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Abstract: <p>A geometric approach to investigation of quantum entanglement is advocated.<br />
We discuss first the geometry of the (N*2-1)--dimensional convex body<br />

of & nbsp; mixed quantum states acting& nbsp; on an N--dimensional Hilbert space<br />

and study projections of this set into 2- and 3-dimensional spaces.<br />

For composed dimensions, N=K”2, one consideres the subset<br />

of separable states and shows that it has a positive measure.<br />

Analyzing its properties contributes to our understanding of<br />

guantum entanglement and its time evolution.</p>
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Pure states in a finite dimensional Hilbert space Hy

Qubit = quantum bit; N =2, (Ylp) = 1, 1) ~ e™|))

1) = cos 5|1) + €'’ sin 5/0)

Bloch sphere of N = 2 pure states

Space of pure states for an arbitrary N:

a complex projective space C'PN=1 of 2N — 2 real dimensions.
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Unitary evolution

Fubini-Study distance in CPN-!

Drs([). |i) = arccos |(t])]

Unitary evolution

Let U = exp(iHt). Then [¢') = Uly).
Since |(¢]¢)]? = |(4:|UTU|g)|? any unitary evolution is an isometry
(with respect to any standard distance !)

Quantum Chaos: what happends for large N7

How an isometry may lead to a classically chaotic dynamics?
The limits t — ~ and N — ~ do not commute.
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Otton Nikodym & Stefan Banach,

talking at a bench in Planty Garden, Cracow, summer 1916
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Mixed quantum states

Set My, of all mixed states of size N
_\/1)\,! e {,r) : ‘HN —_ ‘HN;IJ - /'.i-'l' 7’ O 'I"-/' = l}

Example: N = 2, One—qubit states: Bloch sphere + its interior,
M> = B3 Cc R®- Bloch ball with all pure states at the boundary

The set My is compact and convex:
P = Z,— a;|t ‘,‘><t. ',-‘ where 3; > 0and } .3, = 1.
It has N“ — 1 real dimensions, My C RV’ -1,

What the set of all N = 3 mixed states looks like?

An 8 dimensional convex set with only 4 dimensional subset of pure
(extremal) states, which belong to its 7 dim boundary
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The set My of quantum mixed states:

What it looks like for (for N > 3)

An apophatic approach
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rotated edges of an equilateral triangle and its convex hull
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Vistula river and Wawel castle in Cracow
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The set My of quantum mixed states for N > 3

A constructive approach:

Analysis of its structure with aid of notions of
operator theory like
Numerical Range

The same tools are useful to investigate the structure of

the subsets of My, namely sets of
a) separable states

and
b) maximally entangled states.
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Operator theory: Numerical Range (Field of Values)

For any operator A acting on Hp one defines its NUMERICAL RANGE

(Wertevorrat) as a subset of the complex plane defined by:

A(A) = {{(x|Alx) : [x) e HY, x|x)=1}. (1)

Hermitian case

For any hermitian operator A = A" with spectrum A1 < Ap < - < Ay its
numerical range forms an interval: the set of all possible expectation
values of the observable A among arbitrary pure states, A(A) = [\, An].
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Numerical range and its properties

Compactness

A(A) is a compact subset of C.

Convexity: Hausdorf-Toeplitz theorem

- A(A) is a convex subset of C.

Example

Numerical range for random matrices of order N = 6
a) normal, b) generic (non-normal)

+
' ] / ~

\
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Normal case: a projection of the classical simplex...

Normal matrix, ([A, A*] = 0), of size N = 2 with spectrum {A;, A\, }

Numerical range A(A) forms the interval [A;, A\;] on the complex plane,

Examples for diagonal matrices A of size two and three

L L pa——

Normal matrices of order N = 3 with spectrum {\;, Az, A3}

Numerical range A(A) forms the triangle A(Ay, A2, A3) on the complex

plane.
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Numerical range for N = 2

Non—-normal matrices of size N = 2

Numerical range A(A) forms an (eliptical) disk on the complex plane:
projection of (empty!) Bloch sphere, S? = CP! on the complex plane.

KZ (IF UJ/CFT PAN ) Geometry of Quantum Entanglement Dec. 1, 2016 21 /52

Pirsa: 16120010 Page 20/53



J /q %

Wawel castle in Cracow
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Ciesielski theorem
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Ciesielski theorem: With probability 1 — ¢ the bench Banach talked to
Nikodym in 1916 was localized in 7-neighbourhood of the red arrow.
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Plate commemorating the discussion between
Stefan Banach and Otton Nikodym (Krakow, summer 1916)

{ { 1 A \
R R e
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Shadows of three dimensional objects...

Light direction
R
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Quantum States and Numerical Range/Shadow

Classical States & normal matrices

Proposition 1.Let Cy denote the set of classical states of size N, which

forms the regular simplex Ay _1 in RN"1. Then the set of similar images

of orthogonal projections of Cn on a 2-plane is equivalent to the set of all

possible numerical ranges A(A) of all normal matrices A of order N
(such that AA* = A*A).

Quantum States & non—normal matrices

Proposition 2.Let M denotes the set of quantum states size N
embedded in RN -1 with respect to Euclidean geometry induced by
Hilbert-Schmidt distance. Then the set of similar images of orthogonal
projections Mpy on a 2-plane is equivalent to the set of all possible
numerical ranges N(A) of all matrices A of order N.
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Numerical range of matrices of size N = 3

belong to one of four different classes specified e.g. by the number s of
flat segments of the boundary, s =0.1.2. 3.
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Numerical range for matrices of order N = 3.
Classification by Keeler, Rodman, Spitkovsky 1997
Numerical range A of a 3 x 3 matrix A forms:
a) A(A) is a compact set of an 'ovular’ shape
(which contains three eigenvalues!) — the generic case, s = 0

b) a compact set with one flat part (e.g. convex hull of a cardioid), s

c) a compact set with two flat parts
(e.g. convex hull of an ellipse and a point outside it), s
d) triangle of eigenvalues, A(A) = A(A;. A2, \3)

for any normal matrix A one has s = 3

These four cases describe the shape of possible projections of the 8D set
M3 of mixed quantum states of size N = 3 onto a 2-plane.
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Joint Numerical Range & Quantum States

Joint Numerical Range (JNR) of a set of m operators

Am) — (J\{Al{:} Jf A; /) f . Am ".\) IR

> N? —1 JNR is (in general) not a convex set!
Set m = 2, decompose A = Ay + iA, into its Hermitian and
anti-Hermitian part. Then A(A) = A(Ay. Aa)

Proposition 3. Take a set {A; Apnz_1} of matrices of size N forming

an orthonormal basis in the space of Hermitian, traceless matrices.

Then

o AN(A1. A Anz 1) is affine isomorphic to the set Qy = CPN-1 of
pure quantum states of size N (embedded in R N -1,

e [he convex hull of A(A;. A An2_1) Is isomorphic to the set
My of mixed quantum states of size N.

] /\(Al. Aj
R™,

KZ (IF UJ/CFT PAN )
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Joint Numerical Range: some examples

N = 2 : one qubit states

Let o1.05. 03 denote three trace-less Pauli matrices of size N = 2.
Then

o N(o1.05,03) = Q> = CP! forms the Bloch sphere 52 of all
one—qubit pure states.

@ The convex hull of A(o.07.03) forms the Bloch ball,
Mo = B3 C R? of all one—qubit mixed states.

N = 3 : one qutrit states

Let A\;....Ag denote eight traceless Gell-Man matrices of size 3:
the generators of SU(3).
Then

e A(M1....\g) = Q3 = CP? forms the set of all one—qutrit pure states.

@ The convex hull of A(A;..... \g) forms the set of N = 3 mixed
states — a convex body M3 embedded in R®
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Joint Numerical Range: 3D examples for m =3

Take any triple of hermitian operators {Ay. Ay, A3} of size N = 3.

Then joint numerical range A(A;. A;. A3) C R? gives
a projection of the 8D set M3 of mixed states of a qutrit into 3D.

Examples:

Different classes of 3D JNR: their further projections into 2D belong to
one of four classes of Keeler et al. -
the possible shapes of the standard numerical range for N = 3.
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Konrad Szymanski producing a 3D joint numerical range
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Recall the shadows on the wall of the cave of Plato:

we do not understand all details of the 8D set M3 of quantum
states of size three, but at least we can study its 2D and 3D projections

&L

'Y YoF

How to classify possible shapes of JNR
of three Hermitian matrices A;. A,. A3 of size N = 37
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To classify the 3D numerical ranges for each body we count:

a) the number s of flat segments in the boundary
b) the number e of flat faces (ellipses) in the boundary

..W

Ced
—ve
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Where is physics ?

What is physics 7
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Where is physics ?

What is physics ?

Kick a ball !

It will stop at some point...

\-'_
i AL 2
‘i

Buy an iceream and wait a
while..
It will melt ! nothing...
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Composed systems & entangled states

bi-partite systems: ' H = Ha ® Hg
e separable pure states: |/) = |04) @ |0pg)

e entangled pure states: all states not of the above product form.

Two—qubit system: N =2x2=4

Entanglement measures

For any pure state |¢)) € Ha @ Hpg define its partial trace o = Trg|v) (¢].
Definition: Entanglement entropy of |¢') is equal to von Neuman entropy
of the partial trace

Maximally entangled Bell state |-") .= L_(\OO}- + |ll}')

~Treolne
The more mixed partial trace, the more entangled initial pure state...
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Entanglement of two real qubits

Entanglement entropy at the thetrahedron of N = 4 real pure states
01>
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Book completed in 2005 at Perimeter Institute !

Geometry of
Quantum States

An Introduction 1o
QUANTUM ENTANGLEMENT

Ingemar Bengtsson and
Karol #yczkowski

(1)
o
(=]
g
o
—
Qo
(=
-4}
=
g
E
wv
&
o
v

Il edition (with new chapters on MUBs & multipartite entanglement),
Cambridge University Press, 2017
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Entanglement of mixed quantum states

Mixed states

e separable mixed states: ., = EJ pj-;;f - ;;}5 (%%)

e entangled mixed states: all states not of the above product form.

How to find,

whether a given density matrix p can be written in the form (**)

and is separable ?

The separability problem is solved only for the simplest cases of 2 x 2
and 2 x 3 problems...
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Two—qubit mixed states

The maximal ball inscribed into M(#) of radius ry = 1/1/12 centred at
p« = 1/4 is separable !

N=4 (0001)

\ (0010)

(1000)
(0100)

thetrahedron of eigenvalues
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Two—qubit mixed states

Degree of entanglement: a distance to the closest separable state

(entanglement of formation)
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Positive partial transpose criterion: Two—qubit mixed states

< pis separable

The set of separable states of two—qubit system arises as an intersection of
M@ and its mirror image with respect to partial transposition TA(_L’IW)_

Ap

b)
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Stefan Banach sitting at his bench close to the Wawel Castle

Sculpture: Stefan Dousa Fot. Andrze] Kobos
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Quantum maps

Quantum operation: linear, completely positive trace preserving map

Enviromental form

pr=0(p) = Tre[U (p @ wg) U]

where wg is an initial state of the environment while UUT = 1.

Kraus form

p=0(p) =i AipAl |

where the Kraus operators satisfy . A}'A, =1
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A model discrete quantum dynamics

a) unitary dynamics (rotation), p/ = UpU'

b) decoherence (contraction), p” = Sf‘ Aip A

Two qubit model - N =2x2=4

a) free evolution: U = exp(itH) where H = o, @ o,
(non-local unitary dynamics !)

variant bl) bistochastic channel: ®(1/N) = 1/N,
One-qubit Pauli channel: k=4, Ai=v1-¢e¢l1®1

Ar=+/e/[31R®0x, A3=+/¢/31®0y,, As=+/¢/31R0,.

variant b2) non bistochastic channel:

One qubit amplitude damping channel, (decaying channel), k = 2.

where A; =1 Biand Ao =1 ® B>

with By = (é qp)and B = (8 \.1U_p)
V
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Dynamics of entanglement

Entanglement of formation E as a function of time t,

for some initially pure states of a two—qubit system.

1.0
E/In2
0.8

0.6

revivals of entanglement
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Dynamics of entanglement

Entanglement of formation E as a function of time t,

for some initially pure states of a two—qubit system.
E/In2 .
0.06 - a)

0.04
0.02

x ® %
0 0 B L L L L L L L]

40 -
ty “sudden death of entanglement

K.Z. P.Horodecki. M .Horodecki, R.Horodecki, PRA 2001
the name coined by Yau and Eberly,
who independently reported this effect in 2003.
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Dynamics of Entanglement and separable shadow

Trajectories of quantum dynamics on the complex plane

Z(I’) f'(f) /\t‘(f)

(.2

7 0.0

Entanglement sudden death

02t

i

Exemplary . —0.4 (.0
dynamics R

a) sketch of the problem; b) data for 2 x 2 system
with initial separable pure state [¢/(0))
and suitably chosen (non—Hermitian !) operator A of size N = 4
visualize possible behaviour of quantum entanglement...
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Quantum computing and coping with noise

Alternative 1 (optimistic)
Classical oy g:r:n:lutrirri‘
T niversal .
- . £ quantum N (efpectgd)
/ computing .

(real)

-
Factoring

Quantum
error
correction

systems

Anyons

Noisy quantum

Gil Kalai (2016)
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Quantum computing and coping with

Alternative 2 (pessimistic)

Classical : Quantum
computing %, Ccomputing
(real) . (fantasy)

R

AN ul - o
T >
g ity 5 P

Low degree polynomials

Gil Kalai (2016)
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Concluding Remarks

The set My of mixed quantum states of size N forms a scene for
which the screenplays of quantum information processing are
written.
It is useful for any author to learn about the structure & geometry
of the scene.
As the set My has N? — 1 dimensions for N > 3 it is possible to
investigate it by studying the numerical range:

its projections onto a 2— or 3— planes.

Geometric approach is usefull to study quantum entanglement
and its dynamics. It allows one to explain the effects of entanglement
revival and entanglement sudden death.

More work is still required to understand the consequences of noise
and decoherence for known schemes of quantum computation.
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Bench commemorating the discussion between
Stefan Banach and Otton Nikodym (Krakow, summer 1916)

Sculpture: Stefan Dousa Fot. Andrzej Kobos

opened in Planty Garden, Cracow, Oct. 14, 2016
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