 2 / dpy/Gop K + .. )

7 (O(R+ 2
(linear term discussed in Maldécena, Stanford, Yang (2016))
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Emergent conformal symmetry

=4

For BJ>1 | - /}z-r'c.:(r,r') (S(', ") +8 (', 7)) = b(r — 7")
" (7, 7) = J2G(r, 7)1
» Saddle-point equations are Diff(S1) -invariant.
= f(7)
G(r, ') = (J/ ()W (NG (1), f(7)
S(r, 7') = (F ()N Y(f (), f(7)

e Solutionis PSL(2, R)-invariant. T \.T

, b/ ”Hgn(sin(—‘—*—“(" ”_"") )) / \
G(mi,m2) = — Iu H‘i“( (7] T._)j,) 274 Poincaré disk ; -
m IE] \ ) -

(! 2 \ g
(z = Vze'?, ¢ = /"_T)

2 4 N
ds® = = _)Hd.;d E4
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Decomposition of fluctuations (continued)

Quadratic action for fluc tu ations about IR fixed point + UV perturbation
N8[9l = = <q\f\ L = l|g> — (s]g)

w::u e

K(r,m0;m3,71) = J*(q — 1) |G (74, T))| (11, 73)G (714, T2) |G( Tg,T|)| z

K commutes with the Casimir of the Lie algebra SL(2, R) acting on

Fi_ ,“', ® 4 f\__l" 2. The identity over the product space decomposes into
irreducible unitary representations of the universal cover bL( ,IR) labeled
by Casimir eigenvalues \. Each representation consists of a series labeled

by eigenvalues of Lo, k.

"o0 ([I 15k (f .I :..L.'Jr ‘\ [ .
./ ds | Y < ><* ‘ + Y 3 MJF ) M
¥=es k€Z GLtisk A= \k=Apmmen 9] k=—A—mmeN 19kl _
) —_———— ———
principal series positive discrete series  negative discrete serigs
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Rotation from S ( R) reps to set of poles

Discrete series with A = 2 have K eigenvalue 1, ie. zero action in the IR,
and must be treated non-linearly. I'll describe our formalism for treating
the non-linear excitations (soft modes) in the next section.

'he contribution of X # 2 modes to the four-point function in the IR limit
can be written using projectors for S](gj R) reps.

. K
(9(T1,72)9(T3, Ta)) o = T~ % / ds 1 u}] + Z ( D} +HD‘\)

A=4,6,.

['he contribution can be alternatively decomposed to that over a set of
poles by analytic continuation in \-space (Maldacena, Stanford 2016).

o sgn (sin @ sin @’ h-1 K(h) r(h)? . .
(9(P1,92)9 (3, 04)) yp0 ~ ( et ) Y‘ Res L oy ( —x" 2, E(h,h,2h, \'-_}}

#2 sin ¢ sin ¢’ B an(mh/2) 1 — K(h)™ T'(2h) heh,
A 27-( N A J_ .;';)2 » . ‘
p=T ., pr= L 5 s K(hy)=1, “ double pcie athp = 2 ”
9
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Outline
- Diff(S1), PSL(2,R) symmetries in the IR \/
Decomposition of fluctuations into irreps of PSL(2,R) \/

. Conformal time #(7);
the non-linear soft mode £(¢) and its action

- RG analysis and resulting action for soft mode

- Corresponding dilaton theory

10
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The soft mode

The discrete series with A =2, K =1 correspond to variations in G(ry, 13)
due to infinitesimal reparametrizations of time, 7 — 7 + 7.

 |n fact, Diff(S!)-invariance at the IR fixed point implies a submanifold of
near-extremal configurations in (2, G)-space parametrized by non-linear
functions f(r) = (™)
Gr(ri,72) = f/(1)2 F(12)2Go(f (11, 72))
EJ‘(TIJB.) = .ff(Tl) .IU(T' ) ~Yo(f(r1,72))

Go(711,T2) : Saddle-point solution at zero temperature.
((7) : Conformal time)

* The maps f, Lo f where L € PSL(2,R) define the same Green function.
Thus, the submanifold in question is M = PSL(2, R)/Diff(S!).
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73\ M = PSL(2,R)\Diff(S")

* Having identified the non-linear degree of freedom f, or the soft mode, it is
natural to integrate over the linear modes gax2 at fixed f to obtain an
effective action for f .

For each point on the manifold, we define a perpendicular direction _Mf
and integrate over linear modes in it using the saddle-point
approximation.

Seote (f) = extremum { BF (X, G) : (X, G) € /\/ljl}

By construction, Seog IS PSL(2, R)-invariant. It is also natural to demand
that it be diffeomorphism-covariant, i.e. covariant as we traverse M.
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Soft mode as covariant UV cutoff

Instead of f, we often use

ydo(T) _i_
dr | BJ

e(p) =J

e can be thought of the UV cutoff J~1 transformed to conformal time.

Later we will see that J~! should in fact transform with conformal
dimension -1 in order for Sgote 10 be diffeormorphism-covariant.

Note there is a piece in € that is non-zero right at the saddle-point, i.e.
purely due to finite temperature and distinct from PSL(2, R)/Diff(S)
degrees of freedom.

2T 21

A
o —
-

g’ BJ

!

6>
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Outline
- Diff(S1), PSL(2,R) symmetries in the IR \/
Decomposition of fluctuations into irreps of PSL(2,R) \/

+ Conformal time ¢(7); \/
the non-linear soft mode £(¢) and its action

- RG analysis and resulting action for soft mode

- Corresponding dilaton theory

Pirsa: 16120019 Page 13/25



Renormalization group analysis
Recall UV perturbation to IR fixed point

: 1 2 , i
NS = —InPf[§'(r = 7') + B(7, 7)) - 5 /d'rd'r' (J-G(T, ™) - (7, 7")G(T, T’))

q

- z - " V
= —InPf [E(T.‘ 'T')] - -12 /deiT’ ({1 G(r, ) = X(r,7)G(r, r')) n .12 /deT’ o(r,7)G (7, 7")|
(Y=%+40, 0=08T-1)

|dea: replace singular, intractable perturbation with smooth perturbations
supported in the UV region of the RG parameter

E(Jsin@_|) = — In|sing_ (6= 5044
S S
-
¢ 0<&<InpJS

such that their effect in the IR is identical to the original perturbation.
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Ansatz for UV perturbations

Let us consider the quadratic action for fluctuations about the IR fixed
point with some smooth UV perturbation s in F\:f ©aFy \)a

/ A=1/2
1

N™'Solg) = 5 (gl K~ = 1]g) — (slg)

Equation of motion determining IR response in A # 2 sector:

(K_l - 1_) |.(’1>)\__¢"2 -
One can invert it to obtain the response
* The response will not spill over into the IR unless

s 1S approximately (i.e. up to UV regularizations)
an eigenfunction of K with

|*‘—">,>\;é:z

|£/>,\¢*z -

CK(h)y=1.
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Ansatz for UV perturbations (continued)
Thus we pose the ansatz for a family of UV perturbations
s(Qy, o) = r?_i""?+sig1|(sir|@ ) |sing_ | h u(|sing_|)

~ / - s \—,—/
mode of centre of coordinates <non-normalizable eigenfunction of A window function

The window function is a black box’ for UV regularization, and
simultaneously i) makes snormalizable and ii) regulates its K = 1

eigenvalue. For our calculations we only need to use the lowest-order
approximation

~ A
.~ .~
Lf‘.

o v a jas=1rnsa
u(|@l) = (Ingu/d1) " (0(Pu ¢

) — 0(&

) Gupr x (BI)*

The least irrelevant perturbation is given by the above with I =0, hy = 2.
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Effective action in the presence of perturbation

* General form of least irrelevant perturbation:

S(Pre o) = 3 ame Pt sign(sin )

T

sinp_|)

sin G| 2 (.

* Integration defining Ssoft

Among PSL(2,R) representations, ga=2 generate translations along M
while g9x#2 = g1 lie perpendicular to M. Thus

-5 . . p _— ”’4) / ] D] .: 1 4 Y ] S
o~ Ssoft /DHL e~ NS2 — N (slgr=2) / Dg, e N(g(u K llm) (slg1))

72><\/
M = PSL(2, R)\Diff(S")
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The Schwarzian from the coupling of sto gx=2

The term (s|lgs) coincides with the linear term in the expansion of
the Schwarzian

N 3 e 2 " J? : 9

”/} (;‘f - (;\B’IF .

The modulating function a(#+) appearing in the perturbation, by
dimensional analysis is proportional to the UV cutoff J=! = e(r).
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Non-local action from integration over 9.

The action at the saddle-point of integral over g. can be expressed as an
effective action for source function s.

N ISH;ulclIu(Em_l <'q‘,(]I > . _:I; <"""I1[ J“>

= drydr_d7, dr’ s(ry, 7 )0 (1, 7570, 7)s(7h, 1)

O =D

g’ (74,7-) = / (f.Ti(.lTi I+ (7y, 'T_;'Ti,'TL);S'(TjF, )
. ///"
response function

At scales much greater than (5J) L we can integrate over the UV

support of s in 7,7 the least irrelevant, double pole of I't to obtain an

effective action for the modulating function of |, s
N ;. 2 N 2 A'rﬁ 1
q / 16 d’ (8J) | sin® =%+
Daff ™~ ap dy — s in e
. " sin i,' (BJ)2

&

J has acquired conformal dimension -1 in the IR!

In conformal time, we have the non-local term in the soft action

!E(Q)wa)] ( sin? A¢ ) ‘ Local terms from

sin? ¢ cutoff-dependence of integral "

*Sr:-u:ﬁ .nl ™ /d“fjd\,‘?
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Outline
- Diff(S1), PSL(2,R) symmetries in the IR \/
- Decomposition of fluctuations into irreps of PSL(2,R) \/

- Conformal time ¢(7); \/
the non-linear soft mode (y) and its action

- RG analysis and resulting action for soft mode \/

- Corresponding dilaton theory
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Dual action in dilaton gravity

- Both non-local and local terms in the soft action arise from integrating out
quadratic fluctuations in a bulk theory with a quadratic term in the dilaton,

N N _ oy ' i
Sy = ——4 (/ (].-—_g-\/g (q/)(h’, +2) + (1_(15~) + 2 / (‘lp\ﬁ;@@]\' + .. )

where ¢ and g satisfy boundary conditions

)

ap =l@) 7, dlyp =1

f]@@

( / \>ij |:| < ]r y = \/i['(’i;‘

* [ocal terms, including the Schwarzian, arise from the extrinsic curvature
term + integration of the on-shell bulk action near the boundary. In other
words, from the UV regularization of the non-local term.

h
L]
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Conformal gauge

After mapping to conformal time, the bulk configurations we would like to
integrate over, those with total boundary length g and ¢|,, = 1 are

—

characterized by Diff-S* invariant boundary conditions.
- conformal

\ mapping -
R ) - | D

Thus we are free to fix the gauge of the metric to be conformal to the unit
metric. As we are working on the disk there are no remaining modulli.

For purposes of integrating on-shell action, it is convenient to work on the
Irregular subset R of the Poincare disk, rather than on D with a deformed
metric. On R we may still assume the metric is conformal.

23
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Integrating the on-shell action

\9
/‘J ' o ow= \/yj("”'j

Grelon =7 dlog =1

Letting gwe = 2¢“P | the equations of motion for the dilaton and metric are
¢ B L f’i" L
V”)p =1—-ap, V=20 5 q-’)")_}
- Using the equation of motion for the dilaton in the action,

1 N ~ - 2 — 9
Son-shell - El’}' d wy\/g @
+ JR

- To obtain the on-shell action at (_')(53) , It is sufficient to use lowest order
solution satisfying V2¢ = 2¢ on the Poincare disk.

eigenvalue equation for Casimir of PSL(2, R)

- Using the boundary-condition-satisfying bulk-to-boundary propagator

“d (1 — ww)? N, 9
d(w) = / “r's(ﬂp) ( — = + 0(e“)

2 (1 — we=™)2(1 — we'¥)?

and integrating out bulk coordinates, we obtain over the boundary the exact
non-local term found in SYK. 24
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Results

O((8J)~?) terms in the action of SYK, written for the soft mode
(p) ~ (BJ)"" and resulting from integrating out least irrelevant

[
[l

perturbation.

Ssoft _‘ s / dpy dpz e(pr)e(p2) | ( Y )
N ) 2r 2 Pl e(pr)e(pa) )

27
/ (51 — (D
¥1 — $2 ¥ 1
T2 p12 > (BJ)

non-local, dominant in the IR ¢ = 2sin 5

Si(r), f = i (T) UV regularization of
T | the non-local term |

Dual action in D = 2 dilaton gravity
N[, | ~ 5 ' i
—— (/ d°z\/g (0(R + 2) +|a)?) + 2 / dpy/Gop K + .. )

Sy =
4 . ,
(linear term discussed in Maldacena, Stanford, Yang (2(%16))

Page 24/25

Pirsa: 16120019



Further directions

Can we identify matter fields in the bulk? Quantify the dissipation
due to the matter fields of the soft mode.

Find a consistent Hilbert space from quantizing the Schwarzian
+non-local action.

Can we confirm the existence of strings in SYK?
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