Title: GEOMETRY OF QUANTUM ENTANGLEMENT

Date: Dec 01, 2016 03:30 PM

URL: http://pirsa.org/16120010

Abstract: A geometric approach to investigation of quantum entanglement is advocated.

We discuss first the geometry of the (N^2-1)--dimensional convex body

of mixed quantum states acting on an N--dimensional Hilbert space

of this set into 2- and 3-dimensional spaces.

For composed dimensions, N=K^2, one consideres the subset

of separable states and shows that it has a positive measure.

Analyzing its properties contributes to our understanding of

of y>
quantum entanglement and its time evolution.

Pirsa: 16120010 Page 1/53

Pure states in a finite dimensional Hilbert space \mathcal{H}_N

Qubit = quantum bit; N=2, $\langle\psi|\psi
angle=1$, $|\psi
angle\sim e^{ilpha}|\psi
angle$

$$|\psi\rangle = \cos\frac{\vartheta}{2}|1\rangle + e^{i\phi}\sin\frac{\vartheta}{2}|0\rangle$$

Bloch sphere of N = 2 pure states

Space of pure states for an arbitrary N:

a complex projective space $\mathbb{C}P^{N-1}$ of 2N-2 real dimensions.

KŽ (IF UJ/CFT PAN)

Geometry of Quantum Entanglement

Dec. 1, 2016

2 / 52

Unitary evolution

Fubini-Study distance in $\mathbb{C}P^{N-1}$

$$D_{FS}(|\psi\rangle, |\varphi\rangle) := \arccos |\langle \psi | \varphi \rangle|$$

Unitary evolution

Let $U=\exp(iHt)$. Then $|\psi'\rangle=U|\psi\rangle$. Since $|\langle\psi|\varphi\rangle|^2=|\langle\psi|U^\dagger U|\varphi\rangle|^2$ any unitary evolution is an **isometry** (with respect to any standard distance !)

Quantum Chaos: what happends for large N?

How an **isometry** may lead to a classically chaotic dynamics? The limits $t \to \infty$ and $N \to \infty$ do not commute.

(D) (A) (E) (E) E 900

KŻ (IF UJ/CFT PAN)

Geometry of Quantum Entanglement

Dec. 1, 2016

3 / 52

Pirsa: 16120010

Otton Nikodym & Stefan Banach,

talking at a bench in Planty Garden, Cracow, summer 1916

KŽ (IF UJ/CFT PAN)

Geometry of Quantum Entanglement

Dec. 1, 2016

4 / 52

Pirsa: 16120010 Page 4/53

Mixed quantum states

Set \mathcal{M}_N of all mixed states of size N

$$\mathcal{M}_{N} := \{ \rho : \mathcal{H}_{N} \to \mathcal{H}_{N}; \rho = \rho^{\dagger}, \rho \geq 0, \operatorname{Tr} \rho = 1 \}$$

Example: N=2, **One–qubit** states: Bloch sphere + its interior, $\mathcal{M}_2=\mathcal{B}_3\subset\mathbb{R}^3$ - Bloch ball with all pure states at the boundary

The set \mathcal{M}_N is compact and convex:

 $\rho = \sum_{i} a_{i} |\psi_{i}\rangle \langle \psi_{i}| \text{ where } a_{i} \geq 0 \text{ and } \sum_{i} a_{i} = 1.$ It has $N^{2} - 1$ real dimensions, $\mathcal{M}_{N} \subset \mathbb{R}^{N^{2} - 1}$.

What the set of all N = 3 mixed states looks like?

An 8 dimensional convex set with only 4 dimensional subset of pure (extremal) states, which belong to its 7 dim boundary

KŻ (IF UJ/CFT PAN)

Geometry of Quantum Entanglement

Dec. 1, 2016

5 / 52

Pirsa: 16120010

The set \mathcal{M}_N of quantum mixed states: What it looks like for (for $N \ge 3$) ? An apophatic approach: KŻ (IF UJ/CFT PAN) Geometry of Quantum Entanglement

Pirsa: 16120010 Page 6/53

Pirsa: 16120010 Page 7/53

Pirsa: 16120010 Page 8/53

Pirsa: 16120010 Page 9/53

Pirsa: 16120010 Page 10/53

Pirsa: 16120010 Page 11/53

Pirsa: 16120010 Page 12/53

Pirsa: 16120010 Page 13/53

Geometry of Quantum Entanglement

Dec. 1, 2016

15 / 52

Pirsa: 16120010 Page 14/53

KŻ (IF UJ/CFT PAN)

The set \mathcal{M}_N of quantum mixed states for $N \geq 3$

A constructive approach:

Analysis of its structure with aid of notions of operator theory like

Numerical Range

The same tools are useful to investigate the structure of the subsets of \mathcal{M}_N , namely sets of

- a) **separable** states
 - and
- b) maximally entangled states.

KŻ (IF UJ/CFT PAN)

Geometry of Quantum Entanglement

Dec. 1, 2016

16 / 52

Pirsa: 16120010 Page 15/53

Operator theory: Numerical Range (Field of Values)

Definition

For any operator A acting on \mathcal{H}_N one defines its **NUMERICAL RANGE** (Wertevorrat) as a subset of the complex plane defined by:

$$\Lambda(A) = \{ \langle x | A | x \rangle : | x \rangle \in \mathcal{H}^N, \ \langle x | x \rangle = 1 \}. \tag{1}$$

Hermitian case

For any hermitian operator $A = A^{\dagger}$ with spectrum $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_N$ its **numerical range** forms an interval: the set of all possible expectation values of the observable A among arbitrary pure states, $\Lambda(A) = [\lambda_1, \lambda_N]$.

$$N=4 \xrightarrow{\lambda_1 \quad \lambda_2 \quad \lambda_3 \quad \lambda_4} \longrightarrow$$

KŻ (IF UJ/CFT PAN)

Geometry of Quantum Entanglement

Dec. 1, 2016

17 / 52

Pirsa: 16120010 Page 16/53

Numerical range and its properties

Compactness

 $\Lambda(A)$ is a **compact** subset of \mathbb{C} .

Convexity: Hausdorf-Toeplitz theorem

- $\Lambda(A)$ is a **convex** subset of \mathbb{C} .

Example

Numerical range for random matrices of order ${\it N}=6$

a) normal,

b) generic (non-normal)

KŽ (IF UJ/CFT PAN)

Geometry of Quantum Entanglement

Dec. 1, 2016

18 / 52

Pirsa: 16120010 Page 17/53

Pirsa: 16120010

Normal case: a projection of the classical simplex...

Normal matrix, ([A, A^*] = 0), of size N=2 with spectrum $\{\lambda_1,\lambda_2\}$

Numerical range $\Lambda(A)$ forms the **interval** $[\lambda_1, \lambda_2]$ on the complex plane,

Examples for diagonal matrices A of size two and three

Normal matrices of order N=3 with spectrum $\{\lambda_1,\lambda_2,\lambda_3\}$

Numerical range $\Lambda(A)$ forms the **triangle** $\Delta(\lambda_1, \lambda_2, \lambda_3)$ on the complex plane.

KŻ (IF UJ/CFT PAN)

Geometry of Quantum Entanglement

Dec. 1, 2016

19 / 52

Pirsa: 16120010 Page 19/53

Numerical range for N=2

Non–normal matrices of size N=2

Numerical range $\Lambda(A)$ forms an (eliptical) disk on the complex plane: **projection** of (empty!) **Bloch sphere**, $S^2 = \mathbb{C}P^1$ on the complex plane.

KŻ (IF UJ/CFT PAN)

Geometry of Quantum Entanglement

Dec. 1, 2016

21 / 52

Pirsa: 16120010 Page 20/53

Wawel castle in Cracow

KŽ (IF UJ/CFT PAN) Geometry of Quantum Entanglement Dec. 1, 2016 22 / 5

Pirsa: 16120010 Page 21/53

Ciesielski theorem

4 D > 4 M > 4 E > 4 E > E = 20 Q C

KŽ (IF UJ/CFT PAN)

Geometry of Quantum Entanglement

Dec. 1, 2016

23 / 52

Pirsa: 16120010 Page 22/53

Ciesielski theorem: With probability $1-\epsilon$ the bench Banach talked to Nikodym in 1916 was localized in η -neighbourhood of the red arrow.

KŽ (IF UJ/CFT PAN) Geometry of Quantum Entanglement Dec. 1, 2016 24 / 52

Pirsa: 16120010 Page 23/53

Plate commemorating the discussion between Stefan Banach and Otton Nikodym (Kraków, summer 1916)

LETNIM WIECZOREM 1916 ROKU DWAJ MŁODZI KRAKOWIANIE,

STEFAN BANACH I OTTON NIKODYM,

NA ŁAWCE NA PLANTACH ROZMAWIALI O MATEMATYCE.

DO DYSKUSJE WŁĄCZYŁ SIĘ PRZECHODZĄCY OBOK MATEMATYK,

DR HUGO STEINHAUS.

TAK ZOSTAŁ ODKRYTY NIEZWYKŁY MATEMATYCZNY TALENT STIFANA BANACHA,

JEDNEGO Z NAJWYBITNIEJSZYCH POLSKICH UCZONYCH.

OTTON NIKODYM

IN CONVERSATION ABOUT MATHEMATICS.

THIS BENCH MEMORISES THEIR FAMOUS MEETING WITH HUGO STEINHAUS IN THE

PLANTY GARDEN IN SUMMER 1916.

KŻ (IF UJ/CFT PAN)

Geometry of Quantum Entanglement

Dec. 1, 2016

25 / 52

Pirsa: 16120010 Page 24/53

Pirsa: 16120010 Page 25/53

Quantum States and Numerical Range/Shadow

Classical States & normal matrices

Proposition 1.Let C_N denote the set of classical states of size N, which forms the regular simplex Δ_{N-1} in \mathbb{R}^{N-1} . Then the set of similar images of orthogonal projections of C_N on a 2-plane is equivalent to the set of all possible numerical ranges $\Lambda(A)$ of all normal matrices A of order N (such that $AA^* = A^*A$).

Quantum States & non-normal matrices

Proposition 2.Let \mathcal{M}_N denotes the set of quantum states size N embedded in \mathbb{R}^{N^2-1} with respect to Euclidean geometry induced by Hilbert-Schmidt distance. Then the set of similar images of orthogonal projections \mathcal{M}_N on a 2-plane is equivalent to the set of all possible numerical ranges $\Lambda(A)$ of all matrices A of order N.

KŽ (IF UJ/CFT PAN) Geometry of Quantum Entanglement Dec. 1, 2016 27 / 52

Pirsa: 16120010 Page 26/53

Numerical range of matrices of size N=3

belong to one of **four** different classes specified e.g. by the number s of **flat segments** of the boundary, s=0,1,2,3

KŻ (IF UJ/CFT PAN)

Geometry of Quantum Entanglement

Dec. 1, 2016

28 / 52

Pirsa: 16120010 Page 27/53

Numerical range for matrices of order N = 3.

Classification by **Keeler, Rodman, Spitkovsky 1997** Numerical range Λ of a 3×3 matrix A forms:

- a) $\Lambda(A)$ is a compact set of an 'ovular' shape (which contains three eigenvalues!) the **generic** case, s=0
- **b)** a compact set with **one** flat part (e.g. convex hull of a **cardioid**), s = 1
- c) a compact set with **two** flat parts (e.g. convex hull of an ellipse and a point outside it), s = 2
- d) triangle of eigenvalues, $\Lambda(A) = \Delta(\lambda_1, \lambda_2, \lambda_3)$ for any **normal matrix** A one has s = 3

These four cases describe the shape of possible projections of the 8D set \mathcal{M}_3 of mixed quantum states of size N=3 onto a 2-plane.

(D) (B) (E) (E) E 900

KŻ (IF UJ/CFT PAN)

Geometry of Quantum Entanglement

Dec. 1, 2016

29 / 52

Pirsa: 16120010

Joint Numerical Range & Quantum States

Joint Numerical Range (JNR) of a set of m operators

 $\Lambda(A_1, A_2, \ldots, A_m) = (\langle \psi | A_1 | \psi \rangle, \langle \psi | A_2 | \psi \rangle, \ldots, \langle \psi | A_m | \psi \rangle) \subset \mathbb{R}^m.$

For $m \ge N^2 - 1$ JNR is (in general) **not** a **convex set**!

Set m=2, decompose $A=A_H+iA_A$ into its **Hermitian** and **anti–Hermitian** part. Then $\Lambda(A)=\Lambda(A_H,A_A)$

Proposition 3. Take a set $\{A_1, \ldots, A_{N^2-1}\}$ of matrices of size N forming an **orthonormal basis** in the space of Hermitian, traceless matrices. Then

- $\Lambda(A_1, A_2, ..., A_{N^2-1})$ is affine isomorphic to the set $\Omega_N = \mathbb{C}P^{N-1}$ of pure quantum states of size N (embedded in \mathbb{R}^{N^2-1}),
- The convex hull of $\Lambda(A_1, A_2, \dots, A_{N^2-1})$ is isomorphic to the set \mathcal{M}_N of mixed quantum states of size N.
- $\Lambda(A_1,A_2,\ldots,A_m)$ with $m\leq N^2-1$ forms a projection of Ω_N into \mathbb{R}^m .

KŻ (IF UJ/CFT PAN)

Geometry of Quantum Entanglement

Dec. 1, 2016

30 / 52

Pirsa: 16120010 Page 29/53

Joint Numerical Range: some examples

N=2: one qubit states

Let $\sigma_1, \sigma_2, \sigma_3$ denote three trace-less **Pauli matrices** of size N=2. Then

- $\Lambda(\sigma_1, \sigma_2, \sigma_3) = \Omega_2 = \mathbb{C}P^1$ forms the **Bloch sphere** S^2 of all one–qubit pure states.
- The **convex hull** of $\Lambda(\sigma_1, \sigma_2, \sigma_3)$ forms the **Bloch ball**, $\mathcal{M}_2 = B_3 \subset \mathbb{R}^3$ of all one–qubit mixed states.

N=3: one qutrit states

Let $\lambda_1, \ldots \lambda_8$ denote eight traceless **Gell–Man matrices** of size 3: the generators of SU(3).

Then

- $\Lambda(\lambda_1, \dots \lambda_8) = \Omega_3 = \mathbb{C}P^2$ forms the set of all one–qutrit pure states.
- The **convex hull** of $\Lambda(\lambda_1, \ldots, \lambda_8)$ forms the set of N=3 mixed states a convex body \mathcal{M}_3 embedded in \mathbb{R}^8

KŻ (IF UJ/CFT PAN)

Geometry of Quantum Entanglement

Dec. 1, 2016

31 / 52

Pirsa: 16120010 Page 30/53

Joint Numerical Range: 3D examples for m = 3

N=3: one qutrit

Take any triple of hermitian operators $\{A_1, A_2, A_3\}$ of size N = 3.

Then joint numerical range $\Lambda(A_1, A_2, A_3) \subset \mathbb{R}^3$ gives a projection of the 8D set \mathcal{M}_3 of mixed states of a qutrit into **3D**.

Examples:

Different classes of 3D JNR: their further projections into 2D belong to one of **four** classes of **Keeler** *et al.* –

the possible shapes of the standard numerical range for N=3.

KŻ (IF UJ/CFT PAN)

Geometry of Quantum Entanglement

Dec. 1, 2016

32 / 52

Pirsa: 16120010 Page 31/53

Konrad Szymański producing a 3D joint numerical range

KŽ (IF UJ/CFT PAN)

Geometry of Quantum Entanglement

Dec. 1, 2016

33 / 52

Pirsa: 16120010 Page 32/53

Recall the shadows on the wall of the cave of Plato:

we do not understand all details of the 8D set \mathcal{M}_3 of quantum states of size three, but at least we can study its 2D and 3D **projections**

How to classify possible shapes of JNR of three Hermitian matrices A_1 , A_2 , A_3 of size N=3?

(Ż (IF UJ/CFT PAN)

Geometry of Quantum Entanglement

Dec. 1, 2016

34 / 52

Pirsa: 16120010 Page 33/53

Pirsa: 16120010 Page 34/53

Pirsa: 16120010 Page 35/53

Pirsa: 16120010 Page 36/53

Composed systems & entangled states

bi-partite systems: $\mathcal{H} = \mathcal{H}_{A} \otimes \mathcal{H}_{B}$

- separable pure states: $|\psi\rangle = |\phi_A\rangle \otimes |\phi_B\rangle$
- entangled pure states: all states not of the above product form.

Two–qubit system: $N = 2 \times 2 = 4$

Maximally entangled **Bell state** $|\varphi^{+}\rangle:=\frac{1}{\sqrt{2}}\Big(|00\rangle+|11\rangle\Big)$

Entanglement measures

For any pure state $|\psi\rangle\in\mathcal{H}_A\otimes\mathcal{H}_B$ define its partial trace $\sigma=\mathrm{Tr}_B|\psi\rangle\langle\psi|$. **Definition:** Entanglement entropy of $|\psi\rangle$ is equal to von Neuman entropy of the partial trace

$$E(|\psi\rangle) := -\text{Tr } \sigma \ln \sigma$$

The more mixed partial trace, the more entangled initial pure state...

KŻ (IF UJ/CFT PAN)

Geometry of Quantum Entanglement

Dec. 1, 2016

37 / 52

Pirsa: 16120010

Pirsa: 16120010 Page 38/53

II edition (with new chapters on MUBs & multipartite entanglement),

Cambridge University Press, 2017

KŽ (IF UJ/CFT PAN)

Geometry of Quantum Entanglement

Dec. 1, 2016

39 / 52

Pirsa: 16120010 Page 39/53

Entanglement of mixed quantum states

Mixed states

- separable mixed states: $\rho_{\rm sep} = \sum_j p_j \rho_j^A \otimes \rho_j^B$ (**)
- entangled mixed states: all states not of the above product form.

How to find, whether a given density matrix ρ can be written in the form (**) and is **separable**?

The **separability problem** is solved only for the simplest cases of 2×2 and 2×3 problems...

(D) (B) (E) (E) E 900

KŻ (IF UJ/CFT PAN)

Geometry of Quantum Entanglement

Dec. 1, 2016

40 / 52

Pirsa: 16120010

Two-qubit mixed states

The maximal ball inscribed into $\mathcal{M}^{(4)}$ of radius $r_4=1/\sqrt{12}$ centred at $\rho_*=\mathbb{1}/4$ is separable !

K.Ż, P.Horodecki, M.Lewenstein, A.Sanpera, 1998

KŻ (IF UJ/CFT PAN)

Geometry of Quantum Entanglement

Dec. 1, 2016

41 / 52

Pirsa: 16120010 Page 41/53

Pirsa: 16120010 Page 42/53

Positive partial transpose criterion: Two-qubit mixed states

$$(\mathbb{I} \otimes T)\rho = \rho^{T_2} \geq 0 \Leftrightarrow \rho \text{ is separable}$$

The set of separable states of two–qubit system arises as an intersection of $\mathcal{M}^{(4)}$ and its mirror image with respect to partial transposition $\mathcal{T}_{\mathcal{A}}\big(\mathcal{M}^{(4)}\big)$.

Pirsa: 16120010 Page 43/53

Stefan Banach sitting at his bench close to the Wawel Castle

Sculpture: Stefan Dousa Fot. Andrzej Kobos

KŻ (IF UJ/CFT PAN)

Geometry of Quantum Entanglement

Dec. 1, 2016

44 / 52

Pirsa: 16120010 Page 44/53

Quantum maps

Quantum operation: linear, completely positive trace preserving map

Enviromental form

$$\rho' = \Phi(\rho) = \operatorname{Tr}_{E}[U(\rho \otimes \omega_{E}) U^{\dagger}].$$

where $\omega_{\it E}$ is an initial state of the environment while $UU^\dagger=\mathbb{1}$.

Kraus form

$$\rho' = \Phi(\rho) = \sum_i A_i \rho A_i^{\dagger} ,$$

where the Kraus operators satisfy $\sum_i A_i^\dagger A_i = \mathbb{1}^-$.

KŽ (IF UJ/CFT PAN)

Geometry of Quantum Entanglement

Dec. 1, 2016

45 / 52

A model discrete quantum dynamics

- a) unitary dynamics (rotation), $\rho' = U\rho U^{\dagger}$
- b) decoherence (contraction), $\rho'' = \sum_{i}^{k} A_{i} \rho' A_{i}^{\dagger}$

Two qubit model - $N = 2 \times 2 = 4$

a) free evolution: $U = \exp(itH)$ where $H = \sigma_x \otimes \sigma_y$ (non-local unitary dynamics !)

variant b1) bistochastic channel: $\Phi(1/N) = 1/N$,

One-qubit **Pauli channel**: k = 4, $A_1 = \sqrt{1 - \epsilon} \ \mathbb{1} \otimes \mathbb{1}$,

$$A_2 = \sqrt{\epsilon/3} \, \mathbb{1} \otimes \sigma_x$$
, $A_3 = \sqrt{\epsilon/3} \, \mathbb{1} \otimes \sigma_y$, $A_4 = \sqrt{\epsilon/3} \, \mathbb{1} \otimes \sigma_z$.

variant b2) non bistochastic channel:

One qubit amplitude damping channel, (decaying channel), k = 2,

where $A_1 = \mathbb{1} \otimes B_1$ and $A_2 = \mathbb{1} \otimes B_2$

with
$$B_1=\left(\begin{array}{cc} 1 & 0 \\ 0 & \sqrt{p} \end{array}\right)$$
 and $B_2=\left(\begin{array}{cc} 0 & \sqrt{1-p} \\ 0 & 0 \end{array}\right)$

KŻ (IF UJ/CFT PAN)

Geometry of Quantum Entanglement

Dec. 1, 2016

46 / 52

Pirsa: 16120010 Page 47/53

Dynamics of entanglement

0.0

Entanglement of formation E as a function of time t_n for some initially pure states of a two–qubit system. E/ln2 0.06 0.04 0.02

K.Ż, P.Horodecki, M.Horodecki, R.Horodecki, PRA 2001 the name coined by Yau and Eberly, who independently reported this effect in 2003.

20

KŽ (IF UJ/CFT PAN) Geometry of Quantum Entanglement Dec. 1, 2016 48 / 52

 $t_n^{\ 40}$ sudden death of entanglement

Pirsa: 16120010 Page 48/53

Dynamics of Entanglement and separable shadow

Trajectories of quantum dynamics on the complex plane

$$z(t) = \langle \psi(t) | A | \psi(t) \rangle$$

a) sketch of the problem; b) data for 2×2 system with initial separable pure state $|\psi(0)\rangle$ and suitably chosen (non–Hermitian !) operator A of size N=4 visualize possible behaviour of quantum entanglement...

4 D > 4 B > 4 E > 4 E > 2 C

KŻ (IF UJ/CFT PAN)

Geometry of Quantum Entanglement

Dec. 1, 2010

49 / 52

Pirsa: 16120010

Pirsa: 16120010 Page 50/53

Pirsa: 16120010 Page 51/53

Concluding Remarks

- The set \mathcal{M}_N of **mixed quantum states** of size N forms a scene for which the screenplays of **quantum information** processing are written.
 - It is useful for any author to learn about the **structure & geometry** of the scene.
- As the set \mathcal{M}_N has N^2-1 dimensions for $N\geq 3$ it is possible to investigate it by studying the **numerical range**: its projections onto a 2- or 3- planes.
- **Geometric approach** is usefull to study **quantum entanglement** and its dynamics. It allows one to explain the effects of entanglement revival and entanglement sudden death.
- More work is still required to understand the consequences of noise and decoherence for known schemes of **quantum computation**.

KŻ (IF UJ/CFT PAN)

Geometry of Quantum Entanglement

Dec. 1, 2016

52 / 52

Pirsa: 16120010 Page 52/53

Bench commemorating the discussion between Stefan Banach and Otton Nikodym (Kraków, summer 1916)

Sculpture: Stefan Dousa

Fot. Andrzej Kobos

opened in Planty Garden, Cracow, Oct. 14, 2016

KŽ (IF UJ/CFT PAN)

Geometry of Quantum Entanglement

Dec. 1, 2016

53 / 52

Pirsa: 16120010 Page 53/53