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Abstract: <p>3d N=4 theories on the sphere have interesting supersymmetric sectors described by 1d QFTs and defined as the cohomology of a
certain supercharge. One can define such a 1d sector for the Higgs branch or for the Coulomb branch. We study the Higgs branch case, meaning that
the 1d QFT captures exact correlation functions of the Higgs branch operators of the 3d theory. The OPE of the 1d theory gives a star-product on the
Higgs branch which encodes the data of these correlation functions. When the 3d theory is superconformal, the 1d theory is topological and
coincides with the known construction in flat space, where the topological 1d theory lives in the cohomology of Q+S. Our construction thus
generalizes it away from the conforma point. We then focus on theories constructed from vector and hypermultiplets. Using supersymmetric
localization, we explicitly describe their 1d sector as the gauged topological quantum mechanics, or equivalently a gaussian theory coupled to a
matrix model. This provides a very simple technique to compute the Higgs branch correlators.</p>
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Goal

Background: chiral algebras in the cohomology of 4d A/ = 2 and 6d
N = (2,0) SCFTs (Beem, Lemos, Liendo, Peelaers, Rastelli, van Rees);
topological 1d sector in 3d N/ = 4 SCFTs (Chester, Lee, Pufu, Yacoby).
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Goal

Background: chiral algebras in the cohomology of 4d A/ = 2 and 6d
N = (2,0) SCFTs (Beem, Lemos, Liendo, Peelaers, Rastelli, van Rees);

topological 1d sector in 3d N’ = 4 SCFTs (Chester, Lee, Pufu, Yacoby).
Goal:

m Gain better understanding of the 1d topological sector in 3d N' = 4

theories.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Goal

Background: chiral algebras in the cohomology of 4d A/ = 2 and 6d
N = (2,0) SCFTs (Beem, Lemos, Liendo, Peelaers, Rastelli, van Rees);

topological 1d sector in 3d N/ = 4 SCFTs (Chester, Lee, Pufu, Yacoby).
Goal:

m Gain better understanding of the 1d topological sector in 3d N' = 4

theories.

m Develop a tool to effectively compute its structure constants.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Goal

Background: chiral algebras in the cohomology of 4d A/ = 2 and 6d
N = (2,0) SCFTs (Beem, Lemos, Liendo, Peelaers, Rastelli, van Rees);

topological 1d sector in 3d N/ = 4 SCFTs (Chester, Lee, Pufu, Yacoby).
Goal:

m Gain better understanding of the 1d topological sector in 3d N' = 4

theories.

m Develop a tool to effectively compute its structure constants.
m Generalize away from the CFT point.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Goal

Background: chiral algebras in the cohomology of 4d A/ = 2 and 6d
N = (2,0) SCFTs (Beem, Lemos, Liendo, Peelaers, Rastelli, van Rees);

topological 1d sector in 3d N/ = 4 SCFTs (Chester, Lee, Pufu, Yacoby).
Goal:

m Gain better understanding of the 1d topological sector in 3d N = 4

theories.
m Develop a tool to effectively compute its structure constants.

m Generalize away from the CFT point.
Method:

m Put theory on S3.

m Apply supersymmetric localization.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Outline

m Cohomological reduction in SCFTs.

m Cohomological reduction in N = 4 theories on S3.

Mykola Dedushenko = Caltech = December 6, 2016, Perimeter Institute

Page 8/111



Topological quantum mechanics and Higgs branches of 3d N=4 theories

Outline

Cohomological reduction in SCFTs.
Cohomological reduction in A = 4 theories on S3.
Lagrangian N = 4 theories on S>.

Localization from 3d to 1d.

The gauged topological quantum mechanics.

Mykola Dedushenko = Caltech = December 6, 2016, Perimeter Institute

Pirsa: 16120005 Page 9/111



Topological quantum mechanics and Higgs branches of 3d N=4 theories

Outline

Cohomological reduction in SCFTs.

Cohomological reduction in A = 4 theories on S3.

Lagrangian N = 4 theories on S>.
Localization from 3d to 1d.
The gauged topological quantum mechanics.

Applications.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Cohomological reduction in SCFT

m 3d NV = 4 superconformal symmetry is described by osp(4|4)
(0sp(4|2) in other notations).

m It has sp(4) (alternatively sp(2)) = so(5) conformal subalgebra,
50(4) = su(2)y @ su(2)c R-symmetry and Q and S supersymmetries.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Cohomological reduction in SCFT

m 3d NV = 4 superconformal symmetry is described by osp(4|4)
(0sp(4|2) in other notations).

m It has sp(4) (alternatively sp(2)) = so(5) conformal subalgebra,
50(4) = su(2)y @ su(2)c R-symmetry and Q and S supersymmetries.
m Consider linear combinations (r has dimension of length):

1 1
H 2 H 1
Q = Q112 ¥ 55 g Q; = Q2li + 55 e (1)
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Cohomological reduction in SCFT

m 3d NV = 4 superconformal symmetry is described by osp(4|4)
(0sp(4|2) in other notations).

m It has sp(4) (alternatively sp(2)) = so(5) conformal subalgebra,
50(4) = su(2)y @ su(2)c R-symmetry and Q and S supersymmetries.

m Consider linear combinations (r has dimension of length):

1 1
H 2 H 1
Q = Q112 i 55 oo Q; = Q2li e 55 Pl (1)

m They are nilpotent, i.e., (Q}')? = (Q4')? = 0, and satisfy
(Qff, Qf'} = (M2 - Ry).
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Cohomological reduction in SCFT

m 3d NV = 4 superconformal symmetry is described by osp(4|4)
(0sp(4|2) in other notations).

m It has sp(4) (alternatively sp(2)) = so(5) conformal subalgebra,
50(4) = su(2)y @ su(2)c R-symmetry and Q and S supersymmetries.
m Consider linear combinations (r has dimension of length):

1 1
H 2 H 1
Q = Q112 - 55 2 Q; = Q211 o 55 ohl - (1)

m They are nilpotent, i.e., (Q}')? = (Q4)? = 0, and satisfy
(Qff Qf} = (M2 - Ry).
m Also, {QF, 0"} = {QF, 001} = 8(D - R},
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Cohomological reduction in SCFT

4 — 4
(o, 0f} = —(M.. - Ri) = =2,

leferr ool s R (2)

m = Cohomology of Qf and Qé” are isomorphic and annihilated by Z,
in particular by (the geometric part of) M.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Cohomological reduction in SCFT

4 — 4
(o, 0f} = ~(M. - Ri) = — 2,

oo oo s s (bl ) (2)

m = Cohomology of Qf and Qé” are isomorphic and annihilated by Z,
in particular by (the geometric part of) My,.

m = Local operators can only be inserted along the line (0,0, x3).

m At the origin, the cohomology is represented by the operators with
D = R;!, the Higgs branch chiral ring operators.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Cohomological reduction in SCFT

4 — 4
(o, 0} = —(M. - Ri) = — 2,

o oo o0 s (bl R ) (2)

m = Cohomology of Qf and Qé” are isomorphic and annihilated by Z,
in particular by (the geometric part of) M.

m = Local operators can only be inserted along the line (0,0, x3).

m At the origin, the cohomology is represented by the operators with
D = R;!, the Higgs branch chiral ring operators.

m One more fact: —2{ON. @i} = +{Q}, Qp3} = Ps + L R! = Ps.

W
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Cohomological reduction in SCFT

m So, local operators in the cohomology of QfH are given by the Higgs
branch chiral ring operators twisted-translated along the line (0,0, x3).
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Cohomological reduction in SCFT

m So, local operators in the cohomology of QfH are given by the Higgs
branch chiral ring operators twisted-translated along the line (0,0, x3).

m Their correlation functions are topological, i.e., they do not depend
on the insertion points, only on their ordering.

m We get non-commutative 1d operator algebra, which is topological. It
is described by a star-product on the Higgs branch.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Cohomological reduction in SCFT

m So, local operators in the cohomology of QfH are given by the Higgs
branch chiral ring operators twisted-translated along the line (0,0, x3).

m Their correlation functions are topological, i.e., they do not depend
on the insertion points, only on their ordering.

m We get non-commutative 1d operator algebra, which is topological. It
is described by a star-product on the Higgs branch.

m Compute it!
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Cohomological reduction in SCFT

m So, local operators in the cohomology of QfH are given by the Higgs
branch chiral ring operators twisted-translated along the line (0,0, x3).

Their correlation functions are topological, i.e., they do not depend
on the insertion points, only on their ordering.

m We get non-commutative 1d operator algebra, which is topological. It
is described by a star-product on the Higgs branch.

Compute it!

Example of twisted translation: Q(x3) = qau?, u = (1, x3). At the
origin, Q(0) = q; — the chiral ring operator with the appropriate
choice of Cartan in su(2)y.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Operators in the cohomology

m General Higgs branch operators are constructed as gauge invariant
polynomials in the hypermultiplet scalars g, and g°.

m [hose which are polynomials in gq; and g; are chiral if we chose
o3 € su(2)y as a Cartan element.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Operators in the cohomology

General Higgs branch operators are constructed as gauge invariant
polynomials in the hypermultiplet scalars g, and g°.

Those which are polynomials in g; and g; are chiral if we chose
o3 € su(2)y as a Cartan element.

Twisted-translated operators are therefore given by gauge invariant
polynomials in @ = g1 + gox3 and Q = g1 + gox3.

There is a mirror construction of supercharges Q,-C, whose
cohomology is related to Coulomb branch.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Stereographic projection

SCFT can be put on S* by the stereographic projection.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Stereographic projection

SCFT can be put on S* by the stereographic projection.
Let us put our theory on S* of radius r (the same r as before).

m Killing vectors and conformal Killing vectors are mixed in the process:

Q.- @
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Stereographic projection

m There is a subalgebra su(2|1), @ su(2|1), C osp(4|4), parametrized by
the choices of Cartan elements h € su(2)y and h € su(2)c.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Stereographic projection

m There is a subalgebra su(2|1), @ su(2|1), C osp(4|4), parametrized by
the choices of Cartan elements h € su(2)y and h € su(2)c.

m It has u(1), ® u(l), R-symmetry generators, su(2), @ su(2),
geometric transformtions generated by rotatiohs M, 3 and conformal
transformations P, — 4—i;K;,.. and certain supersymmetries.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Stereographic projection

m There is a subalgebra su(2|1), @ su(2|1), C osp(4|4), parametrized by
the choices of Cartan elements h € su(2)y and h € su(2)c.

m It has u(1), ® u(l), R-symmetry generators, su(2), @ su(2),
geometric transformtions generated by rotations M, 3 and conformal
transformations P, — 4—i;K,,.. and certain supersymmetries.

m Our QF and QF (as well as QF and Qf) belong to this

su(2[1)e ® su(2]1),.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Stereographic projection

There is a subalgebra su(2|1), & su(2|1), C osp(4|4), parametrized by
the choices of Cartan elements h € su(2)y and h € su(2)c.

It has u(1), @ u(l), R-symmetry generators, su(2), @ su(2),
geometric transformtions generated by rotations M, 3 and conformal
transformations P, — 4—i;K,,.. and certain supersymmetries.

Our Q! and QF (as well as Q¢ and QF) belong to this

su(2[1)e ® su(2]1),.
After stereographic projection, su(2), @& su(2), become isometries of
S3. No conformal symmetry required!
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Stereographic projection

m There is a subalgebra su(2|1), @ su(2|1), C osp(4|4), parametrized by
the choices of Cartan elements h € su(2)y and h € su(2)c.

It has u(1), @ u(l), R-symmetry generators, su(2), @ su(2),
geometric transformtions generated by rotations M, 3 and conformal
transformations P, — 4—i;K,,.. and certain supersymmetries.

Our Q! and QF (as well as Q¢ and QF) belong to this

su(2[1)e ® su(2]1),.
After stereographic projection, su(2), @& su(2), become isometries of
S3. No conformal symmetry required!

From the S3 point of view, we study general N' = 4 theories with the
algebra su(2[1), @ su(2|1),. (This gives super-Poincare in the infinite
radius limit.)
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Stereographic projection

m T ;
thie:;eh:ic:i?ac‘ﬂi sei;(rileln){ff: (2[1), C 0sp(4}4), parametrizediby

su(2)y and h € su(2)c.

m It has u(1), & u(1), R-symmetry generators, su(2), & su(2),
geometric transformtions generated by rotations M, and conformal
transformations P, — 7= K, and certain supersymmetries.

= Our Qf and Q? (as well as QIC and QF) belong to this
su(2|1), & su(2[1),.

m After stereographic projection, su
52 No conformal symmetry required!

= From the S* point of view, we study general N' =
algebra su(2]1): & su(2|1),. (This gives super-Poinca
radius limit.)

s Local operato
the points of t

(2); & su(2), become isometries of

4 theories with the
re in the infinite

~ in the cohomology of QH or Qf can be inserted at

he great circle only.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

General setup

It is useful to consider linear combinations Q’;’ = Q{" R ,‘HQQ’ and

QS = 9f + 805,
Then (Q’}’)2 = %Z, and we study cohomology of Q’}’ in the equivariant
sense.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

General setup

It is useful to consider linear combinations Q’;’ = Q{" e ,‘HQQ’ and
Qe =08 T E0C
Then (Q’}’)2 = 47"2, and we study cohomology of Q’}’ in the equivariant
sense.
m Consider general ' = 4 theory on S* with the supersymmetry
su(2|1), @ su(2|1),.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

General setup

It is useful to consider linear combinations Q’;’ = Q{" 4 ,‘HQQ’ and

QS = Qf + 805,

Then (Q’}’)2 — %Z, and we study cohomology of Q’}’ in the equivariant
sense.

m Consider general ' = 4 theory on S* with the supersymmetry
su(2|1), @ su(2|1),.
m Pick supercharge QH which squares to the U(1) isometry and the

R-symmetry.
m (Just su(2|1), or su(2|1), is not enough.)
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

General setup

It is useful to consider linear combinations Q’;’ = Q{" e ,‘HQQ’ and
Q§ = Of + BOS.
Then (Q’}’)2 — 47"2, and we study cohomology of Q’}’ in the equivariant
sense.
m Consider general ' = 4 theory on S* with the supersymmetry
su(2|1), @ su(2|1),.
Pick supercharge QH which squares to the U(1) isometry and the

R-symmetry.
m (Just su(2|1), or su(2|1), is not enough.)
m The fixed point set of this isometry is the great circle of S3.

m One can insert local operators in the cohomology of Q"f at the points
of this circle.

Their correlation functions are topological and describe quantization
of the Higgs branch.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

General setup

It is useful to consider linear combinations Q’;’ = Q{" oS ,‘HQQ’ and
QS = Of + 55,
Then (Q"f)2 — 47"2, and we study cohomology of Q’}’ in the equivariant
sense.
m Consider general ' = 4 theory on S* with the supersymmetry
su(2|1), @ su(2|1),.
Pick supercharge QH which squares to the U(1) isometry and the

R-symmetry.
m (Just su(2|1), or su(2|1), is not enough.)
m The fixed point set of this isometry is the great circle of S3.

m One can insert local operators in the cohomology of Q"f at the points
of this circle.

Their correlation functions are topological and describe quantization
of the Higgs branch.

(There is a Coulomb branch analog for everything)
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Twisted rotations

A useful coordinate system on S* views it as a U(1) fibration over the disk
D? with the fibers shrinking at the boundary of D?. Radial coordinate on
the disk is 6 € [0, /2] and angular coordinate is ¢ € [0,27). Coordinate
along the fiber is 7 € [0,27). The metric is:

ds? = r?(d6? + sin® 0d? + cos® dT2). (3)
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Twisted rotations

A useful coordinate system on S* views it as a U(1) fibration over the disk
D? with the fibers shrinking at the boundary of D?. Radial coordinate on
the disk is 6 € [0, /2] and angular coordinate is ¢ € [0,27). Coordinate
along the fiber is 7 € [0,27). The metric is:

ds?® = r?(d6? + sin® 0dp? + cos® dT2). (3)

: —i b
& (Q'}’)2 generates 7-rotations and R-symmetry R¢ = habR i

Mykola Dedushenko = Caltech = December 6, 2016, Perimeter Institute

Page 38/111



Pirsa: 16120005

Topological quantum mechanics and Higgs branches of 3d N=4 theories

Twisted rotations

A useful coordinate system on S* views it as a U(1) fibration over the disk
D? with the fibers shrinking at the boundary of D?. Radial coordinate on
the disk is 6 € [0, 7/2] and angular coordinate is ¢ € [0,27). Coordinate
along the fiber is 7 € [0,27). The metric is:

ds?® = r?(d6? + sin® 0dp? + cos® dT2). (3)

m (QY)? generates T-rotations and R-symmetry R¢ = Fébﬁbé.
m The fixed point set of (Q'}’)2 is dD?. It is parametrized by .

—~

- Qf"—exact twisted ¢ rotations: P, = P, + Ry, where Ry = R

b
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Twisted rotations

A useful coordinate system on S* views it as a U(1) fibration over the disk
D? with the fibers shrinking at the boundary of D?. Radial coordinate on
the disk is 6 € [0, 7/2] and angular coordinate is ¢ € [0,27). Coordinate
along the fiber is 7 € [0,27). The metric is:

ds® = r?(d6? + sin® 8d? + cos? 6dT2). (3)

m (QY)? generates T-rotations and R-symmetry R¢ = Fébﬁbé.
= The fixed point set of (QH)? is 9D?. It is parametrized by ¢.

o~

I Qf"—exact twisted ¢ rotations: P, = P, + Ry, where Ry = hER

m Both Rc and Ry are in su(2|1); & su(2|1),, namely R, = Ry + Rc¢
and R, = Ry — Rc generate u(1), @ u(1),.

w
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Twisted rotations

A useful coordinate system on S* views it as a U(1) fibration over the disk
D? with the fibers shrinking at the boundary of D?. Radial coordinate on
the disk is 6 € [0, w/2] and angular coordinate is ¢ € [0,27). Coordinate
along the fiber is 7 € [0,27). The metric is:

ds® = r?(d6? + sin® 8d? + cos? 6dT2). (3)

(Qﬁ’)2 generates T-rotations and R-symmetry R¢ = Eééﬁbé_
The fixed point set of (Qﬁl)2 is OD?. It is parametrized by ¢.

~

Qf-exact twisted ¢ rotations: P, = P, + Ry, where Ry = h?,R",.
Both Rc and Ry are in su(2|1), @ su(2|1),, namely Ry = Ry + Rc
and R, = Ry — Rc generate u(1), @ u(1),.

Stereographic map matches twisted-translated operators on R! ¢ R*
to twisted-rotated operators on S' C S3.

m Q(p) =qgicos s + g2sing, Q(p)=gicos% + gzsin 5.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

A remark

—~

B Q(p)=qicos5 + gasing, Qp)=gicos% + Gasin 5.
m They are anti-periodic on S*.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

N = 4 theories on S3

Now consider Lagrangians on S invariant under su(2|1), & su(2[1),.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

N = 4 theories on S3

Now consider Lagrangians on S invariant under su(2|1), & su(2[1),.

m Vector multiplets in the adjoint of G and hypermultiplets in a
representation R.

m Action for hypers differs from the flat space action by curvature
corrections and is invariant under the full osp(4|4):

S

ShYPer[H- V] o / dBX\/E [D“aaD;an = ’.".:’T’ém"f"é + —4°9,

4r2
1

5 aad)ébd)ébqa

T ’.aaDabqb —
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

N = 4 theories on S3

m Action for vectors preserves only su(2|1), ¢ su(2|1),, and matrices h
and h enter it explicitly:

Sym[V] = g% d’x\/E it (F“” b pibe o i
YM -
1

— DD — iNB[A2, 0] - Z[cb""b. O¢ ] [dP5, &9 ]
1

e s
—Ehabh‘“‘ Xashyj + ?(habDba)(habd)bé)
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

N = 4 theories on S3

m Action for vectors preserves only su(2|1), ¢ su(2|1),, and matrices h
and h enter it explicitly:

Sym[V] = g% d’x\ /& Tir (Ff”’ 2= BRI O BT
YM -
1

— DD — iXP[A2, 0] - Z[¢""5~ O ][00, d9¢]
i

i ] By
—Ehabh‘“‘ Xashyj + ?(habDba)(habd)bé)

m Fl term: Su[V] = i [ d®x/g (ha?Dy? — 1 ,05;).
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

N = 4 theories on S3

m Action for vectors preserves only su(2|1), ¢ su(2|1),, and matrices h
and h enter it explicitly:

Sym[V] = % d*x\ /g lir (F“” S B O R

EYM -
i

— DD — iXP[A2, 0] - Z[daéb. bC ] [dP5, &9 ¢]
i

e ol e
—Zhabh‘“‘ Xasdyj + ?(habDba)(habd)bé)

m Fl term: SuV] = i [ ®x/g (ha?Dy? — 1 ,05;).
m Can add masses by adding a background vector multiplet gauging the
Cartan of flavor symmetry.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

N = 4 theories on S3

m Action for vectors preserves only su(2|1), ¢ su(2|1),, and matrices h
and h enter it explicitly:

Sym[V] = % d*x/g Tr (F“” F., — D*¢9D, 0 g +iXDAa;

EYM -
i

— DD — iNP[A2, 0] - Z[cb""b. & ][00, 0]
1

e e
—Zhabh‘“‘ Mashyj + ?(habDba)(habd)bé)

m Fl term: Su[V] = i [ d®x/g (ha?Dy? — 1 ,05;).
m Can add masses by adding a background vector multiplet gauging the
Cartan of flavor symmetry.

m = Central extension of su(2|1), ® su(2|1),.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

A remark

Any su(2|1) @ su(2) subalgebra of su(2|1), @ su(2|1), describes N' = 2
SUSY on S3. From the point of view of any such subalgebra, Sym[V]
describes an V' = 2 vector plus an adjoint A" = 2 chiral of R-charge 1. The

action Sym[V] is then the standard one appearing in the N' = 2 literature.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

A remark

Any su(2|1) @ su(2) subalgebra of su(2|1), @ su(2|1), describes N' = 2
SUSY on S3. From the point of view of any such subalgebra, Sym[V]
describes an V' = 2 vector plus an adjoint A" = 2 chiral of R-charge 1. The

action Sym[V] is then the standard one appearing in the N' = 2 literature.
The way we write it makes connection with the SCFT variables more
transparent.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Localization

m We wish to apply supersymmetric localization technique for the
supercharge Q"f

Mykola Dedushenko = Caltech = December 6, 2016, Perimeter Institute

Pirsa: 16120005 Page 52/111



Topological quantum mechanics and Higgs branches of 3d N=4 theories

Localization

m We wish to apply supersymmetric localization technique for the
supercharge Q"f

m That is, add to the action a term t{Qg,\U}, which has non-negative
definite bosonic part.

m This does not affect the path integral with Qﬁ—invariant insertions.

Taking the limit, t — oo, the path integral localizes to the zero locus
of {Q'}’\U} — the Localization Locus.

Mykola Dedushenko = Caltech = December 6, 2016, Perimeter Institute

Pirsa: 16120005 Page 53/111



Topological quantum mechanics and Higgs branches of 3d N=4 theories

Localization

m We wish to apply supersymmetric localization technique for the
supercharge Q"f

m That is, add to the action a term t{Qg,\U}, which has non-negative
definite bosonic part.

m This does not affect the path integral with Qﬁ—invariant insertions.
Taking the limit, t — o0, the path integral localizes to the zero locus

of {Q'}’\U} — the Localization Locus.

m A very useful fact: Sym[V] is Q-exact! (and Q§-exact too)
m Use Sym[V] to localize vector multiplets first.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Localization

m We wish to apply supersymmetric localization technique for the
supercharge Q"f

That is, add to the action a term t{Qg,\U}, which has non-negative
definite bosonic part.

This does not affect the path integral with Qﬁ—invariant insertions.
Taking the limit, t — oo, the path integral localizes to the zero locus

of {Q'}’\U} — the Localization Locus.

m A very useful fact: Sym[V] is Q},’}’—exact! (and Qﬁg—exact too)

m Use Sym[V] to localize vector multiplets first.

m Sym[V] is also exact with respect to N' = 2 supercharges in any
su(2|1) factor, so Sym[V] was used in the literature to localize N’ = 2
theories.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Localization

m We wish to apply supersymmetric localization technique for the
supercharge Q"f

That is, add to the action a term t{Qg,\U}, which has non-negative
definite bosonic part.

This does not affect the path integral with Qﬁ—invariant insertions.

Taking the limit, t — oo, the path integral localizes to the zero locus
of {Q'}’\U} — the Localization Locus.

m A very useful fact: Sym[V] is Q-exact! (and Q§-exact too)
m Use Sym[V] to localize vector multiplets first.

m Sym[V] is also exact with respect to N' = 2 supercharges in any
su(2|1) factor, so Sym[V] was used in the literature to localize NV = 2
theories.

No need to do vector multiplets localization — lift the answer from
Kapustin, Willett, Yaakov (KWY).
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Localization

After vector multiplet localization (which includes gauge fixing), the vector
multiplet fields become restricted to their localization locus.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Localization

After vector multiplet localization (which includes gauge fixing), the vector

multiplet fields become restricted to their localization locus.
It is very simple:

o

a . q
®is=—, Din =D = %5 everything else vanishes,
r r

where o is a constant matrix in the Cartan of the gauge group.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Localization

After vector multiplet localization (which includes gauge fixing), the vector

multiplet fields become restricted to their localization locus.
It is very simple:

o o . :
d;s = = D11 = Dy = L everything else vanishes,

where o is a constant matrix in the Cartan of the gauge group.
m One-loop determinant for vectors: det’

adj [2sinh o] (KWY).
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Localization

After vector multiplet localization (which includes gauge fixing), the vector

multiplet fields become restricted to their localization locus.
It is very simple:

o o . .
d;s = g Bl — B — L everything else vanishes,
where o is a constant matrix in the Cartan of the gauge group.

m One-loop determinant for vectors: det;y[2sinh mo] (KWY).

m We are left with the hypers, which are not localized vyet, but are
coupled to the localized vectors.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Localization

After vector multiplet localization (which includes gauge fixing), the vector

multiplet fields become restricted to their localization locus.
It is very simple:

o o : :
d;s = a2 D11 = Dy = L everything else vanishes,
where o is a constant matrix in the Cartan of the gauge group.

m One-loop determinant for vectors: det’adj[2 sinh o] (KWY).

m We are left with the hypers, which are not localized vyet, but are
coupled to the localized vectors.

m So we have:

J Cartan

d(T det .,’:Idj [2 Sinh(ﬂ'ﬂ')] / DHe_Sllw)f—‘r[lH*vlm (‘T)]( i ) :

W (6)
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Localization

After vector multiplet localization (which includes gauge fixing), the vector

multiplet fields become restricted to their localization locus.
It is very simple:

o o : :
$;s = . D11 = Dy = L everything else vanishes,
where o is a constant matrix in the Cartan of the gauge group.

m One-loop determinant for vectors: det’adj[2 sinh o] (KWY).

m We are left with the hypers, which are not localized vyet, but are
coupled to the localized vectors.

m So we have:

J Cartan

d(T det .,’:Idj [2 Sinh(ﬂ'ﬂ')] / DHe_S|W|,(.,r['H,V|(,((ﬂ')](_ e ) !

(6)
m Important: Spyper[H, Vioc ()] is Gaussian in H.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Localization of hypers

m Can do better! Reduce the 3d Gaussian theory of hypers (coupled to
the matrix o) to the 1d Gaussian theory (also coupled to o).

Mykola Dedushenko = Caltech = December 6, 2016, Perimeter Institute

Pirsa: 16120005 Page 63/111



Topological quantum mechanics and Higgs branches of 3d N=4 theories

Localization of hypers

m Can do better! Reduce the 3d Gaussian theory of hypers (coupled to
the matrix o) to the 1d Gaussian theory (also coupled to o).

m Let me start from the answer. The 1d theory coupled to matrix model

Is:
1

W . dndet;dj [2Sinh(7T(T)] / DQD@EiS{T[Q'Q]. (7)
. artan 5

where

SO0 @] = i / dp (Q0,Q + QoQ). (8)

—r
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Localization of hypers

m Can do better! Reduce the 3d Gaussian theory of hypers (coupled to
the matrix o) to the 1d Gaussian theory (also coupled to o).

m Let me start from the answer. The 1d theory coupled to matrix model

Is:
1

|W| J Cartan

do det 3y; [2sinh(70)] / DQDQe519:Ql, (7)

where
e

G0 @] it / de (Q0,Q + @0 Q) (8)

—

m The simplest proof: check that it gives the same partition function
and correlators of QF-closed operators as the 3d Gaussian theory on
the previous slide. (Warning: integration cycle!)
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Localization of hypers

More conceptually, we have to perform localization of hypers in the
background of o. Key steps:
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Localization of hypers

More conceptually, we have to perform localization of hypers in the
background of o. Key steps:

m Solve BPS equations given by 6y = 01 = (d1))* = (6¢0)* = 0.

m = fields are 7-independent = they descend to fields on the disk D?
satisfying certain PDEs.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Localization of hypers

More conceptually, we have to perform localization of hypers in the
background of o. Key steps:

m Solve BPS equations given by 6¢ = o) = (01))* = (6¢0)* = 0.
m = fields are 7-independent = they descend to fields on the disk D?
satisfying certain PDEs.

m Solving them shows that bosonic part of the localization locus (LL) is
parametrized by anti-periodic Q(y). The field Q(¢) on LL is related
to Q(¢) through a non-trivial reality condition.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Localization of hypers

More conceptually, we have to perform localization of hypers in the
background of o. Key steps:

m Solve BPS equations given by 6¢ = o) = (d1))* = (6¢0)* = 0.
m = fields are 7-independent = they descend to fields on the disk D?
satisfying certain PDEs.

Solving them shows that bosonic part of the localization locus (LL) is
parametrized by anti-periodic Q(y). The field Q(¢) on LL is related
to Q(¢) through a non-trivial reality condition.

= DQDQ goes over the non-trivial middle-dimensional integration
cycle in the space of complex fields Q. Q.

Classical actiop: 3d action — action on D? is total derivtive — 1d
action S,[Q, Q] on OD?.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Localization of hypers

m Construct the localizing term which enforces
ot = 0y = (0y)* = (0v)* = 0 and has no flat directions for fermions.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Localization of hypers

m Construct the localizing term which enforces
ot = 0y = (dy)* = (0v)* = 0 and has no flat directions for fermions.

m Compute the 1-loop determinant (in our case: prove that it is 1).

m Construction of good localizing term is technical, because a lot of

expressions degenerate at D? introducing certain analytic difficulties.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Localization of hypers

Construct the localizing term which enforces
ot = 0y = (0y)* = (0v)* = 0 and has no flat directions for fermions.

Compute the 1-loop determinant (in our case: prove that it is 1).

Construction of good localizing term is technical, because a lot of
expressions degenerate at dD? introducing certain analytic difficulties.

Differential operators that are usually transversally elliptic in other
localization computations, do not have such a property in our case.

So we actually have to study spectra directly.

The upshot is: there are no flat directions, the determinant equals 1.
(Shortcut: compare partition functions)
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Localization of hypers

Construct the localizing term which enforces
ot = 0y = (0y)* = (0v)* = 0 and has no flat directions for fermions.

Compute the 1-loop determinant (in our case: prove that it is 1).

Construction of good localizing term is technical, because a lot of
expressions degenerate at dD? introducing certain analytic difficulties.

Differential operators that are usually transversally elliptic in other
localization computations, do not have such a property in our case.

So we actually have to study spectra directly.

The upshot is: there are no flat directions, the determinant equals 1.
(Shortcut: compare partition functions)
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Localization of hypers

m Fourier expansions:

Q) = Z e , Z e (9)

nEZ+} nEZ+3

W

m The integration cycle is given by: ¢, = ef“"’(”)cj, where phase is
chosen in such a way that the path integral converges.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Localization of hypers

m Fourier expansions:

Q(yp) = Z el , Z e (9)

nEZ+} nEZ+3

m The integration cycle is given by: ¢, = ef“"’(”)cj, where phase is
chosen in such a way that the path integral converges.

m Localization gives particular value of this phase,

icep(o) 1 ,”* %(ﬁ)_ﬁ”'“ 1 (@) b h fi . b
e = 7 ,,,} %(‘T)JV’.I,,__ r‘l;(”')' ut the contour or integration can be

deformed to take a simpler form:

cn = isgn(n)cy
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Another remark

A cycle of integration can be found using Morse theory, as explained by

Witten.
The cycle found here is very similar to his cycle, with the only difference

that our fields are anti-periodic on the circle.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Gauged topological quantum mechanics

m Our 1d theory can be reinterpreted as a 1d gauge theory.

m Namely, the factor det’ ; [2sinh(7o)] can be interpreted as the
Faddeev-Popov determinant appearing in gauge fixing of the following

action:

iy

S=—4rr [ dp@D,Q, D,=3,+A,.

i
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Gauged topological quantum mechanics

m Our 1d theory can be reinterpreted as a 1d gauge theory.

m Namely, the factor det’ ; [2sinh(7o)] can be interpreted as the

Faddeev-Popov determinant appearing in gauge fixing of the following
action:

v

S=—4nr [ dpQD,Q, Dy=08,+ A,

—

m This is somewhat non-trivial and requires further studies.

m [he reason is that this gauge theory is analytically continued, which
is reflected in the absence of j in front of A, in D,.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Gauged topological quantum mechanics

Such a picture makes certain aspects more transparent.
m The theory is topological (no metric).
m = correlators of gauge-invariant operators are topological.

m 1d gauge field A, acts as a Lagrange multiplier imposing the D-term
constraint QR(T)Q =0, T € g on the Higgs branch.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Gauged topological quantum mechanics

Such a picture makes certain aspects more transparent.
m The theory is topological (no metric).
m = correlators of gauge-invariant operators are topological.

m 1d gauge field A, acts as a Lagrange multiplier imposing the D-term
constraint QR(T)Q =0, T € g on the Higgs branch.

m In particular, operators of the form OQR(T)Q are trivial, i.e., given
by linear combinations of lower dimension operators, as expected.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Masses and Fl parameters

Masses and Fl parameters deform 3d theory aways from the CFT point,
and they are reflected in the 1d theory.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Masses and Fl parameters

Masses and Fl parameters deform 3d theory aways from the CFT point,
and they are reflected in the 1d theory.

m Turning on mass matrix m in the Cartan of the flavor symmetry
corresponds to replacing o — o + rm in the gauge-fixed 1d action

5-[Q, Q).
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Masses and Fl parameters

Masses and Fl parameters deform 3d theory aways from the CFT point,
and they are reflected in the 1d theory.

m Turning on mass matrix m in the Cartan of the flavor symmetry
corresponds to replacing o — o + rm in the gauge-fixed 1d action

5+[Q, Q).
m In the 1d gauge theory this is D, —+ D, + rm.

m F.I. parameters correspond to 47r [7_dypitreo, where
treo = ), (a0, goes over abelian factors in G.

m In the 1d gauge theory this is 47ri | tre A, the 1d analog of
analytically continued Chern-Simons.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Masses and F.l. terms

m Correlation functions of twisted Higgs branch operators are still
topological in the presence of F.I. terms.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Masses and F.l. terms

m Correlation functions of twisted Higgs branch operators are still
topological in the presence of F.I. terms.

m In the presence of masses, operators with non-zero flavor charges have
non-topological correlation functions.

m Their position-dependence is dictated by flavor charges.

m As a 3d teory flows from the UV to the IR CFT, the 1d theory
interpolates between two topological limits.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Applications

We found a very simple 1d Gaussian theory which gives exact answers in
the 3d N = 4 theory.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Applications

We found a very simple 1d Gaussian theory which gives exact answers in
the 3d N = 4 theory.

m It computes n-point functions of twisted Higgs branch operators.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Applications

We found a very simple 1d Gaussian theory which gives exact answers in
the 3d N = 4 theory.

m It computes n-point functions of twisted Higgs branch operators.

m For SCFTs, it encodes 2- and 3-point functions of arbitrary Higgs
branch operators. (Simply using conformal invariance and
R-symmetry)

Gives star-product on the Higgs branch encoding the 1d operator
algebra.

F.l. and mass terms induce non-trivial deformations of the
star-product.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Example: SQED with N flavors

m Fields of the 1d theory are Q' and Q; with charges +1 and —1.
m The path integral (with ¢ = —4xr):

/'oo do / D@/DQI exp [—( / do (@;(');Q’ Tt ”QIQ’)]

m (Q/Q")(y) vanishes under the correlators. Twisted Higgs branch
operators are constructed as gauge-invariant words in Q; and Q@
modulo this relation.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Example: SQED with N flavors

m Fields of the 1d theory are Q' and Q; with charges +1 and —1.
m The path integral (with ¢ = —4xr):

/'oo do / D@;DQ/ exp [—( / do (@’U@Q’ ES UQIQI)]

(Q1Q")() vanishes under the correlators. Twisted Higgs branch
operators are constructed as gauge-invariant words in Q; and Q@
modulo this relation.

The result is an algebra generated by the traceless bilinears

. e
Ti' = QQ" - 567 Qe Q¥
obeying ;7 7, = 0, which should be understood as relation in the
chiral ring, which means that whatever definition we take for 7,7 7,X,
this operator becomes redundant.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

SQED with N flavors

m The other linearly independent operators are

) 2] J)
I Ig...r,,Jlj*"‘J" = J((,IJ‘ g o j,p’)) — traces.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

SQED with N flavors

m The other linearly independent operators are

) o) J)
I 13...1,)J1J*"‘J" — J((,{‘ e j,p’)) — traces.

m Introduce polarization vectors (y!,¥,) obeying y -y = 0. It is
convenient to introduce

Sl — e e s

P’
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

SQED with N flavors

m A computation shows:

T s ~+/2 Y2, }’2)>

2 - dl

Y1)J
(ﬂﬂ NN+1 (71')/2)(}/1'72))
22
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

SQED with N flavors

m A computation shows:

(T (e1, Y1, Y1) T (02, ¥2,¥2))

m Another computation shows:

(T (01,11, 71)T D02, 2, 72)T D3, 3, 73))
N

- EEUE (71 - y3)(V3 - y2) (V2 - y1) — (V1 y2) (V2 - v3)(¥3 - »1)]

m Comparison with the literature (Joung, Mkrtchyan) identifies this
with the higher-spin algebra hs, (sl(/N)) with A = 0.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

SQED with N flavors

m A computation shows:

(T (e1, Y1, Y1) T (02, ¥2,¥2))

m Another computation shows:

(T (01,11, 71)T V02,2, 72)T D3, 3, 73))
N

- EEUE (71 - y3)(V3 - y2) (V2 - y1) — (V1 y2) (V2 - v3) (V3 - »1)]

m Comparison with the literature (Joung, Mkrtchyan) identifies this
with the higher-spin algebra hs, (sl(/N)) with A = 0.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Turning on Fl parameter

As a further illustration, consider SQED with N flavors in the presence of
non-zero (.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Turning on Fl parameter

m Star product:

ic
N+ 2

% gy Logg
— m ()I (’K — N(’, (’K

: : 2 :
Ti? * Tt = Tt + (A;’JIL = 0pdic = 01Tk + (»m))

N o o
. —() m —(5, jK — 32N + 1) ((3,"(5‘,2 — NA;}A’L()
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Turning on Fl parameter

m Star product:

T~ — T =+ e Ok Jit + 8r Tk’ —

¢? dey  Logg

2 .
507kt + AMJ))

N i ko
= —() m —(5, jK — 22(N + 1) ((3,"(5‘,2 — NA;}A’L()

m Note that in the ¢ — oo limit, this reduces to the commutative
product on the deformed Higgs branch chlral ring. The deformed
Higgs branch is described by Q;Q’
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Turning on Fl parameter

m Star product:

TP % Txt =

20

m Note that in the ¢ — oo limit, this reduces to the commutative
product on the deformed Higgs branch chiral ring. The deformed
Higgs branch is described by Q/Q' = i¢.

m All these relations identify the algebra as hs, (s[(/N)) with
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Further examples

More application can be found in the paper.

m N-node quiver with gauge group U(1)N/U(1) and N hypers with
charges (1,-1,0,0,...), (0,1,-1,0,...), and so on. This is a mirror
dual of the previous example.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Further examples

More application can be found in the paper.

m N-node quiver with gauge group U(1)N/U(1) and N hypers with
charges (. —1.0.0,. ) (0. 1. —1.0. .. and se en. Mhisis a mirror
dual of the previous example.

m Higgs branch is a Kleinian singularity XY = ZN, and we can explicitly

compute the star product on this space.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Further examples

More application can be found in the paper.

m N-node quiver with gauge group U(1)N/U(1) and N hypers with
charges (1,-1,0,0,...), (0,1,-1,0,...), and so on. This is a mirror
dual of the previous example.

m Higgs branch is a Kleinian singularity XY = ZN, and we can explicitly

compute the star product on this space.

m F| parameters deform XY = (Z + iw1)(Z + iw2) -+ - (£ + iwp), where
(i = wj—1 — wj, and deform the corresponding correlators.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Further examples

More application can be found in the paper.

m N-node quiver with gauge group U(1)N/U(1) and N hypers with
charges (1,-1,0,0,...), (0,1,-1,0,...), and so on. This is a mirror
dual of the previous example.

m Higgs branch is a Kleinian singularity XY = ZN, and we can explicitly

compute the star product on this space.

m F| parameters deform XY = (Z + iw1)(Z + iw2) -+ - (£ + iwp), where
(i = wi—1 — wj, and deform the corresponding correlators.

m For the U(2) with adjoint and fundamental hypers flowing to N' = 8
SCFT, and for the mass-deformed SQED - see paper.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Discussion

m Localizing with Q(-; and using that Sypy is Qg—exact, one can obtain
partial results for the Coulomb branch.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Discussion

m Localizing with Q(-; and using that Sypy is Qg—exact, one can obtain
partial results for the Coulomb branch.

m Namely, one easily can compute correlators of twisted scalars from
the vector multiplet. Monopole operators are harder.

m Doing this for the SQED, we can compare results with the N-node
quiver and test mirror symmetry.

m One can identify Z of the N-node quiver with +/® /(87) of the SQED.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Discussion

Localizing with QS and using that Sy is QS-exact, one can obtain
g 3 g YM A
partial results for the Coulomb branch.

Namely, one easily can compute correlators of twisted scalars from
the vector multiplet. Monopole operators are harder.

Doing this for the SQED, we can compare results with the N-node
quiver and test mirror symmetry.

One can identify Z of the N-node quiver with +i® /(87) of the SQED.

Work in progress: include monopole operators.

One has to be careful about boundary terms and understand how to
compute determinants in the monopole background.

More future directions: generalize to actions with twisted vectors and
twisted hypers, in order to study more general gauge theories; include
line and surface operators in the construction; study 4d A = 2.
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Topological quantum mechanics and Higgs branches of 3d N=4 theories

Discussion

m Localizing with Qg and using that Sy is Qg—exact, one can obtain
partial results for the Coulomb branch.

m Namely, one easily can compute correlators of twisted scalars from
the vector multiplet. Monopole operators are harder.

ode
| he End

Thank you for your attention!

-~

m One has to be careful about boundary terms and understand how to
compute determinants in the monopole background.

m More future directions: generalize to actions with twisted vectors and
twisted hypers, in order to study more general gauge theories; include
line and surface operators in the construction; study 4d N = 2.
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