Title: On dynamics of asymptotically AdS spaces
Date: Nov 24, 2016 01:00 PM
URL: http://pirsa.org/16110088

Abstract: <p>The anti-de Sitter (AdS) spaceis of great interest in contemporary<br>
theoretical physics due to the ADS/CFT correspondence. However, the<br>
guestion of stability of AdS space is unanswered till now. After<br>
giving the motivation for studies of asymptotically AdS spaces, | will<br>
review dynamics of such spacetimes in the context of AdS instability<br>
problem. This survey will include: evidence for instability of AdS<br>
space, existence and properties of time-periodic solutions, and<br>

finally an application of analytical technique called multiscale or<br>
resonant approximation approach. If time permits, | will comment on<br>
other asymptotically AdS solutions. Along with the results, | will<br>
highlight some details of methods relevant to the topic.</p>
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| Model equation

Consider
dfu, — 8fu + miu = g(u), (t,z)e R x[0,n],

with boundary conditions w(t, 0) = 0 = w(¢, ). For g = 0 analysis is smple
u(t,z) = Z i;(t)sin (wjz), wj=1vj?+m?,
320
and mode energies
Li’l.."(t) 2( _; .‘(t’)z ”( :]2:
are constant.

= What is the long-time behaviour of solutions of the nonlinearly perturbed equation (e.g.

g(u) = £u’)!
= Isu = Ostable? An open problem for m? = 0. The transfer of energy to higher frequencies.
= Existence and properties of time-periodic solutions.

Pirsa: 16110088 Page 3/39



I The AdS space .

Maximally symmetric solution of: Rap — é gab R+ Agap = 0, Wih A = — =5,
(a, b=0,1,...,d =D —1).

= Hyperboleid of radius £ > 0

o
-X¢+) XP-Xi,, =-¢,
k=1

= Global coordinates with — o < 7 < m,
0<p<oc,and Y, n? = 1(coordinates
on§4-1)

Xy ={fcoshpcosT, X = €sinhpn;,

Xi.1 = fcoshpsinT, k=1,...,d

Compactification: tan z = sinh p,
x € [0,7/2) yields

[ EE ¥ ] [ i
ds? = —— (—dr® + dz* +sin’z dQ ).
cos’z
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I The AdS space

« Poincaré coordinates

wherez2 = 327 ' 22,2 > 00rz < 0
(Xo = Xg4). Metric

2

)

ds® = £2 (— dt? + dz? + di?g) ’

-
-

« (oordinate transformation and boundary
Mapping [BayonakBraga, 07) .
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I Motivation

The AdS/CFT correspondence with applications to QGP [Chesler, 4], [Bhattacraryya, '09) and CMP
orowit, '14] .

Classical problem in General Relativity. Do alf small perturbations of AdS remain small for all
future times? (de Sitter [Friedrich, '86], and Minkowski [CrristodoulousKlairerman, 93] )

Long-time evolution of closed conservative systems. If dissipation of energy by dispersion is
absent what happens with generic perturbations? Is there any universal behavior? Whether
time-periodic solution exists? If yes, are such solutions stable?

More complex structure of critical benavior ( [Santos-Olivin&Sopuerta, 15, 16] , also AdS5 [latmuina,
5] ) than in asymptotically flat case [Croptutk, '93].

Challenging problems for numerical analysis.
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| Self-gravitating massless scalar field

Simple model
l | l © . (4]
Rap— anaJl’.-H"Lgun =87G | Vap Vo — 29@?(;(5? ¢, VaVig =0,

A=—-d(d-1)/(262) <0, 8rG=d-1.
= Spherically symmetric parametrization of asymptotically AdS spacetimes

g'z

. . 2?2 ; .
ds? = (“.A(:. 20 442 + & + sin’z d? 1), (t, z) € Rx[0,7/2).

cos?e A

= Field equations

8,0 = Ae °Il, Il = 8, (tan? 'z Ae °0,0),

tan? !z

o I 2._ ‘) N
A=l T2 H28EL s A5S. B.5 = — ; sin 2z ((c")_,-qb)" + u~) .

sin 2x
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I Linear perturbations of AdS
= Linear equation on an AdS background [ shibashi&wald, '04]

1

a1

FRo+Llo=0, L=—-———
Lan £

9, (tan” 'z8,) .
This operator is essentially self-adjoint on # = L2 ([0, w/2); tan® 'z dz).

Eigenvalues and eigenvectors of operator L on Hilbert space H are

w? = (d+25)%, ej(z) =Nj cos’z dew b2 (cos 2z)

j=0,1,..., Nj € Rnormalization.
AdS is linearly stable and any linear perturbation can be written as

ot z) = 3 is0 (aje it + a;evt) e;(z),
with constants c; determined Dy tne initial data ¢(0, ) and 8,¢(0, ).

= Nondispersive spectrum + nonlinear coupling of linear modes = resenances.
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I Resonances and secular terms

-,

Lej(z) = i.o'_ffﬂ_,‘(ﬁl,':], j=0,1,....

For nondispersive spectrum (dw; / dj = const)we expect resonances caused by the
(nonlinear) coupling of linear modes.

How resonances produce secular terms

u’(t) +w?ult) = f(t), f(t) = focos(xt),

cos{ yt)—cos(wt)

) sin (wt) + u(0) cos (wt) + fo - { wd —x? , X F W,

ﬁtsin (wt), X=wW.

Here the spectrum is fully resonant (3 {k:| ki € N}, 3. kiw; = 0) which suggests a lorge
number of secular terms in non-linear perturbation theory.

Resonances are equally comon in dispersive cases, e.g. Yang-Mills propagating on the Einstein
universe
wi=+({+22-3, j=0,1,....

Resonances should be attributed to the structure of equations not only to the frequency spectrum.
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I Nonlinear evolution—boundary conditions

= We require smooth evolution and finiteness of the total mass
2

sin® “z

m(t,z) = (1-A(t,z)),

cosd 1

w/2

M= lim m(t,z) = /A (((‘)J.Q'D)B +11*)) tan? 'z dz.
T2
0
There is no freedom in prescribing boundary data at @ = = /2. Reflecting (no-flux) BC.
= Expansionatz = = /2 (y — 0)forodd d

@ [t' .'T."'HZ - TJ.' E)V -+ é),(::t:'y..! + (CBHI - .!”JUI! He T )

+ M (Q.':.-"li'-}yz'r + P2ar2(t)y* T+ ) ;

and for even d

¢ (t,m/2—y) = do +d(t)ay” + (‘5’-" 2ty + - ) ;
where 324 | __,, = —d!M.
= Local well-posedness has been proved [Friedrich, 951,
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I Nonlinear evolution—numerical approach

« (Constrained evolution scheme. Method of lines with FD discretization in
space. Runge-Kutta for time stepping (and to integrate constraints). High
resolution with large number of grid points (Biof&Rostworowsk, "] or by
using adaptive algorithm (Buchel etal, 12,13) . Parallelization.

Pseudospectral approach using eitner eigenbasis (even d)

N-1
=3 6i(t)ej(z), I(tz)=

i=0
or Chebyshev polynomials (particularly in odd d)

N-=1
N,
(W]

coat—32 Z(p (t) T2;(2/mz), ms.r 1o _L“ i(2/mz).

Coupled ODEs for ¢; and IT;. Use symplectic method to integrate in
time— preserve structure of equations and conserve energy

M=Y"E;, Ej:=(VAlle )2 +w;? (VA ;«;)2 .

i=0
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I The conjecture

Conjecture [Bizori&Rostworowski, '11]

1. AdS441 (for d > 3) is unstable against black hole formation under arbitrarily small perturbations.

2. There are perturbations for which turbulent energy transfer is not active (time-periodic and quasi-periodic
solutions).

= Extrapolation (here d = 4)

L
T = lim ‘F,; ~ (0.514.

&—»() E‘E

« Weakturbulence

Ej~j?% j»1.

= Secular terms.

#(0,z) =¢ (.'1(:[](13) + e (z)), Op(0,2) =0, e~2°7,

Independent confirmation [Buchel etal, '12,'13) (complex SF), [Deppekfrey,15) (massive SF).
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L
T = lim ‘F,; ~ (0.514.

&—»() E‘E

« Weakturbulence

Ei~j?% j»1.

= Secular terms.

¢(0,z) =& (.]161‘1(1?) + e (z)), Op(0,2) =0, e~2°7,

Independent confirmation [Buchel etal, '12,'13) (complex SF), [Deppekfrey,15) (massive SF).
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I Critical collapse in AdS

» Studiesin D = 4 indicate that critical exponent
independent of value of A [Husair etal, 03]
(double-null characteristic scheme). Collapse in
ﬂdS;; [Pretonius&Choptuik, '00] , [Garfinkle, '01], [Jatmuina

L )‘.l_' W

= Mixed Cauchy-characteristic (like .
[Goldwirtha2iran, ‘87] ) evolution scheme ot I
[Santos-Olivén&Sopuerta, '15, '16] . New feature of 4’[1""{ { { [

gravitational collapse in asymptotically AdS

A'.‘"IAH (p} _ .‘1“.'!;,” 1) X [:p“ _ P)E : [Hil[& D@hah' Or [Bizon&Rostworowski, '1°

r

& ~ 0.7, where (n + 1) enumerates bounces off Man(p) < (P —p)",
tne AdS boundary (evidence forn = 0, 1, 2).

= |sthe global geometry important? Minkowski in a box
(Einstein-Maxwell-KG) and double-null coordinates
[Caib¥ang, '16] . Scaling exponent € ~ 0.36.

with 4 & 0.374 [Choptuik, '93], [Gundlach
7],
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I Critical collapse—moving mesh approach

Develop numerical method for SJdlnscfstrongfnld regime (gravitational collapse); simple
and effective. An alternative to AMR by [3erger&0liger, '85) .

" .I { T "' [ T { -~ .
We adapt moving mesh method based on Solution procedure (uncoupled problems):
equidistribution principle with static regriding = approximate derivatives on static nonuniform
strategy [Huangdlussell,'10] . orid
Grid moves according to equidistribution integrate resulting semi-discrete system over
principle few time steps
= a0apt grid using new solution

Ti+1 « interpolate on new grid
p(z)dz = const, , S _
T, Field equations discretized on non-uniform

(i = 1,..., N — 1) with mesh density {Ppw,sml)gnd. _
function p(z) (strictly positive). Any p(z) Sundman transformation: d¢ = g(t)dr,
gives unique equidistriouting mesh together with an adaptive solver.

My ={z; < <zn}. Test problem: minimally coupled
self-gravitation real massless scalar field

Correct choice of a mesh density function is a . _ > did _
¢(t, z)in (d + 1) spacetime dimensions.

key to the success of the moving mesh method.
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I Critical collapse—moving mesh approach

Develop numerical method for studies of strong-field regime (gravitational collapse); simple
and effective. An alternative to AMR by [3erger&0liger, '85) .

“‘( (LE8

S it
RRA i 2
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I Resonant approximation
= Failure of naive perturbative approach: ¢(t, z) = e (t, z) + e*ps(t, z) + -+, and
¢,(t,z) = Z_;bt] (a}c fwit 4 (]J.,c“"-") e; (z),

n general gives secular terms: ¢(¢, z) = ¢ (¢, ) +&¥(-++) + -
Resummation (with slow time 7 = &2t dependence)

d1(tz) =3 50 (oj(T)e it + a;(T)eiwit) e;(x).

Resonant system (w; £ w; =+ wg = Fwyn)

. -4 + + 4+
] 1 ~— 4 <+ _ g I + 4+
Oy, = . E g Qi Ok 4 E Clilem @il ok 4 E Cli o Q10 Ok
Win ) : : .
i) K 1) K W &

Derived with multiscale [Balasubramanian eral, "14), renormalization group [Craps etal, 4] (for
EKG only — + <+ type resonances) and averaging [Craps efal, 15) approaches.

Invariant under: a,,,(7) — € a,,, (€27). Slow long-time energy flow between the modes.
Symmetries—three constants of motion.

This infinite system has a solution that becomes singular in finite time. Singular solution governs generic
blowup [Bizofi M&Rostworowski, 15 .

Pirsa: 16110088 Page 17/39



I Resonant approximation—blowup

ffl = Universal behavior in terms of
"!I‘ an(T) = A, (T)e tBm(7) je.
Ap(T) ~ 7™ L and B (1) 2

[ e I S S S S |

A ”\"u'n'lf'“'”f”””l”E

. [,||I||I (L "IH IIM

[ = Analyticity strip metnod (Sulemetal, '83]

"' TV m...a n..m .uMl [Bizori&Jatmuina, '13] (mstabﬂ*;efads )

with asymptotic ansatz (m > 1)

Apm(T) ~m 7Tl plmim

Numerical data indicate: v(7) = 2,
p(r) =~ po(Ts —7), 887 = T

(= 0.513 = 74 and synchronization of
phases B; ~ j during evolution.
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I Resonant approximation—blowup

A1 = Universal behavior in terms of

. “5‘ am(7) = Am(7)eP7) je.
ke I. i A (T)~7™ 1and B,,(1) /.
-
H\'h‘ "Muuml" ‘|||' I . Mag.rlcib, rip method [Sulem etal, '83] ,
I 'H‘ HIIHJ l.thl“M' (Bizon&/atmuina, '13] (ms[ab”’}cfﬂds )
with asymptotic ansatz (m > 1)

[||

Am (T} ~ 1T -":T:'e plT)m .

Numerical data indicate: v(7) =~ 2,
p(t) = po(7, —T7), 87 = 1.

(= 0.513 = 7 ) and synchronization of
phases B; ~ j during evolution.
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I Resonant approximation—blowup

= Universal behavior in terms of
am(T) = An(7)e!?m(7) je.:

Ap(7) ~ 7™ a0d B,y (1)

= Analyticity strip method (Sulem et al, '83)
[Baofdjatmuina, 13 (instability of AdS3)
with asymptotic ansatz (m >> 1)

v

(T)po—plT)m

A, (1) ~m ""e

Numerical data indicate: v(7) =~ 2,
plr) =~ po(Ts —7), 8T — 7.

(=~ 0.513 = 74) and synchronization of
phases B; ~ j during evolution.
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I Resonant approximation—blowup

‘-)'UHHA:H Z (’”“”A A /11(3( i(Bi+ B~ By~ By, ;‘)’

ik

N, ! 3 2
2“"’“8"1 ‘4’” - (‘mruxrur.’Am + 1'-" E : (CrrJ)Jrre +(—'1!r1;rre) A,l p

1Fm

« Dominant contribution

M, !
2w,, B

m

E =t b ) 2
™~ m,l,rm + “jmyjm A.l

aFm

1

L~

J

2p0(7e—T)3

J#Fm

= Finitetime (7. < oo) logarithmic blowup

B,,(r) = am log (.
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I Resonant approximation—blowup and collapse

- | - o 4 il

Method intended to provide uniformly bounded solution gives hints for instability. Note

laj| < 00 # | < oo here (d = 4)
k—1
1
Y ( ) ? k 2 J"
T — T

]
Generalization of asymptotic 7 — 7, solutionto d > 4

la;| < oo but e
v ¥

A~ jle T, v = —=df2, p—0,

which blows up in finite time 7, < oc. The character of blowup is oscillatory, i.e. phases
oehave as B! (7) ~ log(r. — ) (in the interior gauge).

T
= Energyspedtra: |a;| ~ j 4% = E; ~ 529, Dimensional argument [BizoribRostworowsk,

,alsc- [Frervogel&Yang, '15] .
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I Resonant approximation—two-mode initial data

But not all data leads to unbounded growth of higher Sobolev type norms.

1 1
d(0,z) = e(p) ( eolz) + cl(:r:)) . 0o(0,z) =0,
. 1

wo
Stability islands (of time-periodic solutions [M&Rostworowski, '13], [Kim, 5], [Fodor efal, 15]7)

« 4= 00,a0(T)=ce

* u—=0a(r)=ce &

= Stationary solutions [Balasubramarian et al,

a(t) = A;e!%7, B, = aj + b,

Stabi“'.‘j (Greenetal,'15)] ,ElS'y'ﬂB:Uf(S
(Craps etal, 5] . Role in dynamics of
generic initial conditions?

The same picture for narrow/wide gaussians [Buchel eral, 3], [M&Rostworowski, 3] ,
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I Resonant approxmiation—models
= Szegd system
oo J+n
ial, = Z Z QOO s i oy

=0 k=0

which is an exact system for cubic Szeg6 equation

0w = ll(|u\2 u) . ult,e) = Z an(t)e™?,
n=I(

D omep lan|® < oo (300 an(t)e™) i= 3700 an(t)e'™’. Hasa Lax par,

T r
finite-dimensional invariant subspaces and weakly turbulent solutions [Gérard4Grellier, 10,%2,'15] .
Conformally invariant wave equation on R x S* (a geometric PDE)
0,6 — L R(g)é — ¢* = 0 Py —2u+ V. =0
_r;d)_(. (Q)U_Q — Uy = ((L'_ J-L+ .o T
) s r

for g = —dt? 4+ dz? + sin*z d?, and v = sin z ¢. Its resonant approximation yields

aa J+mn

iln+ 1)a), = Z Z min(n, j,k,n+j — k) + 1] a0,

=0 k=0

which displays a number of dynamical parallels [Biori eral, 6]
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I Time-periodic solutions—perturbative approach
« We search for solutions of the form (le| < 1)
o(t,x) = € cos(w~t)e,(z) + Oe?),

solution bifurcating from a single eigenmode +.

= We make an ansatz for the e-expansion

(.'i'(T,LII; E) - Z E)‘;bA(Tvm)s

Azl

odd

§(roaie) = Y eroa(mz),  Alrme)=1-) *Ax(r,z),
A2 A>2

oven ovenl

where we rescaled the time variable

T =, D) = wy + Y M.
Azl

= (rucial partin the construction—solution to: (w'f 8% — L) by = S).
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I Time-periodic solutions—perturbative approach

= Assuming

éa(T,x) = Zcﬁu..;(?’)ﬁ.;(r),

we get a set of forced harmonic oscillator equations

/2
(w282 —wi) dak(r) = / Sa(t,z)ex(z) tan® 'z dz,
Jo

with initial conditions @, x (0) = ey k. and 8, by 1 (0) = &5 &.

We use the integration constants { ¢y x, €.k } and frequency shift parameters &, to remove
all of the resonant terms: cos ((wx /w- ) 7), sin ((wk /w~ ) 7).

Regular structure for each dominant mode (d even)

[(A=1)(d+1)/24A%] (A-1)/2

ox(T,2) = Z Z f?h.;.zm Lcos ((2k + 1) 7) e;(z),

=0 k=0

(exceptional cancellation of resonant terms [Craps efal, "4, 5] ).
Extension to massive case [«m, 15].
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I Time-periodic solutions—numerical construction

= Search for solution in a finite-dimensional subspace of some Hilbert space [trial functions
cos(kT) e;(x)]

B .~ = span {cos(kT)e;(z)| k=0,1,...,K, j=0,1,...,N}.

Assuming (7 = §2¢t)

K-1N-1

I no(T ) = Z Z . ; cos ((2k + 1) 7) e;(z),

k=0 j=0
K-1N-1 X
Ti nll(r,z) = Y Y 1l ;sin ((2k + 1) 7) €;(2).

k=0 5=0

solution is represented by the set of 2K’ N + 1 coefficients. Collocation approach [test
functions & (z — x,;)d(r — )], two equations on each grid point—use of time evolution
code.

One extra equation—the normalization condtion e.g. (¢ | e ) =E.

=()

Alternative approacnes: [Soyd, 90], [Ambrose&Wilkening, 10
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I Time-periodic solutions—structure

1 b

Fast (spectral) convergence.

For each familyy = 0, 1,...,thereisa
finite range of & for which solutions do
exist [MARostworowski, "13], [Kim, "15].
With perturbative series one can find an
estimate for that limits with Padé
resumation.

Normalization condition problem (central
dEI’JSIIll?, 0(0, 0) — E) [Fodor efal, "4

Upper bound on total mass of the
solutions.

Similar structure of standing waves
(complex ¢)

o(t,z) = e f(x).
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I Time-periodic solutions—structure

i -
-

Fast (spectral) convergence.

For each familyy = 0, 1,...,thereisa
finite range of € for which solutions do
exist [M&Rostworowski,'13], [Kim,'15] .
With perturbative series one can find an
estimate for that limits with Padé
resumation.

Normalization condition problem (centra/
d@l’.’gl"t}’, Q')(O, U) = E) [~odor efal, "4
Upper bound on total mass of the
solutions.

Similar structure of standing waves
(complex ¢)

B(t,z) = €™ f(2)

(Buchel efal,'"3), [M&Rostworowski, 4] .
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I Time-periodic solutions—structure

Fast (spectral) convergence.

For each familyy = 0, 1,...,thereisa
finite range of  for which solutions do
exist [M&Rostworowski, "13], [Kim,'15] .
With perturbative series one can find an
estimate for that limits with Padé
resumation.

Normalization condition problem (centra/
gensity, (0,0) = ) [Fodoreral, 4]
Upper bound on total mass of the
solutions.

Similar structure of standing waves
(complex ¢)

o(t,z) = € f(z).

(Buchel efal,''3), [M&Rostworowski, 4] .
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I Time-periodic solutions—nonlinear stability

MOL with pseudospeciral
discretization in space (dedicated
schemes for even and odd ) and
symplectic time stepping (Gauss-RK).

Nonlinear stability for |e| < e..

Long time evolution of generic
perturbation imposed on
time-periodic
background—dispersive spectra
[M&Rostworowsk, '13, "14] ,

Unstable branch for le| > &..
Quality of numerical
solution—convergence and
conservation of mass.

Pirsa: 16110088 Page 32/39
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I Time-periodic solutions—nonlinear stability

.\
M

ilf\ '*

I — 10

f nnﬁ

>'|P||H‘

Vol

MRHIRIR

"

&5

MOL with pseudospectral
discretization in space (dedicated
schemes for even and odd d) and

symplectic time stepping (Gauss-RK).

Nonlinear stability for |e| < e..

Long time evolution of generic
perturbation imposed on
time-periodic

bac«grcﬂd d|spers Ve Spectra
[M&Rostworowsk, 13, '14] .

Unstable branch for le| > e..

Quality of numerical
solution—convergence and
conservation of mass.
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I Relaxing symmetry assumption

= (Cohomogenity-two biaxial Bianchi IX ansatz [Biuofi eral, 06 : turbulence [3izofaRostworawski
and time-periodic solutions [\, 14] .
Geons—a time-periodic solutions solutions to R, + f—‘-‘;yﬂb = (), with Klling vector
K =0, +Q0, [Diasetal,12), [Horowit:bSantos, '15] , [DiaskSantos, 16] . USing naive
g _ - 1 (k)
Poincaré-Lindstedt method g,,,, = G0 + Do pn i €5 Ryiw

A @RS =T (D),

ab ab cdd

(at third perturbative order) one will find *(...) normal modes without a nonlinear extension and
geons”. Their numerical construction uses de Turck method [Headrick et al, '10], [Figueras etal, 17}
(based on harmonic formulation)

3
[i)-m'_; - £3 Gaty — v{rz £bjl - 01

where £* = gb (I'*,, — I'®, ), with the Levi-Civita connection I" of g. Requires solution
to nonlinear PDEs on compact domain.
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I Black holes in AdS

The end state of instability? Schwarzschild-AdS candidate in spherical symmetry

[Holzegel&Smulevia, '13] .
Outside spherical symmetry Kerr-AdS [Cardosoddias, 04) ?
Superradiant instability (HawkingdReall,'00), [Diasetal,'15], [Bosch etal, 16] .

Dynamics of asymptotically AdS solutions with black holes [3antlan eral, 121,

[BantilandRomatschike, '15] .

Stationary solutions with AdS asymptotics—higher dimensions and lumpy black holes, black
rings, black belts, etc. Application of de Turck method [Dias eral, 5] ,

Studies motivated by AdS/CFT, e.g. collisions of shocks [Cresierdvaffe, 4], and many more.
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I Conclusions and questions

So, is AdS stable?

Extend studies of the resonant system. Study simple models—conformally invariant cubic wave
equation on the Einstein cylinder [Biorieral, 6] (low-dimensional invariant subspaces, a
wealth of stationary states).

How to transfer oscillatory blowup to the full system? How to interpret oscillatory singularity? Is
't related to Choptuik's critical solution?

Nontrivial (complicated) phase-space of solutions to the Einstein's equation with negative
cosmological constant. How large the islands of stability are? Understand the role of stationary
solutions in the dynamics [Green etal, '15) . Explore the borderline between collapse and
quasiperiodic motion.

The resonant structure [Craps etol, '14,'15) and its impact on nonlinear evolution. Is Minkowski in
a box with reflecting BC a good model for EKG system with A < 07

Prove the existence of time-periodic solutions [Gentile eral, '05) .

Clash between different numerical approaches ( [Balasubramanian eral, 4] and [BizofisRostworowsk,
"4],5ee3Is0 [DeppekFrey, 15) ) shows that long-time evolution of asymptotically AdS solutions is
particularly demanding,
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I Conclusions and questions

= Weak turbulence—common phenomena for nonlinear wave equations on bounded domains
(NLS on torus [Colliander etaf,'10], [Carles&Faou, '12] ).

= (hallenging mathematical problems, both for any attempts to rigorous proofs and numerica

analysis. Meeting point of GR, theory of PDEs, turbulence, and HEP, makes it exciting field of
research,
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