Title: On dynamics of asymptotically AdS spaces

Date: Nov 24, 2016 01:00 PM

URL: http://pirsa.org/16110088

Abstract: The anti-de Sitter (AdS) space is of great interest in contemporary
theoretical physics due to the AdS/CFT correspondence. However, the
question of stability of AdS space is unanswered till now. After
spiving the motivation for studies of asymptotically AdS spaces, I will
review dynamics of such spacetimes in the context of AdS instability
problem. This survey will include: evidence for instability of AdS
space, existence and properties of time-periodic solutions, and
finally an application of analytical technique called multiscale or
fresonant approximation approach. If time permits, I will comment on
other asymptotically AdS solutions. Along with the results, I will
br>highlight some details of methods relevant to the topic.

Pirsa: 16110088 Page 1/39

On dynamics of asymptotically AdS spaces

Maciej Maliborski Albert-Einstein-Institut, Potsdam

in collaboration with Piotr Bizoń and Andrzej Rostworowski

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

Perimeter Institute Waterloo, 24th November 2016

Pirsa: 16110088 Page 2/39

■ Model equation

Consider

$$\partial_t^2 u - \partial_x^2 u + m^2 u = g(u), \quad (t, x) \in \mathbb{R} \times [0, \pi],$$

with boundary conditions $u(t,0)=0=u(t,\pi).$ For g=0 analysis is simple

$$u(t,x) = \sum_{j \geq 0} \hat{u}_j(t) \sin\left(\omega_j x\right), \quad \omega_j = \sqrt{j^2 + m^2},$$

and mode energies

$$E_j(t) = rac{1}{2} \omega_j^2 \hat{u}_j(t)^2 + rac{1}{2} \hat{u}_j'(t)^2,$$

are constant.

- What is the long-time behaviour of solutions of the nonlinearly perturbed equation (e.g. g(u) = ±u³)?
- Is u=0 stable? An open problem for $m^2=0$. The transfer of energy to higher frequencies.
- Existence and properties of time-periodic solutions.

■ The AdS space

Maximally symmetric solution of: $R_{ab}-\frac{1}{2}g_{ab}R+\Lambda g_{ab}=0$, with $\Lambda=-\frac{d(d-1)}{2\ell^2}$, $(a,b=0,1,\ldots,d=D-1)$.

• Hyperboloid of radius $\ell > 0$

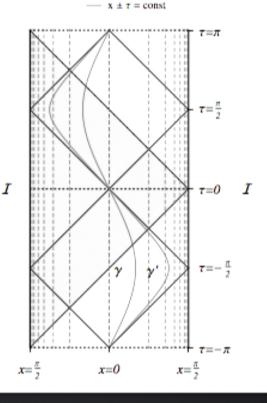
$$-X_0^2 + \sum_{k=1}^d X_k^2 - X_{d+1}^2 = -\ell^2,$$

• Global coordinates with $-\pi \le \tau < \pi$, $0 \le \rho < \infty$, and $\sum_{k=1}^d n_k^2 = 1$ (coordinates on \mathbb{S}^{d-1})

$$X_0 = \ell \cosh
ho \cos au, \quad X_k = \ell \sinh
ho \, n_k, \ X_{d+1} = \ell \cosh
ho \sin au, \qquad k = 1, \ldots, d,$$

Compactification: $an x = \sinh
ho$, $x \in [0,\pi/2)$ yields

$$ds^2 = \frac{\ell^2}{\cos^2 x} \left(-d\tau^2 + dx^2 + \sin^2 x \ d\Omega_{d-1}^2 \right).$$



■ The AdS space

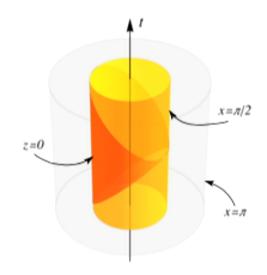
Poincaré coordinates

$$X_0 = rac{1}{2z} \left(z^2 + \ell^2 + ar{x}^2 - t^2
ight), \ X_i = rac{x_i}{z} \ell, \quad i = 1, \ldots, d-1, \ X_d = rac{1}{2z} \left(z^2 - \ell^2 + ar{x}^2 - t^2
ight), \ X_{d+1} = rac{t}{z} \ell,$$

where
$$ar{x}^2 \equiv \sum_{i=1}^{d-1} x_i^2$$
 , $z>0$ or $z<0$ $(X_0=X_d)$. Metric

$$\mathrm{d}s^2 = rac{\ell^2}{z^2} \left(-\,\mathrm{d}t^2 + \mathrm{d}z^2 + \mathrm{d}ar{x}^2
ight),$$

 Coordinate transformation and boundary mapping [Bayona&Braga, '07].



Motivation

- The AdS/CFT correspondence with applications to QGP [Chesler, '14], [Bhattacharyya, '09] and CMP [Horowitz, '14].
- Classical problem in General Relativity. Do all small perturbations of AdS remain small for all future times? (de Sitter [Friedrich, '86], and Minkowski [Christodoulou&Klainerman, '93])
- Long-time evolution of closed conservative systems. If dissipation of energy by dispersion is absent what happens with generic perturbations? Is there any universal behavior? Whether time-periodic solution exists? If yes, are such solutions stable?
- More complex structure of critical behavior ([Santos-Oliván&Sopuerta, '15, '16], also AdS₃ [Jałmużna, '15]) than in asymptotically flat case [Choptuik, '93].
- Challenging problems for numerical analysis.

Pirsa: 16110088 Page 6/39

■ Self-gravitating massless scalar field

Simple model

$$egin{aligned} R_{ab}-rac{1}{2}g_{ab}R+\Lambda g_{ab}&=8\pi G\left(
abla_a\phi\,
abla_b\phi-rac{1}{2}g_{ab}
abla_c\phi\,
abla^c\phi
ight),\quad
abla_a
abla^a\phi&=0, \ & \Lambda=-d(d-1)/(2\ell^2)<0\,,\quad 8\pi G=d-1\,. \end{aligned}$$

Spherically symmetric parametrization of asymptotically AdS spacetimes

$$ds^{2} = \frac{\ell^{2}}{\cos^{2}x} \left(-Ae^{-2\delta} dt^{2} + \frac{dx^{2}}{A} + \sin^{2}x d\Omega_{d-1}^{2} \right), \quad (t, x) \in \mathbb{R} \times [0, \pi/2).$$

Field equations

$$\partial_t \phi = A e^{-\delta} \Pi, \quad \partial_t \Pi = rac{1}{ an^{d-1} x} \partial_x ig(an^{d-1} x \, A e^{-\delta} \partial_x \phi ig) \,,$$

$$\partial_x A = 2rac{d-2+2\sin^2x}{\sin2x}(1-A) + A\partial_x\delta\,,\quad \partial_x\delta = -rac{1}{2}\sin2x\left(\left(\partial_x\phi
ight)^2 + \Pi^2
ight).$$

■ Linear perturbations of AdS

Linear equation on an AdS background [Ishibashi&Wald, '04]

$$\partial_t^2 \phi + \hat{L} \phi = 0 \,, \quad \hat{L} = -rac{1}{ an^{d-1}x} \, \partial_x ig(an^{d-1}x \, \partial_x ig) \,.$$

This operator is essentially self-adjoint on $\mathcal{H}=L^2ig([0,\pi/2); an^{d-1}x\;\mathrm{d}xig).$

• Eigenvalues and eigenvectors of operator \hat{L} on Hilbert space ${\cal H}$ are

$$\omega_j^2 = (d+2j)^2, \quad e_j(x) = \mathcal{N}_j \, \cos^d x \, P_j^{(d/2-1,d/2)}(\cos 2x) \, ,$$

 $j=0,1,\ldots,\,\mathcal{N}_j\in\mathbb{R}$ normalization.

AdS is linearly stable and any linear perturbation can be written as

$$\phi(t,x) = \sum_{j\geq 0} \left(lpha_j e^{-i\omega_j t} + ar{lpha}_j e^{i\omega_j t} \right) e_j(x)$$
 ,

with constants α_j determined by the initial data $\phi(0, x)$ and $\partial_t \phi(0, x)$.

Nondispersive spectrum + nonlinear coupling of linear modes = resonances.

Resonances and secular terms

$$\hat{L}e_j(x)=\omega_j^2e_j(x),\quad j=0,1,\ldots$$

- For *nondispersive* spectrum $(d\omega_j/dj = const)$ we expect resonances caused by the (nonlinear) coupling of linear modes.
- How resonances produce secular terms

$$u''(t) + \omega^2 u(t) = f(t), \quad f(t) = f_0 \cos(\chi t),$$

$$u(t) = rac{u'(0)}{\omega} \sin{(\omega t)} + u(0) \cos{(\omega t)} + f_0 \cdot \begin{cases} rac{\cos(\chi t) - \cos(\omega t)}{\omega^2 - \chi^2} \,, & \chi
eq \omega \,, \ rac{1}{2\omega} \mathbf{t} \sin{(\omega t)} \,, & \chi = \omega \,. \end{cases}$$

- Here the spectrum is fully resonant ($\exists \{k_i | k_i \in \mathbb{N}\}, \sum_i k_i \omega_i = 0$) which suggests a large number of secular terms in non-linear perturbation theory.
- Resonances are equally comon in dispersive cases, e.g. Yang-Mills propagating on the Einstein Universe

$$\omega_j = \sqrt{(j+2)^2 - 3}, \quad j = 0, 1, \dots$$

Resonances should be attributed to the structure of equations not only to the frequency spectrum.

■ Nonlinear evolution—boundary conditions

We require smooth evolution and finiteness of the total mass

$$m(t,x) = \frac{\sin^{d-2} x}{\cos^d x} \left(1 - A(t,x) \right),\,$$

$$M=\lim_{x o\pi/2}m(t,x)=\int\limits_0^{\pi/2}A\left((\partial_x\phi)^2+\Pi^2
ight) an^{d-1}x\;\mathrm{d}x\,.$$

There is no freedom in prescribing boundary data at $x = \pi/2$. Reflecting (no-flux) BC.

• Expansion at $x=\pi/2$ (y o 0) for odd d

$$\begin{split} \phi\left(t, \pi/2 - y\right) &= \check{\phi}_0 + \check{\phi}_d(t) y^d + \left(\check{\phi}_{d+2}(t) y^{d+2} + \cdots\right) \\ &+ M\left(\check{\phi}_{2d}(t) y^{2d} + \check{\phi}_{2d+2}(t) y^{2d+2} + \cdots\right), \end{split}$$

and for even d

$$\phi(t,\pi/2-y) = \check{\phi}_0 + \check{\phi}(t)_d y^d + \left(\check{\phi}_{d+2}(t)y^{d+2} + \cdots\right),$$

where $\partial_x^d A\mid_{x=\pi/2} = -d!M$.

Local well-posedness has been proved [Friedrich, '95], [Holzegel&Smulevici, '11].

Pirsa: 16110088

■ Nonlinear evolution—numerical approach

- Constrained evolution scheme. Method of lines with FD discretization in space. Runge-Kutta for time stepping (and to integrate constraints). High resolution with large number of grid points [Bizoń&Rostworowski, '11] or by using adaptive algorithm [Buchel et al., '12, '13]. Parallelization.
- Pseudospectral approach using either eigenbasis (even d)

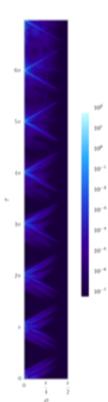
$$\phi(t,x) = \sum_{j=0}^{N-1} \hat{\phi}_j(t) \, e_j(x), \quad \Pi(t,x) = \sum_{j=0}^{N-1} \hat{\Pi}_j(t) \, e_j(x),$$

or Chebyshev polynomials (particularly in odd d)

$$\frac{\phi'}{\cos^{d-2}x} = \sum_{j=0}^{N-1} \hat{\Phi}_j(t) \, T_{2j}(2/\pi x), \, \, \frac{\Pi}{\cos^{d-1}x} = \sum_{j=0}^{N-1} \hat{\Pi}_j(t) \, T_{2j}(2/\pi x) \, .$$

Coupled ODEs for $\hat{\phi}_j$ and $\hat{\Pi}_j$. Use symplectic method to integrate in time— preserve structure of equations and conserve energy

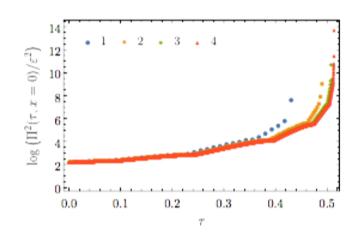
$$M = \sum_{j \geq 0} E_j, \quad E_j := \left(\sqrt{A}\Pi \mid e_j\right)^2 + \omega_j^{-2} \left(\sqrt{A}\phi' \mid e_j'\right)^2.$$



■ The conjecture

Conjecture [Bizoń&Rostworowski, '11]

- 1. AdS_{d+1} (for $d \ge 3$) is unstable against black hole formation under arbitrarily small perturbations.
- 2. There are perturbations for which turbulent energy transfer is not active (time-periodic and quasi-periodic solutions).



• Extrapolation (here d=4)

$$\tau_H := \lim_{\varepsilon \to 0} \frac{t_H}{\varepsilon^2} \approx 0.514.$$

Weak turbulence

$$E_j \sim j^{-2}, \quad j \gg 1.$$

Secular terms.

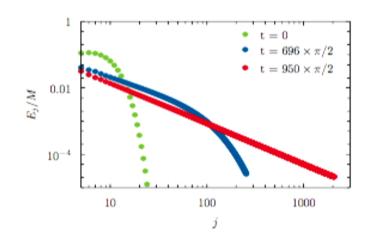
$$\phi(0,x)=arepsilon\left(rac{1}{4}e_0(x)+rac{1}{6}e_1(x)
ight),\quad \partial_t\phi(0,x)=0,\quad arepsilon\sim 2^{-p}\,.$$

Independent confirmation [Buchel et al., '12, '13] (complex SF), [Deppe&Frey, '15] (massive SF).

■ The conjecture

Conjecture [Bizoń&Rostworowski, '11]

- 1. AdS_{d+1} (for $d \ge 3$) is unstable against black hole formation under arbitrarily small perturbations.
- 2. There are perturbations for which turbulent energy transfer is not active (time-periodic and quasi-periodic solutions).



• Extrapolation (here d=4)

$$\tau_H := \lim_{\varepsilon \to 0} \frac{t_H}{\varepsilon^2} \approx 0.514.$$

Weak turbulence

$$E_j \sim j^{-2}, \quad j \gg 1.$$

Secular terms.

$$\phi(0,x)=arepsilon\left(rac{1}{4}e_0(x)+rac{1}{6}e_1(x)
ight),\quad \partial_t\phi(0,x)=0,\quad arepsilon\sim 2^{-p}\,.$$

Independent confirmation [Buchel et al., '12, '13] (complex SF), [Deppe&Frey, '15] (massive SF).

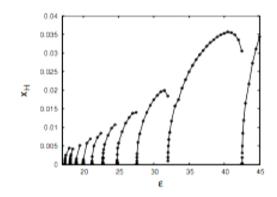
■ Critical collapse in AdS

- Studies in D = 4 indicate that critical exponent independent of value of Λ [Husain et al., '03] (double-null characteristic scheme). Collapse in AdS₃ [Pretorius&Choptuik, '00], [Garfinkle, '01], [Jałmużna et al., '15].
- Mixed Cauchy-characteristic (like [Goldwirth&Piran, '87]) evolution scheme [Santos-Oliván&Sopuerta, '15, '16] . New feature of gravitational collapse in asymptotically AdS

$$M_{AH}(p) - M_g^{(n+1)} \propto (p_n - p)^{\xi}$$
,

 $\xi \approx 0.7$, where (n+1) enumerates bounces off the AdS boundary (evidence for n=0,1,2).

• Is the global geometry important? *Minkowski in a box* (Einstein-Maxwell-KG) and double-null coordinates [Cai&Yang, '16] . Scaling exponent $\xi \approx 0.36$.



Critical behavior [Bizoń&Rostworowski, '11]

$$M_{AH}(p) \propto (p_n - p)^{\gamma}$$
,

with $\gamma \approx 0.374$ [Choptuik, '93], [Gundlach, '97].

■ Critical collapse—moving mesh approach

Develop numerical method for studies of strong-field regime (gravitational collapse); simple and effective. An alternative to AMR by [Berger&Oliger, '85].

- We adapt moving mesh method based on equidistribution principle with static regriding strategy [Huang&Russell, '10].
- Grid moves according to equidistribution principle

$$\int_{x_i}^{x_{i+1}}
ho(x) \, \mathrm{d}x = \mathrm{const},$$

 $(i=1,\ldots,N-1)$ with mesh density function ho(x) (strictly positive). Any ho(x) gives unique equidistributing mesh $\mathcal{M}_N=\{x_1<\cdots< x_N\}.$

 Correct choice of a mesh density function is a key to the success of the moving mesh method.

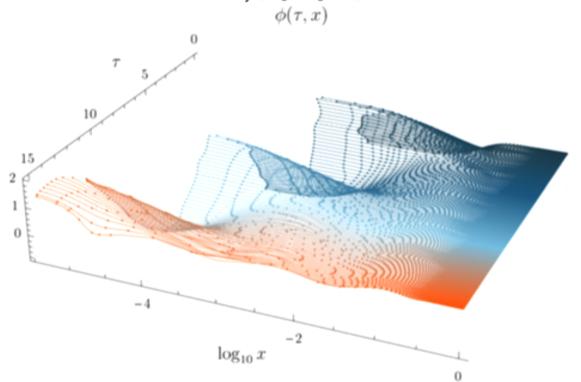
- Solution procedure (uncoupled problems):
 - approximate derivatives on static nonuniform grid
 - integrate resulting semi-discrete system over few time steps
 - adapt grid using new solution
 - interpolate on new grid
- Field equations discretized on non-uniform (physical) grid.
- Sundman transformation: $dt = g(t)d\tau$, together with an adaptive solver.
- Test problem: minimally coupled self-gravitation real massless scalar field φ(t, x) in (d + 1) spacetime dimensions.

17

Pirsa: 16110088 Page 15/39

■ Critical collapse—moving mesh approach

Develop numerical method for studies of strong-field regime (gravitational collapse); simple and effective. An alternative to AMR by [Berger&Oliger, '85].



Pirsa: 16110088

■ Resonant approximation

• Failure of naïve perturbative approach: $\phi(t,x)=\varepsilon\phi_1(t,x)+\varepsilon^3\phi_3(t,x)+\cdots$, and

$$\phi_1(t,x) = \sum_{j\geq 0} \left(lpha_j e^{-i\omega_j t} + ar{lpha}_j e^{i\omega_j t} \right) e_j(x)$$
 ,

in general gives secular terms: $\phi(t,x) = \varepsilon \phi_1(t,x) + \varepsilon^3 t(\cdots) + \cdots$

• Resummation (with *slow time* $au = \varepsilon^2 t$ dependence)

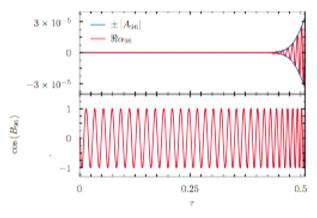
$$\phi_1(t,x) = \sum_{j \geq 0} \left(lpha_j(au) e^{-i\omega_j t} + ar{lpha}_j(au) e^{i\omega_j t} \right) e_j(x).$$

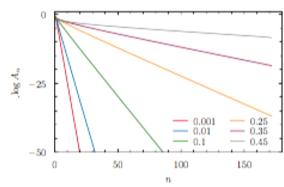
• Resonant system ($\omega_i \pm \omega_j \pm \omega_k = \pm \omega_m$)

$$lpha_m' = -rac{i}{2\omega_m}\left(\sum_{ijk}^{-++}C_{ijkm}^{-++}lpha_ilpha_jarlpha_k + \sum_{ijk}^{+--}C_{ijkm}^{+--}arlpha_iarlpha_jlpha_k + \sum_{ijk}^{+++}C_{ijkm}^{+++}lpha_ilpha_jlpha_k
ight).$$

- Derived with multiscale [Balasubramanian et al., '14], renormalization group [Craps et al., '14] (for EKG only + + type resonances) and averaging [Craps et al., '15] approaches.
- Invariant under: $\alpha_m(\tau) \to \varepsilon \alpha_m \left(\varepsilon^2 \tau\right)$. Slow long-time energy flow between the modes. Symmetries—three constants of motion.

This infinite system has a solution that becomes singular in finite time. Singular solution governs generic blowup [Bizoń,M&Rostworowski, '15].

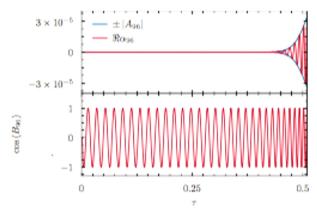


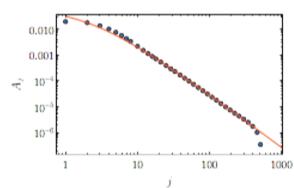


- Universal behavior in terms of $lpha_m(au)=A_m(au)e^{iB_m(au)}$, i.e.: $A_m(au)\sim au^{m-1}$, and $B_m(au)$.
- Analyticity strip method [Sulem et al., '83], [Bizoń&Jałmużna, '13] (instability of AdS₃) with asymptotic ansatz ($m \gg 1$)

$$A_m(\tau) \sim m^{-\gamma(\tau)} e^{-\rho(\tau)m}$$
.

• Numerical data indicate: $\gamma(\tau) \approx 2$, $\rho(\tau) \approx \rho_0(\tau_* - \tau)$, as $\tau \to \tau_*$ ($\approx 0.513 \approx \tau_H$) and synchronization of phases $B_j \sim j$ during evolution.

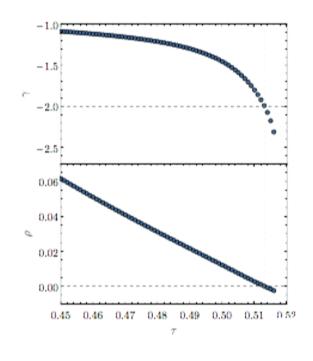




- Universal behavior in terms of $lpha_m(au)=A_m(au)e^{iB_m(au)}$, i.e.: $A_m(au)\sim au^{m-1}$, and $B_m(au)\nearrow$.
- Analyticity strip method [Sulem et al., '83], [Bizoń&Jałmużna, '13] (instability of AdS₃) with asymptotic ansatz $(m \gg 1)$

$$A_m(\tau) \sim m^{-\gamma(\tau)} e^{-\rho(\tau)m}$$
.

• Numerical data indicate: $\gamma(\tau) \approx 2$, $\rho(\tau) \approx \rho_0(\tau_* - \tau)$, as $\tau \to \tau_*$ ($\approx 0.513 \approx \tau_H$) and synchronization of phases $B_i \sim j$ during evolution.



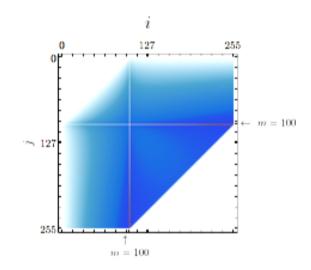
- Universal behavior in terms of $lpha_m(au)=A_m(au)e^{iB_m(au)}$, i.e.: $A_m(au)\sim au^{m-1}$, and $B_m(au)$.
- Analyticity strip method [Sulem et al., '83], [Bizoń&Jałmużna, '13] (instability of AdS₃) with asymptotic ansatz (m ≫ 1)

$$A_m(\tau) \sim m^{-\gamma(\tau)} e^{-\rho(\tau)m}$$
.

• Numerical data indicate: $\gamma(\tau) \approx 2$, $\rho(\tau) \approx \rho_0(\tau_* - \tau)$, as $\tau \to \tau_*$ ($\approx 0.513 \approx \tau_H$) and synchronization of phases $B_j \sim j$ during evolution.

$$2\omega_{m}A'_{m} = \sum_{ijk}^{-++} {'}C_{ijkm}^{-++}A_{i}A_{j}A_{k}\Im\left(e^{i(B_{i}+B_{j}-B_{k}-B_{m})}\right),$$

$$2\omega_m B_m' A_m = C_{mmmm}^{-++} A_m^3 + A_m \sum_{j \neq m} \left(C_{mjjm}^{-++} + C_{jmjm}^{-++} \right) A_j^2 + \cdots$$

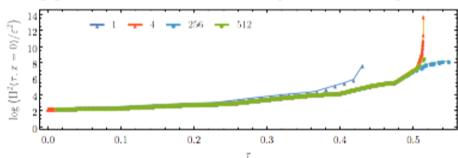


$$\begin{split} 2\omega_m B_m' \sim \\ \sim \sum_{j \neq m} \left(C_{mjjm}^{-++} + C_{jmjm}^{-++} \right) A_j^2 \\ \sim m^2 \sum_{j \neq m} \frac{1}{j} e^{-2\rho_0(\tau_* - \tau)j} \,. \end{split}$$

• Finite time ($au_* < \infty$) logarithmic blowup

$$B'_m(\tau) = a_m \log (\tau_* - \tau) + b_m.$$

■ Resonant approximation—blowup and collapse



• Method intended to provide uniformly bounded solution gives hints for instability. Note $|\alpha_j| < \infty \Rightarrow |\alpha_j'| < \infty$; here (d=4)

$$|\alpha_j| < \infty$$
 but $|\alpha_j^{(k)}| \sim \left(\frac{1}{\tau_* - \tau}\right)^{k-1}, \ k \ge 1,$

• Generalization of asymptotic $au o au_{\star}$ solution to $d \geq 4$

$$A_j \sim j^{\gamma} e^{-\rho \tau}, \quad \gamma \to -d/2, \quad \rho \to 0,$$

which blows up in finite time $\tau_* < \infty$. The character of blowup is oscillatory, i.e. phases behave as $B'_m(\tau) \sim \log(\tau_* - \tau)$ (in the interior gauge).

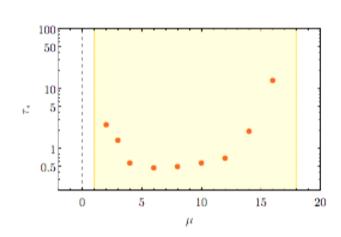
• Energy spectra: $|\alpha_j| \sim j^{-d/2} \Rightarrow E_j \sim j^{2-d}$. Dimensional argument [Bizoń&Rostworowski, '12?], also [Freivogel&Yang, '15].

■ Resonant approximation—two-mode initial data

But not all data leads to unbounded growth of higher Sobolev type norms.

$$\phi(0,x)=arepsilon(\mu)\left(rac{1}{\omega_0}e_0(x)+rac{1}{\mu}e_1(x)
ight),\quad \partial_t\phi(0,x)=0\,.$$

Stability islands (of time-periodic solutions [M&Rostworowski, '13], [Kim, '15], [Fodor et al., '15]?)



•
$$\mu \to \infty$$
, $\alpha_0(\tau) = \varepsilon e^{-i\frac{T_0}{2\omega_0}\tau}$,

•
$$\mu \to 0$$
, $\alpha_1(\tau) = \varepsilon e^{-i\frac{T_1}{2\omega_1}\tau}$.

 Stationary solutions [Balasubramanian et al., '14]

$$lpha_j(au) = A_j e^{iB_j au}, \ B_j = aj+b,$$

Stability [Green et al., '15], asymptotics [Craps et al., '15]. Role in dynamics of generic initial conditions?

The same picture for narrow/wide gaussians [Buchel et al., '13], [M&Rostworowski, '13].

■ Resonant approxmiation—models

Szegő system

$$i\alpha'_n = \sum_{j=0}^{\infty} \sum_{k=0}^{j+n} \bar{\alpha}_j \alpha_k \alpha_{n+j-k},$$

which is an exact system for cubic Szegő equation

$$i\partial_t u = \Pi\Big({|u|}^2\,u\Big)\,,\quad u(t,e^{i heta}) = \sum_{n=0}^\infty lpha_n(t)e^{in heta},$$

 $\sum_{n=0}^{\infty} |\alpha_n|^2 < \infty$, $\Pi(\sum_{n=-\infty}^{\infty} \alpha_n(t)e^{in\theta}) := \sum_{n=0}^{\infty} \alpha_n(t)e^{in\theta}$. Has a Lax pair, finite-dimensional invariant subspaces and weakly turbulent solutions [Gérard&Grellier, '10,'12,'15].

Conformally invariant wave equation on R × S³ (a geometric PDE)

$$\Box_g \phi - \frac{1}{6} R(g) \phi - \phi^3 = 0, \quad \Rightarrow \quad \partial_t^2 v - \partial_x^2 v + \frac{v^3}{\sin^2 x} = 0,$$

for $g=-\mathrm{d}t^2+\mathrm{d}x^2+\sin^2\!x\,\mathrm{d}\Omega^2$, and $v=\sin x\,\phi$. Its resonant approximation yields

$$i(n+1)lpha_n' = \sum_{j=0}^{\infty} \sum_{k=0}^{j+n} \left[\min(n,j,k,n+j-k)+1\right] ar{lpha}_j lpha_k lpha_{n+j-k},$$

which displays a number of dynamical parallels [Bizoń et al., '16].

■ Time-periodic solutions—perturbative approach

• We search for solutions of the form ($|\varepsilon| \ll 1$)

$$\phi(t,x) = \varepsilon \cos(\omega_{\gamma} t) e_{\gamma}(x) + \mathcal{O}(\varepsilon^3),$$

solution bifurcating from a single eigenmode γ .

We make an ansatz for the ε-expansion

$$\phi(au, x; arepsilon) = \sum_{\substack{\lambda \geq 1 \ \mathrm{odd}}} arepsilon^{\lambda} \phi_{\lambda}(au, x),$$

$$\delta(\tau, x; \varepsilon) = \sum_{\substack{\lambda \geq 2 \\ \mathrm{even}}} \varepsilon^{\lambda} \delta_{\lambda}(\tau, x), \qquad A(\tau, x; \varepsilon) = 1 - \sum_{\substack{\lambda \geq 2 \\ \mathrm{even}}} \varepsilon^{\lambda} A_{\lambda}(\tau, x),$$

where we rescaled the time variable

$$au = \Omega \, t, \qquad \Omega(arepsilon) = \omega_{\gamma} + \sum_{\lambda \geq 1} arepsilon^{\lambda} \xi_{\lambda}.$$

- Crucial part in the construction—solution to: $\left(\omega_\gamma^2\,\partial_ au^2-\hat L\right)\phi_\lambda=S_\lambda.$

■ Time-periodic solutions—perturbative approach

• We search for solutions of the form ($|\varepsilon| \ll 1$)

$$\phi(t,x) = \varepsilon \cos(\omega_{\gamma} t) e_{\gamma}(x) + \mathcal{O}(\varepsilon^3),$$

solution bifurcating from a single eigenmode γ .

We make an ansatz for the ε-expansion

$$\phi(au, x; arepsilon) = \sum_{\substack{\lambda \geq 1 \ \mathrm{odd}}} arepsilon^{\lambda} \phi_{\lambda}(au, x),$$

$$\delta(\tau, x; \varepsilon) = \sum_{\substack{\lambda \geq 2 \\ \mathrm{even}}} \varepsilon^{\lambda} \delta_{\lambda}(\tau, x), \qquad A(\tau, x; \varepsilon) = 1 - \sum_{\substack{\lambda \geq 2 \\ \mathrm{even}}} \varepsilon^{\lambda} A_{\lambda}(\tau, x),$$

where we rescaled the time variable

$$au = \Omega \, t, \qquad \Omega(arepsilon) = \omega_\gamma + \sum_{\lambda \geq 1} arepsilon^\lambda \xi_\lambda.$$

- Crucial part in the construction—solution to: $\left(\omega_\gamma^2\,\partial_ au^2-\hat L\right)\phi_\lambda=S_\lambda.$

■ Time-periodic solutions—perturbative approach

Assuming

$$\phi_{\lambda}(au,x) = \sum_{j\geq 0} \hat{\phi}_{\lambda,j}(au) e_j(x),$$

we get a set of forced harmonic oscillator equations

$$\left(\omega_{\gamma}^2\,\partial_{ au}^2 - \omega_k^2
ight)\hat{\phi}_{\lambda,k}(au) = \int_0^{\pi/2} S_{\lambda}(au,x)e_k(x) an^{d-1}x \,\mathrm{d}x,$$

with initial conditions $\hat{\phi}_{\lambda,k}(0)=c_{\lambda,k}$, and $\partial_{ au}\hat{\phi}_{\lambda,k}(0)= ilde{c}_{\lambda,k}$.

- We use the integration constants $\{c_{\lambda,k}, \tilde{c}_{\lambda,k}\}$ and frequency shift parameters ξ_{λ} to remove all of the resonant terms: $\cos((\omega_k/\omega_\gamma)\tau)$, $\sin((\omega_k/\omega_\gamma)\tau)$.
- Regular structure for each dominant mode (d even)

$$\phi_{\lambda}(\tau,x) = \sum_{j=0}^{\left[(\lambda-1)(d+1)/2+\lambda\gamma\right]} \sum_{k=0}^{(\lambda-1)/2} \hat{\phi}_{\lambda,j,2k+1} \cos\left(\left(2k+1\right)\tau\right) e_j(x),$$

(exceptional cancellation of resonant terms [Craps et al., '14, '15]).

Extension to massive case [Kim, '15].

■ Time-periodic solutions—numerical construction

• Search for solution in a finite-dimensional subspace of some Hilbert space [trial functions $\cos(k\tau) \ e_i(x)$]

$$\mathsf{B}_{K,N} = \mathrm{span} \left\{ \cos(k \tau) \, e_j(x) \, | \, k = 0, 1, \dots, K, \, j = 0, 1, \dots, N \right\}.$$

• Assuming ($\tau = \Omega t$)

$$\mathcal{I}_{K,N}\phi(au,x) = \sum_{k=0}^{K-1} \sum_{j=0}^{N-1} \hat{\phi}_{k,j} \cos\left(\left(2k+1\right) au\right) \, e_j(x),$$

$$\mathcal{I}_{K,N}\Pi(au,x) = \sum_{k=0}^{K-1} \sum_{j=0}^{N-1} \hat{\Pi}_{k,j} \sin\left((2k+1)\, au
ight)\,e_j(x).$$

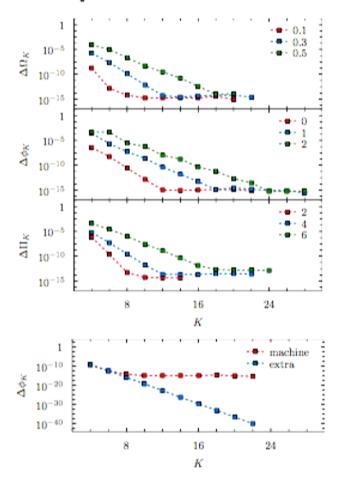
solution is represented by the set of 2KN+1 coefficients. Collocation approach [test functions $\delta(x-x_j)\delta(\tau-\tau_i)$], two equations on each grid point—use of time evolution code.

- One extra equation—the normalization condition e.g. $\left. \left(\phi \, | \, e_{\gamma} \, \right) \right|_{\tau=0} = arepsilon$.
- Alternative approaches: [Boyd, '90], [Ambrose&Wilkening, '10], [Fodor et al., '14].

31

Pirsa: 16110088

■ Time-periodic solutions—structure

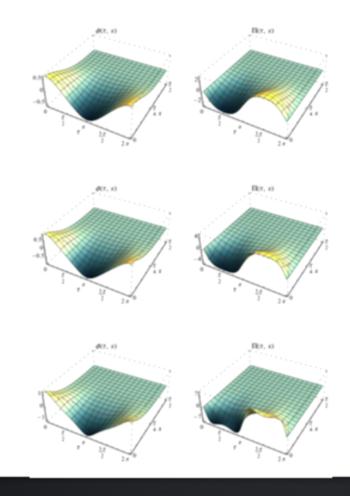


- Fast (spectral) convergence.
- For each family $\gamma=0,1,\ldots$, there is a finite range of ε for which solutions do exist [M&Rostworowski, '13], [Kim, '15].
- With perturbative series one can find an estimate for that limits with Padé resumation.
- Normalization condition problem (*central density*, $\phi(0,0) = \varepsilon$) [Fodor *et al.*, '14] .
- Upper bound on total mass of the solutions.
- Similar structure of standing waves (complex φ)

$$\phi(t,x)=e^{i\Omega t}f(x).$$

[Buchel et al., '13], [M&Rostworowski, '14].

■ Time-periodic solutions—structure

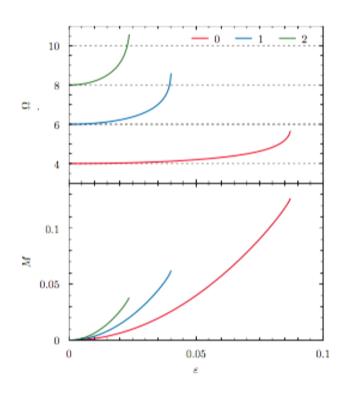


- Fast (spectral) convergence.
- For each family γ = 0, 1, ..., there is a finite range of ε for which solutions do exist [M&Rostworowski, '13], [Kim, '15].
- With perturbative series one can find an estimate for that limits with Padé resumation.
- Normalization condition problem (*central density*, $\phi(0,0) = \varepsilon$) [Fodor *et al.*, '14] .
- Upper bound on total mass of the solutions.
- Similar structure of standing waves (complex φ)

$$\phi(t,x) = e^{i\Omega t} f(x).$$

[Buchel et al., '13], [M&Rostworowski, '14].

■ Time-periodic solutions—structure

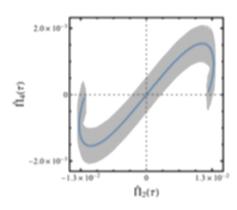


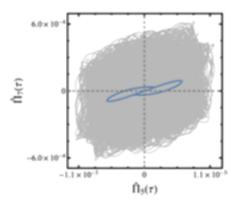
- Fast (spectral) convergence.
- For each family $\gamma=0,1,\ldots$, there is a finite range of ε for which solutions do exist [M&Rostworowski, '13], [Kim, '15].
- With perturbative series one can find an estimate for that limits with Padé resumation.
- Normalization condition problem (*central density*, $\phi(0,0) = \varepsilon$) [Fodor *et al.*, '14] .
- Upper bound on total mass of the solutions.
- Similar structure of standing waves (complex φ)

$$\phi(t,x)=e^{i\Omega t}f(x).$$

[Buchel et al., '13], [M&Rostworowski, '14].

■ Time-periodic solutions—nonlinear stability



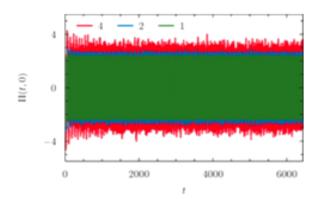


- MOL with pseudospectral discretization in space (dedicated schemes for even and odd d) and symplectic time stepping (Gauss-RK).
- Nonlinear stability for $|\varepsilon| < \varepsilon_*$.
- Long time evolution of generic perturbation imposed on time-periodic background—dispersive spectra [M&Rostworowski, '13, '14].
- Unstable branch for $|\varepsilon| > \varepsilon_*$.
- Quality of numerical solution—convergence and conservation of mass.

- 23

Pirsa: 16110088 Page 32/39

■ Time-periodic solutions—nonlinear stability



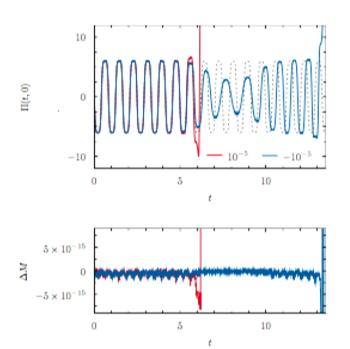
10⁻¹²
10⁻¹⁴
10⁻¹⁶
0 2000 4000 6000

- MOL with pseudospectral discretization in space (dedicated schemes for even and odd d) and symplectic time stepping (Gauss-RK).
- Nonlinear stability for |ε| < ε_{*}.
- Long time evolution of generic perturbation imposed on time-periodic background—dispersive spectra [M&Rostworowski, '13, '14].
- Unstable branch for $|\varepsilon| > \varepsilon_*$.
- Quality of numerical solution—convergence and conservation of mass.

6.0

Pirsa: 16110088 Page 33/39

■ Time-periodic solutions—nonlinear stability



- MOL with pseudospectral discretization in space (dedicated schemes for even and odd d) and symplectic time stepping (Gauss-RK).
- Nonlinear stability for $|\varepsilon| < \varepsilon_*$.
- Long time evolution of generic perturbation imposed on time-periodic background—dispersive spectra [M&Rostworowski, '13, '14].
- Unstable branch for $|\varepsilon| > \varepsilon_*$.
- Quality of numerical solution—convergence and conservation of mass.

- 23

Pirsa: 16110088 Page 34/39

■ Relaxing symmetry assumption

- Cohomogenity-two biaxial Bianchi IX ansatz [Bizoń et al., '06]: turbulence [Bizoń&Rostworowski, '14] and time-periodic solutions [M, '14].
- Geons—a time-periodic solutions solutions to $R_{ab}+\frac{3}{\ell^2}g_{ab}=0$, with Killing vector $K=\partial_t+\Omega\,\partial_{\varphi}$ [Dias et al., '12] , [Horowitz&Santos, '15] , [Dias&Santos, '16] . Using naïve Poincaré-Lindstedt method $g_{\mu\nu}=\bar{g}_{\mu\nu}+\sum_{k\geq 1}\varepsilon^kh_{\mu\nu}^{(k)}$

$$\Delta_{\hat{L}}(ar{g})h_{ab}^{(k)}=T_{ab}^{(k)}\,\left(h_{cd}^{(j\leq k-1)}
ight),$$

(at third perturbative order) one will find "(...) normal modes without a nonlinear extension and geons". Their numerical construction uses de Turck method [Headrick et al., '10], [Figueras et al., '11] (based on harmonic formulation)

$$R_{ab} + rac{3}{\ell^2} g_{ab} -
abla_{(a} \, \xi_{b)} = 0,$$

where $\xi^a=g^{bc}\left(\Gamma^a{}_{bc}-\bar{\Gamma}^a{}_{bc}\right)$, with the Levi-Civita connection $\bar{\Gamma}$ of \bar{g} . Requires solution to nonlinear PDEs on compact domain.

Black holes in AdS

- The end state of instability? Schwarzschild-AdS candidate in spherical symmetry
 [Holzegel&Smulevici, '13].
- Outside spherical symmetry Kerr-AdS [Cardoso&Dias, '04]?
- Superradiant instability [Hawking&Reall, '00], [Dias et al., '15], [Bosch et al., '16].
- Dynamics of asymptotically AdS solutions with black holes [Bantilan et al., '12], [Bantilan, '13], [Bantilan&Romatschke, '15].
- Stationary solutions with AdS asymptotics—higher dimensions and lumpy black holes, black rings, black belts, etc. Application of de Turck method [Dias et al., '15].
- Studies motivated by AdS/CFT, e.g. collisions of shocks [Chesler&Yaffe, '14], and many more.

Pirsa: 16110088 Page 36/39

Black holes in AdS

- The end state of instability? Schwarzschild-AdS candidate in spherical symmetry [Holzegel&Smulevici, '13].
- Outside spherical symmetry Kerr-AdS [Cardoso&Dias, '04]?
- Superradiant instability [Hawking&Reall, '00], [Dias et al., '15], [Bosch et al., '16].
- Dynamics of asymptotically AdS solutions with black holes [Bantilan et al., '12], [Bantilan, '13], [Bantilan&Romatschke, '15].
- Stationary solutions with AdS asymptotics—higher dimensions and lumpy black holes, black rings, black belts, etc. Application of de Turck method [Dias et al., '15].
- Studies motivated by AdS/CFT, e.g. collisions of shocks [Chesler&Yaffe, '14], and many more.

Pirsa: 16110088 Page 37/39

- 2

Conclusions and questions

- So, is AdS stable?
- Extend studies of the resonant system. Study simple models—conformally invariant cubic wave equation on the Einstein cylinder [Bizoń et al., '16] (low-dimensional invariant subspaces, a wealth of stationary states).
- How to transfer oscillatory blowup to the full system? How to interpret oscillatory singularity? Is
 it related to Choptuik's critical solution?
- Nontrivial (complicated) phase-space of solutions to the Einstein's equation with negative cosmological constant. How large the islands of stability are? Understand the role of stationary solutions in the dynamics [Green et al., '15]. Explore the borderline between collapse and quasiperiodic motion.
- The resonant structure [Craps et al., '14, '15] and its impact on nonlinear evolution. Is *Minkowski in a box* with reflecting BC a good model for EKG system with $\Lambda < 0$?
- Prove the existence of time-periodic solutions [Gentile et al., '05].
- Clash between different numerical approaches ([Balasubramanian et al., '14] and [Bizoń&Rostworowski, '14], see also [Deppe&Frey, '15]) shows that long-time evolution of asymptotically AdS solutions is particularly demanding.

Pirsa: 16110088

Conclusions and questions

- Weak turbulence—common phenomena for nonlinear wave equations on bounded domains (NLS on torus [Colliander et al., '10], [Carles&Faou, '12]).
- Challenging mathematical problems, both for any attempts to rigorous proofs and numerical analysis. Meeting point of GR, theory of PDEs, turbulence, and HEP, makes it exciting field of research.

- 27

Pirsa: 16110088 Page 39/39