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Abstract: <p>The matrix product state (MPS) ansatz makes possible computationally-efficient representations of weakly entangled many-body
guantum systems with gapped Hamiltonians near their ground states, notably including massive, relativistic quantum fields on the lattice. No Wick
rotation is required to apply the time evolution operator, enabling study of time-dependent Hamiltonians. Using free massive scalar field theory on
the 1+1 Robertson-Walker metric as atoy example, | present early efforts to exploit this fact to model quantum fields in curved spacetime. We use
the ADM formalism to write the appropriate Hamiltonian witnessed by a particular class of normal observers. Possible applications include
simulations of gravitational particle production in the presence of interactions, studies of the slicing-dependence of entanglement production, and
inclusion of the expectation of the stress-energy tensor as a matter source in anumerical relativity simulation.</p>
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Motvaton

QFT in curved spacetime: a quantum field on a nontrivial metric

the gravitational field can excite the quantum field

basis for study of Hawking radiation, RQI, inflationary particle production...
Problems are fundamentally time-dependent and often non-perturbative.

Lattice techniques allow non-perturbative calculations. MPS allows time-
dependence, including e.g. interactions.

3+1 general relativity techniques allow derivation of time-evolution operator.

By exploiting ideas from both fields, we are producing novel simulations of QFT

in curved space.

Goal one: simulate the excitation of quantum field by gmvitalional field.
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3+1 Formulaton of GR

Divide spacetime up into hypersurfaces, each representing a
“moment”.

Describe the 4-geometry in terms of “ADM?” variables available on
each slice.

In “causally well-behaved” spacetimes the Einstein equations
determine the full geometry from any one such slice.

We can use the same variables to construct time-evolution operators
in non-trivial metrics.
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ADM Variables

S(t + dt)

ds? = o®dt® — ;;(dz* + B'dt)(dz’ + B7dt)
an®dt ~ constant space coord.

Idea: (‘hnp spacetime up into spacelike
hypersurfaces (“slices”).

(t)

The slices are ““moments in time” as perceived
by the normal observers.

Distances on slice measured by spatial metric y;
Minkowski Rindler Schwarzschild ! : :
After coordinate time dt:

The normal observers measure time adt. a:

1 1 /X (] ‘:.{\!')

0 0 0 'Uw)’ move wrt spatial coordinates by [w" dt.

1 1 ding ((| "’I”} g .'_.,..'n) B : “shift vector”.

“lapse function”.

['hese are just a coordinate choice.
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Getung the time-evolution operator: general metric

L [ e o 2 .2
5 dit 1z —-9(9"*" 0,900, ¢ — m*d*|

2. The Lagrangian density is ' g
S = / dt / dxL
. JX

= . Al
. Write down the action: S =

the spatial integrand on some slicing:

1 Bl ot o LA iy
L=-ay/-y - — 0P + — 4 " (),-g*)(),-q-b—ﬂt“’c;'ﬁ“’

2 (o I O
3. Compute the canonical s —
} — E%Té \/_ ! j ok 1’3" '), /
momentum: e e i e L
Ao (Y
4. Do the Legendre transform: H = ﬂ'(/) —
2
(v -1 Taa sy 51 Sasr et
= 5 V= { — — Y 0;00;¢ + m2¢? s + 730,
5. Quantize on slices:  [s(x, 1), d(y, )] = [x(x, 1), 7(y, 1)) =0 [d(x, 1), w(y,t)] = id(x — y)
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3+1 Formulaton: Review

Can write the metric in terms of slice-local quantities.
This allows us to get time-evolution operators.

Now we want to use those operators to evolve QFTs.
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Representing the QFT: Matrix Product States

Suppose we can write our Hilbert space as a direct product of smaller
Hilbert spaces. Then we can write our state as a sum of p]‘()duct states.

a !

I_I(Lb e ® Hb |(/,) s Z rz)(fhiz

i1> X |?;2>

We can express states in the space in terms of Schmidt decomposition

(SVD):
= Y
X

To construct a lower-rank approximation to ¢, drop Schmidt coefs.
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Matrix Product States

Su ppose we can write our Hilbert space as a chain of direct pmd ucts of

smaller spaces. Then we can write our state as a sum of product states.
Hd??, o H('], ® Hd ® Hd @ |-¢.’1> = 2 E Ciy...iq
‘:I '-n

Moving from left to right we write down the Schmidt coefs of each

i) D i)

bipartition.
. ; — 0 1 ?’2 : ?:3 1 i
Gl E Fa /\”’ (xﬁ/\ﬁ [;}fy"'Fw
/e
If the state is weakly entangled, this is an efficient representation.
Near-ground states of gapped local Hamiltonians often weakly entangled.

Massive scalar field is a gapped local Hamiltonian.
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Application to Lattice QFT

1 T n - @n . 9.
gl Z ( n o (Pn+1 — Pn) it mn,zr/)i)

2 a a
T

A nearest-neighbour Hamiltonian!

Can therefore write time-evolution operator as series of

two-site gates.

“Time-Evolving Block Decimation” allows us to apply
those gates to the MPS.
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Time Evolving Block Decimation (TEBD)

SLlppow we wish to apply a nearest- nclghbnur operator (t‘ . time-
evolution) U to an MPS...

(‘)}"l AT (i) e (iir) X i
= > - «ﬂ— ~T—<>—T—
= (SVD)
i J I
v) N (iv) .
a0 T AT A XiY 20

‘ D (27)’

For Hamiltonians composed of two-site ops, this furnishes time-evolution.

By truncating the Schmidt coefs at each step we maintain an efficient
representation - unless the state is in fact too entangled.
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Imaginary vs. Real Time Evolution

U = exp(HT) U = exp(—tHt)

Brings MPS towards Evolves MPS in time.

>round state. :
5 : New entanglement is

Errors do not generated, so MPS

compound. approximation

degrades over time.

Errors *do™ compound.

Need to consider ““short L'nough” evolutions to keep error acceptable.

Breakdown is heralded by growth of smallest Schmidt coefs (thus

increase of truncation error)
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tvolution in Minkowski spacetime
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Mass = lattice spacing = 1, 50 Schmidt coefs, physica] dimension 5.
First we evolve in imaginary time to get vacuum state.
Then “evolve” in real time; should get near-constant behaviour.

Want coefs to be scale-separated and for the smallest to be numerically small

(so adding more would have small effect on output).
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Toy problem: RW Metric

Expanding homogeneous universe

ds® = x(t)[dt* —dz?] —— a=+/x(t) B'=0

/ Vi = X(E)7i;

¢ (1 7T.2 X(t)(@n =5 b” : 2 12
g X (1) T gere X(8)(¢n+1 = én) + am?¢?
ax(t) a '

A+B 3.0 ——

Ch()()SL‘ 2.5

x(t) = A + Btanh(Ct) »

1.5

A-B 10| - *:"/

Page 14/21



AW Metric

X (I) W;:: f\/(,)((;’u—{»l - d)n)2
; |
2 ax(t) a

Expectation: slow enough expansion/big enough mass =

i u'}n.‘“’(pi) x(t) = A + Btanh(C?t)

adiabatic evolution; no field excitation (*“particles”).

Interested in adiabatic regime if we wish to ““create particles”.

Physics the lattice can

capture

f

1/m

The wider this region:
-The more excitations we can model (more plwsic:—;)

-The more excitations we *must* model (more compute time)
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Evolution in RW spacetime

0.001 |
1e-04 |
10-06 |

10-06 |
f

Mass = (.1, Lattice spacing = 1, maxchi = 200, d = 6.
First we evolve in imaginary time at a fixed spatial slice to get initial vacuum state.
Then evolve in real time with time-dependent Hamiltonian. The initial vacuum state is not stationary.

Want coefs to be scale-separated and for the smallest to be numerically small (so adding more would
have small effect on output).

Again, need more Schmidt coefs and /or p]\_\'sin'.ﬂ dimension.
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Where are we?

Have successtully developed code capable of
performing RW spacetime evolutions.

Now exploring parameter space to determine where we
&
get well-resolved non-adiabatic behaviour.
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Future Directions

Complete study of RW real scalar field:

What regimes can we efficiently simulate?

Extract spectrum and compare to analytic theory:.
Gauge choices for favourable entanglement production?
Interaction terms?

Unruh effect?

Use stress-energy expectation as NR matter source.
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Conclusion

We are unifying MPS with 3+1 GR techniques to
produce time-dependent, non-perturbative
computations of QFT in curved spacetime.

A code to do this for the RW universe is now complete.

Using it to map out parameter space in terms of
simulation expense and physics.

Much to explore: slice-dependence of entanglement
production, interactions, gravitational back-action...
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