Title: Non-Relativistic Scale Anomalies and Geometry

Date: Nov 22, 2016 02:30 PM

URL: http://pirsa.org/16110081

Abstract: $\langle p \rangle$ I will discuss the coupling of non-relativistic field theories to curved spacetime, and develop a framework for analyzing the possible structure of non-relativistic (Lifshitz) scale anomalies using a cohomological formulation of the Wess-Zumino consistency condition. I will compare between cases with or without Galilean boost symmetry, and between cases with or without an equal time foliation of spacetime. In 2+1 dimensions with a dynamical critical exponent of z=2, the absence of a foliation structure allows for an A-type anomaly in the Galilean case, but also introduces the possibility of an infinite set of B-type anomalies. $\langle p \rangle$

I will also derive Ward identities for flat space correlation functions in Lifshitz field theories, and develop a method for calculating Lifshitz anomaly coefficients from these correlation functions using split dimensional regularization.

Pirsa: 16110081 Page 1/59

Non-Relativistic Scale Anomalies and Geometry

Igal Arav

Tel-Aviv University

November 22, 2016

Talk at Perimeter Institute
Based On:

arXiv: 1410.5831, 1601.06795 with Shira Chapman, Yaron Oz arXiv: To appear soon, with Yaron Oz, Avia Raviv-Moshe

Pirsa: 16110081 Page 2/59

Outline

Introduction

Lifshitz Field Theories Scale Anomalies

Coupling to Curved Spacetime

Background Structure

Absence of Foliation Structure

Adding Galilean Symmetry

Symmetries and Ward Identities

Structure of Non-Relativistic Scale Anomalies

The Cohomological Problem

Main Results

Lifshitz Anomalies, Ward Identities and Split Dimensional

Regularization

Anomaly from Correlation Functions

Split Dimensional Regularization

Free Scalar

Outlook and Open Questions

Pirsa: 16110081 Page 3/59

Lifshitz Scaling Symmetry

I will consider **non-relativistic** field theories in d + 1 spacetime dimensions, which are invariant under:

► Lifshitz scaling *D*:

$$t \to \lambda^z t, \qquad x^i \to \lambda x^i, \qquad i = 1, \dots, d,$$

where z - the dynamical critical exponent,

- ▶ Time translations $H = i\partial_t$,
- ▶ Space translations $P_i = -i\partial_i$,
- ▶ Space rotations $L_{ij} = -i[x_i\partial_j x_j\partial_i]$,

With the usual commutation relations, as well as:

$$[D, H] = izH,$$
 $[D, P_i] = iP_i,$ $[D, L_{ij}] = 0.$

Lifshitz Scaling Symmetry

Occurs in **quantum critical points** of condensed matter systems:

- Critical points of zero temperature phase transitions induced by tuning an external parameter,
- Described by an effective quantum field theory with Lifshitz scaling symmetry,
- ▶ Believed to be the cause of 'strange metal' phases in certain high T_c superconductors and heavy fermion compounds.

Pirsa: 16110081 Page 5/59

Galilean Field Theories

I will also consider Lifshitz field theories which are symmetric under the full Galilean group, that contains in addition:

► Galilean boosts *K_i*:

$$x^i \to x^i + v^i t, \qquad t \to t,$$

▶ Global U(1) symmetry M corresponding to conserved particle number.

Along with the commutation relations:

$$[K_i, K_j] = 0,$$
 $[K_i, H] = iP_i,$ $[K_i, P_j] = iM\delta_{ij},$ $[D, K_i] = i(1-z)K_i,$ $[D, M] = i(2-z)M.$

Note that:

- M is a central extension of the Galilean algebra,
- ▶ M has no Lifshitz dimension only for z = 2.

Examples of Lifshitz Field Theories

► Free real scalar for general *d* and even *z* (no Galilean invariance):

$$S = \int dt d^d x \, \left[\frac{1}{2} (\partial_t \phi)^2 - \frac{\kappa}{2} ((\nabla^2)^{\frac{z}{2}} \phi)^2 \right],$$

- \triangleright κ is some parameter (with Lifshitz dimension 0).
- Invariant under Lifshitz scaling:

$$t \to \lambda^z t, \qquad x^i \to \lambda x^i, \qquad \phi \to \lambda^{\frac{z-d}{2}} \phi.$$

Conformal / Weyl Anomalies - Review

▶ In relativistic conformal theories, the Ward identity corresponding to scale (or Weyl) symmetry is for the stress-energy tensor to be traceless:

$$T^\mu_\mu=0$$

- ▶ In even spacetime dimension *D*, this identity is violated by the quantum theory when defined on a curved manifold. This is known as the **conformal** / **Weyl** / **trace anomaly**.
- ► In general:

$$<\mathcal{T}^{\mu}_{\mu}>=\mathcal{A}=-(-1)^{D/2}\mathsf{a}\mathsf{E}_{D}+\sum_{i}c_{i}\mathsf{I}_{i},$$

- \triangleright E_D is the Euler density of the manifold (A-type anomaly),
- $ightharpoonup I_i$ are Weyl invariant densities (B-type anomalies),
- ightharpoonup a, c_i are coefficients that depend on the content of the theory.

Pirsa: 16110081 Page 8/59

Conformal / Weyl Anomalies - Review

These terms appear when the stress-tensor is required to be conserved and symmetric:

$$abla_{\mu} T^{\mu\nu} = 0, \qquad T_{[\mu\nu]} = 0.$$

▶ The curved space effective action $W[g_{\mu\nu}]$ is not Weyl-invariant:

$$\delta_{\sigma}^{W}W = \int \sqrt{-g}\sigma \mathcal{A}$$

- ► The anomalous terms also appear as contact terms in **flat** space correlation functions involving T^{μ}_{μ} .
- The possible structure of terms in the anomaly can be determined from the Wess-Zumino consistency condition. This can be formulated as a cohomological problem. [Bonora et al 1983]

Pirsa: 16110081 Page 9/59

Non-Relativistic Scale Anomalies

► For a non-relativistic theory, the Ward identity corresponding to Lifshitz scale symmetry is:

$$zT_0^0+T_i^i=0,$$

- As in the relativistic case, this identity can be violated due to an anomaly.
- ▶ **Goal:** Find the general form for such scale anomalies in non-relativistic theories, and calculate their coefficients.

Coupling to Curved Spacetime

Pirsa: 16110081 Page 11/59

Background Structure

- ▶ Given a d + 1 dimensional manifold, the following background structures are required:
 - 1. A vector $v^{\mu} = \partial_t$ that contains information about the direction and units of time at each point,
 - 2. A 1-form t_{μ} such that $u^{\mu}t_{\mu}=0 \Leftrightarrow u^{\mu}$ is in a spatial direction. Obviously we must require $t_{\mu}v^{\mu}\neq 0$ everywhere.
 - Alternatively normalized n_{μ} such that $n_{\mu}v^{\mu}=1$.
 - 3. A spatial metric $P_{\mu\nu}$ defined such that $P_{\mu\nu}v^{\mu}=0$.
- ► These 3 structures are equivalent to requiring the **1-form** t_{μ} and a **metric** defined as: $g_{\mu\nu} = P_{\mu\nu} n_{\mu}n_{\nu}$.
- In this notation, $n^{\mu}=g^{\mu\nu}n_{\nu}=-v^{\mu}$.
- ▶ Alternatively, we can use e^a_{μ} and t^a in vielbein formalism.

Pirsa: 16110081 Page 12/59

Foliation Structure

- ▶ Globally on the manifold, the integral curves of n^{μ} define a global notion of time.
- ▶ However, the 1-form t_{μ} **doesn't** necessarily define global equal-time slices over the manifold.
- ▶ The Frobenius theorem: t_{μ} induces a foliation on the manifold (\equiv hypersurface orthogonal) if and only if:

$$t \wedge dt = 0$$
 $(t_{[\alpha} \partial_{\beta} t_{\gamma]} = 0)$

- ▶ When the condition is satisfied: $t_{\mu} = f \partial_{\mu} h$, where h = const defines equal-time slices.
- Note that using ADM decomposition for the background metric implies the Frobenius condition!
- ▶ Should the Frobenius condition be assumed?

Pirsa: 16110081 Page 13/59

Foliation Structure

- ▶ Globally on the manifold, the integral curves of n^{μ} define a global notion of time.
- ▶ However, the 1-form t_{μ} **doesn't** necessarily define global equal-time slices over the manifold.
- ▶ The Frobenius theorem: t_{μ} induces a foliation on the manifold (\equiv hypersurface orthogonal) if and only if:

$$t \wedge dt = 0$$
 $(t_{[\alpha} \partial_{\beta} t_{\gamma]} = 0)$

- ▶ When the condition is satisfied: $t_{\mu} = f \partial_{\mu} h$, where h = const defines equal-time slices.
- Note that using ADM decomposition for the background metric implies the Frobenius condition!
- ▶ Should the Frobenius condition be assumed?

Pirsa: 16110081 Page 14/59

Pirsa: 16110081

Some Geometric Implications

- ► For solving the cohomological problem, it is convenient to decompose any tensor to components which are either tangent or normal to the spatial directions.
- We can decompose $\nabla_{\alpha} n_{\beta}$ as:

$$\nabla_{\alpha} n_{\beta} = (K_{\mathcal{S}})_{\alpha\beta} + (K_{\mathcal{A}})_{\alpha\beta} - \mathsf{a}_{\beta} n_{\alpha},$$

where $(K_S)_{\mu\nu}$, $(K_A)_{\mu\nu}$ and a_α are space tangent:

- $(K_S)_{\mu\nu} = \frac{1}{2}\mathcal{L}_n P_{\mu\nu}$ is symmetric,
- $(K_A)_{\mu\nu} = P_{\mu}^{\mu'} P_{\nu}^{\nu'} \nabla_{[\mu'} n_{\nu']}$ is anti-symmetric,
- $a_{\alpha} = \mathcal{L}_n \, n_{\alpha}$ is the acceleration vector.
- ▶ When the **Frobenius condition** is satisfied:
 - $(K_S)_{\mu\nu}$ is the extrinsic curvature of the induced foliation,
 - $(K_A)_{\mu\nu} = 0.$

Pirsa: 16110081 Page 16/59

Some Geometric Implications

If we define the space tangent derivative by:

$$\widetilde{\nabla}_{\mu}\,\widetilde{T}_{\alpha\beta...}\equiv P_{\mu}^{\mu'}P_{\alpha}^{\alpha'}P_{\beta}^{\beta'}\ldots\nabla_{\mu'}\,\widetilde{T}_{\alpha'\beta'...},$$

▶ The commutation of two space tangent derivatives:

$$\left[\widetilde{\nabla}_{\mu},\widetilde{\nabla}_{\nu}\right]\widetilde{V}_{\alpha}=\widetilde{R}_{\alpha\rho\mu\nu}\widetilde{V}^{\rho}+2K_{\mu\nu}^{A}\mathcal{L}_{n}\widetilde{V}_{\alpha},$$

- ▶ In the **Frobenius case**, $\widetilde{R}_{\alpha\rho\mu\nu}$ is the intrinsic curvature of the foliation.
- Generally it does not have all of the regular symmetries of the Riemann tensor.
- We can define another tensor $\widehat{R}_{\alpha\rho\mu\nu}$ that has all of them except for the second Bianchi identity.

Pirsa: 16110081 Page 17/59

Adding Galilean Symmetry

- ▶ In the case of a field theory invariant under the full Galilean group, there is an added U(1) symmetry and a corresponding conserved particle number current.
- ▶ Therefore when coupling to curved spacetime we add a background gauge field A_{μ} that couples to the conserved particle number current.
- The gauge invariant data is encoded in the field-strength tensor $F_{\mu\nu}$, or alternatively in the electric and magnetic fields (which are space tangent):

$$E_{\mu} \equiv F_{\mu\nu} n^{\nu}, \qquad B_{\mu\nu} \equiv P_{\mu}^{\mu'} P_{\nu}^{\nu'} F_{\mu'\nu'},$$

Pirsa: 16110081 Page 18/59

Adding Galilean Symmetry

- ► The full Galilean symmetry means that we have to consider two additional symmetries in curved spacetime:
 - ▶ Flat space global $U(1) \rightarrow U(1)$ gauge symmetry in curved spacetime,
 - ► Flat space Galilean boosts → Milne boost symmetry in curved spacetime.
- We have to restrict the various terms to ones which are gauge and Milne boost invariant.
- Note: For our purposes, this structure is equivalent to the Newton-Cartan geometry.

Pirsa: 16110081 Page 19/59

Symmetries

The flat space symmetries translate to local symmetries in curved spacetime.

1. TPD Invariance

Rotation invariance \rightarrow time-direction-preserving diffeomorphisms (TPD) invariance:

- lacksquare Diffeomorphisms with parameter ξ^μ such that $\mathcal{L}_\xi \ t_lpha \propto t_lpha.$
- When the Frobenius condition is satisfied, amounts to foliation-preserving diffeomorphisms of the form:

$$t \to f(t), \qquad x \to g(x,t)$$

► Can be extended to any ξ^{μ} by having t_{α} transform appropriately:

$$\delta_{\xi}^{D} g_{\mu\nu} = \nabla_{\mu} \xi_{\nu} + \nabla_{\nu} \xi_{\mu}, \quad \delta_{\xi}^{D} t_{\alpha} = \mathcal{L}_{\xi} t_{\alpha} = \xi^{\beta} \nabla_{\beta} t_{\alpha} + \nabla_{\alpha} \xi^{\beta} t_{\beta},$$

$$\delta_{\xi}^{D} A_{\alpha} = \mathcal{L}_{\xi} A_{\alpha} = \xi^{\beta} \nabla_{\beta} A_{\alpha} + \nabla_{\alpha} \xi^{\beta} A_{\beta}.$$

Pirsa: 16110081 Page 20/59

Symmetries

2. Anisotropic Weyl Invariance

Lifshitz scaling invariance → **anisotropic Weyl** invariance:

$$\delta_{\sigma}^{W} t_{\alpha} = 0,$$
 $\delta_{\sigma}^{W} (g^{\alpha\beta} t_{\alpha} t_{\beta}) = -2\sigma z (g^{\alpha\beta} t_{\alpha} t_{\beta}),$
 $\delta_{\sigma}^{W} P_{\alpha\beta} = 2\sigma P_{\alpha\beta},$
 $\delta_{\sigma}^{W} n_{\alpha} = z\sigma n_{\alpha}, \qquad \delta_{\sigma}^{W} n^{\alpha} = -z\sigma n^{\alpha},$
 $\delta_{\sigma}^{W} A_{\mu} = (2-z)\sigma A_{\mu}.$

(The weight of the gauge field is determined from the Galilean algebra.)

Pirsa: 16110081 Page 21/59

Symmetries

2. Anisotropic Weyl Invariance

Lifshitz scaling invariance → **anisotropic Weyl** invariance:

$$\delta_{\sigma}^{W} t_{\alpha} = 0,$$
 $\delta_{\sigma}^{W} (g^{\alpha\beta} t_{\alpha} t_{\beta}) = -2\sigma z (g^{\alpha\beta} t_{\alpha} t_{\beta}),$
 $\delta_{\sigma}^{W} P_{\alpha\beta} = 2\sigma P_{\alpha\beta},$
 $\delta_{\sigma}^{W} n_{\alpha} = z\sigma n_{\alpha}, \qquad \delta_{\sigma}^{W} n^{\alpha} = -z\sigma n^{\alpha},$
 $\delta_{\sigma}^{W} A_{\mu} = (2-z)\sigma A_{\mu}.$

(The weight of the gauge field is determined from the Galilean algebra.)

Pirsa: 16110081 Page 22/59

Symmetries (The Galilean Case)

3. Milne Boost Invariance

Galilean boost invariance in flat space:

$$\partial_i \to \partial_i, \qquad \partial_t \to \partial_t - v^i \partial_i,$$

translates to local **Milne boost** invariance in curved spacetime:

$$\delta_W^B n^\mu = W^\mu, \qquad \delta_W^B n_\mu = 0, \ \delta_W^B A_\mu = -W_\mu, \qquad \delta_W^B g_{\mu\nu} = W_\mu n_\nu + W_\nu n_\mu,$$

where W^{μ} is a space tangent $(W^{\mu}n_{\mu}=0)$ parameter of the transformation.

4. Gauge Invariance

Global U(1) Invariance (particle number) \rightarrow local gauge invariance:

$$\delta_{\Lambda}^{G} A_{\mu} = \partial_{\mu} \Lambda, \qquad \delta_{\Lambda}^{G} g_{\mu\nu} = \delta_{\Lambda}^{G} t_{\mu} = 0.$$

Currents and Ward Identities

Given the action $S(g_{\mu\nu}, t_{\alpha}, A_{\alpha}, \{\phi\})$, define the currents:

- ▶ Stress-energy tensor: $T^{\mu\nu}_{(g)} \equiv \frac{2}{\sqrt{-g}} \frac{\delta S}{\delta g_{\mu\nu}}, \quad T^{\mu\nu}_{(e)} \equiv \frac{1}{e} e^{a\nu} \frac{\delta S}{\delta e^{a}_{\mu}}$,
- Mass current: $J_m^{\alpha} \equiv \frac{1}{\sqrt{-g}} \frac{\delta S}{\delta A_{\alpha}}$.

Note that $T^{\mu\nu}_{(g)}$ and $T^{\mu\nu}_{(e)}$ are related by: $T^{\mu\nu}_{(e)}=T^{\mu\nu}_{(g)}+J^{\mu}t^{\nu}$.

These currents satisfy the following Ward identities:

From TPD invariance:

$$\begin{split} & \nabla_{\mu} \, T^{\mu}_{(g)^{\nu}} = J^{\mu} \nabla_{\nu} t_{\mu} - \nabla_{\mu} (J^{\mu} t_{\nu}) + J^{\mu}_{m} F_{\nu \mu}, \\ & \nabla_{\mu} \, T_{(e)}^{\ \mu}{}_{\nu} = J^{\mu} \nabla_{\nu} t_{\mu} + J^{\mu}_{m} F_{\nu \mu}, \qquad T_{(e)[\mu \nu]} = J_{[\mu} t_{\nu]}. \end{split}$$

Currents and Ward Identities

From anisotropic Weyl invariance:

$$D \equiv T^{\mu\nu}_{(g)} P_{\mu\nu} - z T^{\mu\nu}_{(g)} n_{\mu} n_{\nu} + \frac{2-z}{2} J^{\mu}_{m} A_{\mu} = 0$$

From Milne boost invariance:

$$P_{\nu\alpha}T^{\mu\nu}_{(e)}n_{\mu}=P_{\alpha\beta}J^{\beta}_{m},$$

 $(\Rightarrow$ momentum density = particle number current).

► From gauge invariance:

$$\nabla_{\mu}J_{m}^{\mu}=0.$$

▶ Our goal is to find the possible anomalous corrections to *D*, assuming the other Ward identities are not anomalous.

Currents and Ward Identities

From anisotropic Weyl invariance:

$$D \equiv T^{\mu\nu}_{(g)} P_{\mu\nu} - z T^{\mu\nu}_{(g)} n_{\mu} n_{\nu} + \frac{2-z}{2} J^{\mu}_{m} A_{\mu} = 0$$

From Milne boost invariance:

$$P_{\nu\alpha}T^{\mu\nu}_{(e)}n_{\mu}=P_{\alpha\beta}J^{\beta}_{m},$$

 $(\Rightarrow$ momentum density = particle number current).

► From gauge invariance:

$$\nabla_{\mu}J_{m}^{\mu}=0.$$

▶ Our goal is to find the possible anomalous corrections to *D*, assuming the other Ward identities are not anomalous.

Structure of Non-Relativistic Scale Anomalies

Based On: arXiv: 1410.5831, 1601.06795 with Shira Chapman, Yaron Oz

Goal:

- ► Find the general form for scale anomalies in non-relativistic theories with and without Galilean boost invariance as allowed by the Wess-Zumino consistency condition.
- Compare the cases with and without a foliation structure.

Pirsa: 16110081 Page 27/59

The Cohomological Problem

• Given the quantum effective action in curved spacetime $W(g_{\mu\nu},t_{\alpha},A_{\alpha})$, the anomalous Ward identity corresponding to the anisotropic Weyl symmetry is:

$$\delta_{\sigma}^{W}W=A_{\sigma},$$

where A_{σ} is a local functional of the background fields and σ .

▶ The Wess-Zumino consistency condition takes the form:

$$\delta_{\sigma_1}^W A_{\sigma_2} - \delta_{\sigma_2}^W A_{\sigma_1} = 0.$$

- ▶ A **trivial solution** of the form $A_{\sigma} = \delta_{\sigma}^{W} G$ where G is a local functional of the background fields can be cancelled by appropriate counterterms.
- We are looking for non-trivial solutions to the consistency condition.

Pirsa: 16110081 Page 28/59

The Cohomological Problem

- . An equivalent cohomological BRST-like description:
 - ightharpoonup Replace the parameter σ by a Grassmannian ghost.
 - ▶ Define δ_{σ}^{W} such that it's **nilpotent**: $(\delta_{\sigma}^{W})^{2} = 0$.
 - ▶ The Wess-Zumino condition takes the form: $\delta_{\sigma}^{W}A_{\sigma} = 0$.
 - ▶ Solutions are **cocycles** of δ_{σ}^{W} (δ_{σ}^{W} -closed).
 - ▶ Trivial solutions are **coboundaries** of δ_{σ}^{W} (δ_{σ}^{W} -exact).
 - Possible anomalies are local terms which are cocycles but not coboundaries:

$$\delta_{\sigma}^{W} A_{\sigma} = 0, \qquad A_{\sigma} \neq \delta_{\sigma}^{W} G$$

where A_{σ} , G are local and invariant under the other symmetries.

 \Rightarrow We are looking for the **relative cohomology** of δ_{σ}^{W} with respect to TPD, Milne boost and gauge transformations.

Basic Tangent Tensors

Basic Tangent Tensor		(n_T, n_S, n_ϵ)
Acceleration	$a_{\mu} \equiv \mathcal{L}_{n} n_{\mu} = n^{ u} abla_{ u} n_{\mu}$	(0,1,0)
"Extrinsic curvature"	$\mathcal{K}^{\mathcal{S}}_{\mu u}$	(1,0,0)
	$\widehat{R}_{\mu u ho\sigma}^{A}$	(-1, 2, 0)
"Intrinsic curvature"	$\widehat{R}_{\mu u ho\sigma}$	(0, 2, 0)
Spatial Levi-Civita tensor	$\tilde{\epsilon}^{\mu\nu\rho}=n_{\alpha}\epsilon^{\alpha\mu\nu\rho}$	(0, 0, 1)
Temporal derivative	\mathcal{L}_n	(1,0,0)
Space tangent derivative	$\widetilde{ abla}_{\mu}$	(0, 1, 0)
The electric field	${\sf E}_\mu$	(2,-1,0)
The magnetic field	$B_{\mu u}$	(1,0,0)

- ► TPD invariant terms in the cohomology can be built from a set of **basic space tangent tensors**.
- ▶ Each has a Lifshitz dimension $-(zn_T + n_S)$ and parity $(-1)^{n_\epsilon}$.
- ▶ In the Frobenius case: n_T , n_S = Total number of time / space derivatives.
- Generally $n_D = n_T + n_S = \text{Total number of derivatives}$.

→ □ > → □ > → □ > → □ > □ □ ● □ ● □ ● ○ ○ ○

Page 30/59

Classification by Sectors

- ▶ The cohomological problem can be solved for each (n_T, n_S, n_ϵ) sector separately (the sectors don't "mix").
- ▶ The possible sectors are given by the conditions:

$$zn_T + n_S = d + z$$
,
 $n_S + dn_\epsilon$ is even.

When the Frobenius condition is not satisfied $(K_{\mu\nu}^A \neq 0)$ and $z \geq 2$, there's an infinite number of sectors! \rightarrow Possible to have an infinite set of independent anomalies.

Scale Anomalies for 2 + 1 Dimensions z = 2

We consider 4 cases:

- 1. With Frobenius and Galilean boost invariance,
- 2. With Frobenius and no Galilean boost invariance,
- 3. Without Frobenius and with Galilean boost invariance,
- 4. Without Frobenius and no Galilean boost invariance.

The conditions for the possible sectors here are:

$$2n_T + n_S = 4$$
, n_S is even.

Some Definitions

For calculations in 2 + 1 dimensions we define:

$$B_{\mu\nu} \equiv B\tilde{\epsilon}_{\mu\nu}, \qquad K_{\mu\nu}^{A} \equiv K_{A}\tilde{\epsilon}_{\mu\nu}, \qquad \tilde{K}_{\alpha\beta}^{S} \equiv \tilde{\epsilon}_{(\alpha}{}^{\gamma}K_{\beta)\gamma}^{S}.$$

1. With Frobenius and Galilean boost invariance

- ► This case contains 6 sectors: (2,0,0), (2,0,1), (1,2,0), (1,2,1), (0,4,0), (0,4,1).
- ▶ In the sectors with $n_T > 0$ there are no boost and gauge invariant expressions.
- ▶ In the purely spatial sectors $(n_T = 0)$ all TPD invariants are also boost invariant. \Rightarrow Identical to the same sectors in the non-Galilean case.
- ▶ This leaves only 1 possible anomaly, which is B-type:

$$\mathcal{A}^{(0,4,0)} = \left(\widehat{R} + \widetilde{\nabla}_{\alpha} a^{\alpha}\right)^{2}.$$

Pirsa: 16110081 Page 33/59

2. With Frobenius and no Galilean boost invariance

- ► This case also contains the 6 sectors: (2,0,0), (2,0,1), (1,2,0), (1,2,1), (0,4,0), (0,4,1).
- ▶ There are 2 possible anomalies, in the (2,0,0) and (0,4,0) sectors:

$$\mathcal{A}_1^{(2,0,0)} = \operatorname{Tr}(K_S^2) - \frac{1}{2}K_S^2,$$
 $\mathcal{A}_2^{(0,4,0)} = \left(\widehat{R} + \widetilde{\nabla}_{\alpha} a^{\alpha}\right)^2.$

(where
$$K_S \equiv (K_S)^{\mu}_{\mu}$$
, $Tr(K_S^2) \equiv (K_S)^{\mu\nu}(K_S)_{\mu\nu}$.)

▶ Both anomalies are B-type.

Pirsa: 16110081 Page 34/59

3. Without Frobenius and with Galilean boost invariance

- ▶ Since $K_A \neq 0$, there's an **infinite** number of sectors.
- Full analysis was performed for those with $n_D < 4$ and the parity even sector with $n_D = 4$: (2,0,0), (2,0,1), (1,2,0), (1,2,1), (0,4,0).
- ► This case can also be derived from **null reduction** of a 3 + 1 Lorentzian manifold with a null isometry. [Jensen 2014] We didn't use it for the analysis here.
- ▶ There are no boost invariant expressions in sectors with $n_D < 4$ ($n_T > 0$).
 - ▶ Expected from the null reduction as there are no scalars of dimension 4 with $n_D < 4$.
- ► The cohomology in (0, 4, 0) mirrors the relativistic Weyl cohomology in 3 + 1 dimensions.
 - ▶ Expected from the null reduction, as this sector corresponds to scalars in 3 + 1 which involve only the curvature.

Pirsa: 16110081 Page 35/59

3. Without Frobenius and with Galilean boost invariance

▶ There are 2 anomalies in this sector:

$$\begin{split} \mathcal{A}_{E_4}^{(0,4,0)} = & (\widetilde{\nabla}_{\mu} + a_{\mu}) \left(4K_A B a^{\mu} + 8E^{\mu} K_A^2 + 8K_A \widetilde{K}_S^{\mu\nu} a_{\nu} + 4K_A K_S \widetilde{\epsilon}^{\mu\nu} a_{\nu} \right. \\ & + 2 (a_{\nu} \widetilde{\nabla}^{\nu} a^{\mu} - a^{\mu} \widetilde{\nabla}_{\nu} a^{\nu}) - 8\widetilde{\epsilon}^{\mu\nu} K_A \mathcal{L}_n a_{\nu} \right) \\ & + (\mathcal{L}_n + K_S) \left(16K_A \mathcal{L}_n K_A + 8K_S K_A^2 \right), \\ \mathcal{A}_{W^2}^{(0,4,0)} = & (\widehat{R} + \widetilde{\nabla}_{\mu} a^{\mu} - 8K_A B)^2 + 12\widetilde{\nabla}^{\mu} K_A (\widetilde{\nabla}_{\mu} + a_{\mu}) B \\ & + 12\widetilde{\epsilon}^{\mu\nu} \widetilde{\nabla}_{\nu} K_A (\widetilde{\nabla}_{\mu} + a_{\mu}) K_S + 12\widetilde{\epsilon}^{\mu\nu} \widetilde{\nabla}_{\mu} K_A \mathcal{L}_n a_{\nu} \\ & + 24\widetilde{\nabla}_{\alpha} K_A \widetilde{\nabla}_{\beta} \widetilde{K}_S^{\alpha\beta} - 72K_A E^{\mu} \widetilde{\nabla}_{\mu} K_A - 36(\mathcal{L}_n K_A)^2. \end{split}$$

- $ightharpoonup \mathcal{A}_{E_4}^{(0,4,0)}$ is A-type and corresponds to the 3+1 dimensional Euler density.
- $\mathcal{A}_{W^2}^{(0,4,0)}$ is B-type and corresponds to the 3 + 1 dimensional Weyl tensor squared.

Pirsa: 16110081 Page 36/59

3. Without Frobenius and with Galilean boost invariance

- ▶ When $K_A = 0$:
 - $ightharpoonup \mathcal{A}_{W^2}^{(0,4,0)}$ reduced to the B-type anomaly of the Frobenius case.
 - ▶ $\mathcal{A}_{E_4}^{(0,4,0)}$ reduced to an expression that becomes **trivial** and can be cancelled by the counterterm:

$$W_{c.t.} = \int \sqrt{-g} \left(\frac{1}{2} a^{\alpha} \widetilde{\nabla}_{\alpha}(a^2) + \frac{3}{8} a^4 \right).$$

- ▶ For the sectors with $n_D > 4$ we find an **infinite** set of independent anomalies:
 - \triangleright K_A is invariant under Weyl, gauge and Milne boost transformations.
 - \Rightarrow For any n, $\mathcal{A}^{(n)}=(\mathcal{K}_{\mathcal{A}})^{n}\mathcal{A}^{(0,4,0)}_{W^{2}}$ is a possible B-type anomaly with $n_{D}=4+n$.
 - There may be other anomalies in these sectors.

Pirsa: 16110081 Page 37/59

Summary

- When coupling non-relativistic theories to curved spacetime, the existence of a **foliation structure** (Frobenius condition) has important consequences, even for calculation of flat space quantities.
- For 2 + 1 dimensions with z = 2, it changes the possible forms of Lifshitz scale anomalies considerably, both in the Galilean and the non-Galilean cases.
- ► An **A-type anomaly** is possible in this case only if we both impose **Galilean boost invariance** and give up the **foliation structure** of spacetime.
- However, when giving up the foliation structure we introduce the possibility of having an **infinite** set of independent B-type anomalies.

Pirsa: 16110081 Page 39/59

Lifshitz Anomalies, Ward Identities and Split Dimensional Regularization

Based on work with Yaron Oz, Avia Raviv-Moshe (to appear soon)

Goal:

- Understand the structure of Ward identities for flat space correlation functions in Lifshitz field theories.
- Develop a method for calculating Lifshitz anomaly coefficients from correlation functions using split dimensional regularization.

Pirsa: 16110081 Page 40/59

Lifshitz Anomaly From Correlation Functions

- ▶ Lifshitz anomaly coefficients have been calculated in the past using heat kernel and zeta function regularization. [e.g. Baggio, de Boer, Holsheimer 2012]
- ► However, they can also be computed directly from **flat space** field theory correlation functions:

$$\langle T^{\mu_1}{}_{a_1}(x_1) \dots T^{\mu_n}{}_{a_n}(x_n) \rangle \equiv (-i)^{n-1} \frac{\delta^n W}{\delta e^{a_1}{}_{\mu_1}(x_1) \dots \delta e^{a_n}{}_{\mu_n}(x_n)}$$

From the curved spacetime anomalous Ward identity:

$$\langle D \rangle \equiv D^{\mu\nu} \langle T_{\mu\nu} \rangle = \mathcal{A},$$

where $D^{\mu\nu} \equiv P^{\mu\nu} - z \, n^{\mu} n^{\nu}$, we derive identities for flat space correlation functions

Pirsa: 16110081 Page 41/59

Lifshitz Anomaly from Correlation Functions

► For the 2-point function:

$$D_{\mu}^{a} \langle T^{\mu}{}_{a}(x) T^{\rho}{}_{b}(y) \rangle = -i \left. \frac{\delta \mathcal{A}(x)}{\delta e^{b}{}_{\rho}(y)} \right|_{\mathsf{flat}}$$

► For the 3-point function:

$$\begin{split} &D_{\mu}^{a} \left\langle T^{\mu}{}_{a}(x) T^{\rho}{}_{b}(y) T^{\alpha}{}_{c}(z) \right\rangle \\ &- i \left(\delta_{\mu}^{\rho} D_{b}^{a} - \delta_{b}^{\rho} D_{\mu}^{a} \right) \delta(x - y) \left\langle T^{\mu}{}_{a}(x) T^{\alpha}{}_{c}(z) \right\rangle \\ &- i \left(\delta_{\mu}^{\alpha} D_{c}^{a} - \delta_{c}^{\alpha} D_{\mu}^{a} \right) \delta(x - z) \left\langle T^{\mu}{}_{a}(x) T^{\rho}{}_{b}(y) \right\rangle = - \left. \frac{\delta^{2} \mathcal{A}(x)}{\delta e^{b}{}_{\rho}(y) \delta e^{c}{}_{\alpha}(z)} \right|_{\text{flat}} \end{split}$$

- By calculating the renormalized correlation functions and using these identities we can extract the anomaly coefficients.
- Unlike the relativistic case, we may need to calculate all n-point functions to find all the anomaly coefficients.

→ □ → → □ → → 重 → 重 | 重 | 回 → の Q ○

Pirsa: 16110081 Page 42/59

Split Dimensional Regularization

- ▶ Like in the relativistic case, the correlation functions of the stress-energy tensor need to be renormalized.
- We use a split dimensional regularization scheme: [Leibbrandt, Williams 1995]
 - ▶ Define the theory in d_t time dimensions and d_s space dimensions (invariant under "time rotations" and space rotations).
 - ▶ Calculate a correlation function $I(d_t, d_s)$ and analytically continue to: $d_t = 1 \varepsilon_t$, $d_s = d \varepsilon_s$.
- ▶ To one-loop order *I* has the form:

$$I(\varepsilon_t, \varepsilon_s) = \frac{1}{\varepsilon_{\mathsf{lif}}} f(\varepsilon_t, \varepsilon_s)$$

where $\varepsilon_{\text{lif}} \equiv z\varepsilon_t + \varepsilon_s$, and $f(\varepsilon_t, \varepsilon_s)$ is a regular function.

▶ In order to renormalize, we have to choose a parameter $\tilde{\varepsilon}(\varepsilon_t, \varepsilon_s)$ to keep fixed as we take the limit $(\varepsilon_t, \varepsilon_s) \to 0$.

Pirsa: 16110081 Page 43/59

Split Dimensional Regularization

► Then:

$$I(arepsilon_{\mathsf{lif}}, ilde{arepsilon}) = rac{1}{arepsilon_{\mathsf{lif}}} f(arepsilon_{\mathsf{lif}}, ilde{arepsilon}) = rac{1}{arepsilon_{\mathsf{lif}}} I^{(\mathsf{res})}(ilde{arepsilon}) + I^{(\mathsf{ren})} + O(arepsilon_{\mathsf{lif}})$$

where:

- $I^{(ren)} = \frac{\partial f}{\partial \varepsilon_{lif}}\Big|_{\tilde{\varepsilon}}$ is the renormalized correlation function,
- ▶ $I^{(\text{res})} = f(0, \tilde{\varepsilon})$ is the pole residue, and represents a **local** counterterm (polynomial in external momenta). [Anselmi, Halat 2007]
- The renormalization **depends on the choice of** $\tilde{\varepsilon}$. Changing $\tilde{\varepsilon}' \to \tilde{\varepsilon}$ will change the renormalized expression by a **local** term:

$$I^{(\text{ren})} \to \left(I^{(\text{ren})}\right)' - \alpha \left. \frac{\partial f}{\partial \tilde{\varepsilon}'} \right|_{\varepsilon_{\text{lif}}},$$

where
$$\alpha \equiv -\left. \frac{\partial \tilde{\varepsilon}'}{\partial \varepsilon_{\text{lif}}} \right|_{\tilde{\varepsilon}}$$
.

Anomaly from the Pole

- ▶ Feynman diagrams are more difficult to evaluate in the Lifshitz case since the propagator denominators are polynomials of degree 2z.
- Luckily, in some cases, the anomalous Ward identities can be computed from the ε_{lif} pole (the divergent part) alone!
- Suppose the Lifshitz Ward identity is:

$$T(\varepsilon_{\mathsf{lif}}, \tilde{\varepsilon})[I_k] = 0,$$

where $\{I_k\}$ is a set of correlation functions and T is some linear operator.

► As long as the split dimensional regularization scheme doesn't explicitly break Lifshitz symmetry, the unrenormalized functions satisfy this exactly.

Pirsa: 16110081 Page 45/59

Anomaly from the Pole

- ▶ Feynman diagrams are more difficult to evaluate in the Lifshitz case since the propagator denominators are polynomials of degree 2z.
- Luckily, in some cases, the anomalous Ward identities can be computed from the ε_{lif} pole (the divergent part) alone!
- Suppose the Lifshitz Ward identity is:

$$T(\varepsilon_{\mathsf{lif}}, \tilde{\varepsilon})[I_k] = 0,$$

where $\{I_k\}$ is a set of correlation functions and T is some linear operator.

► As long as the split dimensional regularization scheme doesn't explicitly break Lifshitz symmetry, the unrenormalized functions satisfy this exactly.

Pirsa: 16110081 Page 46/59

Anomaly from the Pole

▶ The anomaly then comes purely from the counterterm:

$$A = T(0,0) \left[I_k^{(\text{ren})} \right] = -\lim_{\left(\varepsilon_{\text{lif}},\tilde{\varepsilon}\right) \to 0} \left(\frac{1}{\varepsilon_{\text{lif}}} T(\varepsilon_{\text{lif}},\tilde{\varepsilon}) \left[I_k^{(\text{res})}(\tilde{\varepsilon}) \right] \right)$$

▶ If we change the choice of $\tilde{\varepsilon}$, A changes by a **trivial term** proportional to α :

$$A = A' - \alpha T(0,0) \left[\left. \frac{\partial f}{\partial \tilde{\varepsilon}'} \right|_{\varepsilon_{\mathsf{lif}}} \right]$$

 \Rightarrow As expected, only coefficients of trivial terms can depend on α .

Expansion in External Momenta

- ▶ The ε_{lif} pole residue (\equiv divergent part of the Feynman diagram) can be computed by expanding the integrand in the external momenta.
- ▶ The result is a **polynomial** in the external momenta.
- ► The coefficients are solvable integrals of a well-known form that depend only on the loop momentum.
- Extract the ε_{lif} pole, plug it back to the Ward identity and take the limit $(\varepsilon_{\text{lif}}, \tilde{\varepsilon}) \to 0$ to get the anomalous contribution (both anomalies and trivial terms!).

Pirsa: 16110081 Page 48/59

Example: Free z = 2 Scalar in 2 + 1 Dimensions

▶ Consider a free Lifshitz scalar in 2 + 1 dimensions, with z = 2, with the action:

$$S = \int dt d^2x \, \left[\frac{1}{2} (\partial_t \phi)^2 - \frac{\kappa}{2} (\nabla^2 \phi)^2 \right]$$

- ▶ In order to perform split dimensional regularization, we have to couple the theory to curved spacetime with d_t time dimensions and d_s space dimensions.
- ▶ The coupling has to be **anisotropic Weyl invariant** and **non-singular** as $d_t \rightarrow 1$ and $d_s \rightarrow 2!$
- ► There is more than one way to do this.

Pirsa: 16110081 Page 49/59

Free Scalar: Coupling to Curved Spacetime

▶ We use the following action:

$$S = \int d^{d_t + d_s} x \sqrt{-g} \left\{ \frac{1}{2} \left[\mathcal{L}_{n^{(i)}} \phi + \xi_1 K_S^{(i)} \phi \right]^2 - \frac{\kappa}{2} \left[\widetilde{\nabla}^2 \phi + \xi_2 a^{\mu} \widetilde{\nabla}_{\mu} \phi + \xi_3 a^2 \phi + \xi_4 \widetilde{\nabla}_{\mu} a^{\mu} \phi \right]^2 \right\}$$

$$\xi_1 \equiv \frac{1}{d_s} \left(\frac{1}{2} d_{\text{lif}} - 2 \right), \quad \xi_2 \equiv \frac{d_t - 1}{d_t}, \quad (d_{\text{lif}} \equiv z d_t + d_s)$$

$$\xi_3 \equiv \frac{1}{4 d_t^2} \left(\frac{1}{2} d_{\text{lif}} - 2 \right) \left(d_t - \frac{1}{2} d_s \right), \quad \xi_4 \equiv \frac{1}{2 d_t} \left(\frac{1}{2} d_{\text{lif}} - 2 \right)$$

- $n_{\mu}^{(i)}, i = 1, \dots, d_t$ are orthonormal 1-forms corresponding to the time directions,
- ► The background expressions are defined similarly to the 1 time dimension case.
- ▶ This action is invariant under TPD, anisotropic Weyl transformations and time rotations: $n^{(i)} = U^{ij} n^{(j)}$.

イロトイプトイミトイミト 夏年 かくご

Pirsa: 16110081 Page 50/59

Free Scalar: Correlation Function $\varepsilon_{\mathrm{lif}}$ Poles

- ▶ From the curved spacetime action, the flat space stress-energy tensor in $d_s + d_t$ dimensions is derived.
- ► The following diagrams contribute to the two-point function and three-point function of the stress-energy tensor:

- ▶ By computing the divergent parts of these diagrams and plugging them into the Ward identities, we obtain the anomalous contributions to these identities.
- ► Finally, comparing with the variations of the possible anomaly (and trivial terms) densities we can extract the anomaly coefficients.

Pirsa: 16110081 Page 51/59

Free Scalar: Main Results

- Computation was performed for the two-point and three-point functions.
 - \Rightarrow Only the coefficients of terms of order ≤ 2 in the background fields can be extracted.
- Since the computation involves thousands of terms, we used a Mathematica script to perform it.
- ► The results are consistent with previous calculations using the heat kernel method.
- \blacktriangleright As expected, only coefficients of trivial terms depend on α .
- ▶ For the (2,0,0) $(n_D=2)$ sector:
 - ▶ There is one anomaly $Tr(K_S^2) \frac{1}{2}K_S^2$ with a coefficient: $\frac{1}{32\sqrt{\kappa}\pi}$.
 - There is one trivial term: $\mathcal{L}_n K_S + K_S^2$ with a coefficient: $\frac{3-2\alpha}{96\sqrt{\kappa}\pi}$.

Pirsa: 16110081 Page 52/59

Free Scalar: Main Results

For the (0, 4, 0) $(n_D = 4)$ sector:

- ► There are 3 independent anomalies up to second order, all of them with vanishing coefficients.
- ▶ There are 9 independent trivial terms up to second order. All of them have coefficients proportional to α .
- Some trivial terms with non-vanishing coefficients are ones that vanish in the Frobenius case.
- ▶ For example, the term: $(\widetilde{\nabla}_{\alpha} + a_{\alpha}) \left(K_{A} \widetilde{\nabla}_{\beta} \widetilde{K}_{S}^{\alpha\beta} \right)$ has a coefficient: $-\frac{\sqrt{\kappa}\alpha}{12\pi}$.
- ▶ ⇒ For $\alpha \neq 0$, one needs to violate the Frobenius condition to cancel these terms!

Pirsa: 16110081 Page 53/59

Free Scalar: Main Results

For the (0, 4, 0) $(n_D = 4)$ sector:

- ► There are 3 independent anomalies up to second order, all of them with vanishing coefficients.
- ▶ There are 9 independent trivial terms up to second order. All of them have coefficients proportional to α .
- Some trivial terms with non-vanishing coefficients are ones that vanish in the Frobenius case.
- ▶ For example, the term: $(\widetilde{\nabla}_{\alpha} + a_{\alpha}) \left(K_{A} \widetilde{\nabla}_{\beta} \widetilde{K}_{S}^{\alpha\beta} \right)$ has a coefficient: $-\frac{\sqrt{\kappa}\alpha}{12\pi}$.
- ▶ ⇒ For $\alpha \neq 0$, one needs to violate the Frobenius condition to cancel these terms!

Pirsa: 16110081 Page 54/59

Anomaly Ambiguity?

- ▶ For theories that include a Lifshitz scalar with z = d, an interesting ambiguity seems to occur.
- ▶ In these cases, the scalar ϕ is dimensionless.
- ► If A is a B-type anomaly density of the theory which is second order in the background fields, we can add to the curved spacetime action a term:

$$S_0 = \beta \int d^{d+1} x \sqrt{-g} \, \mathcal{A} \phi^n$$

(an example was suggested by [Griffin, Hořava, Melby-Thompson 2012])

- ▶ Neither the flat space action nor the flat space currents change as a result of this addition.
- ▶ However, the anomaly coefficient of \mathcal{A} will change by βc , where c is defined by the anomalous Ward identity:

$$\langle D(x)\phi^n(y)\rangle = ic\delta(x-y)$$

Pirsa: 16110081 Page 55/59

Anomaly Ambiguity?

- ▶ Unlike the relativistic conformal case, specifying the flat space action and currents is **not enough** to determine the consistent anomaly coefficients one has to specify the curved spacetime coupling.
- ▶ This type of ambiguity doesn't occur in the relativistic case since in the d=2 dimensionless scalar case there are no B-type anomalies.
- ▶ **Note:** $\langle \phi^n(x)\phi^n(y)\rangle$ diverges logarithmically in the infinite volume limit \Rightarrow No ambiguity in theories with no built-in IR cutoff.
- ▶ Our results in this work are for the minimal coupling case.

Pirsa: 16110081 Page 56/59

Anomaly Ambiguity?

- ▶ For theories that include a Lifshitz scalar with z = d, an interesting ambiguity seems to occur.
- ▶ In these cases, the scalar ϕ is dimensionless.
- ► If A is a B-type anomaly density of the theory which is second order in the background fields, we can add to the curved spacetime action a term:

$$S_0 = \beta \int d^{d+1} x \sqrt{-g} \, \mathcal{A} \phi^n$$

(an example was suggested by [Griffin, Hořava, Melby-Thompson 2012])

- ▶ Neither the flat space action nor the flat space currents change as a result of this addition.
- ▶ However, the anomaly coefficient of \mathcal{A} will change by βc , where c is defined by the anomalous Ward identity:

$$\langle D(x)\phi^n(y)\rangle = ic\delta(x-y)$$

Pirsa: 16110081 Page 57/59

Summary

- ► A split dimensional regularization method was used to compute Lifshitz anomaly coefficients in the free scalar case.
- ► Some of the trivial terms found in this case require a curved spacetime description that **violates the Frobenius condition**.
- In the z=d scalar case, the relation between flat space correlation functions of the stress-energy tensor and the consistent anomaly coefficients seems to be **ambiguous**.

Pirsa: 16110081 Page 58/59

Outlook and Open Questions

- ▶ The Frobenius condition:
 - Can the non-relativistic quantum theory be consistently defined on a curved background without a foliation structure?
 - What are the implications on the calculation of flat space quantities?
 - Are there theories with non-vanishing coefficients for anomalies that violate it?
- ▶ Is there a general structure for Lifshitz scale anomalies for general d and z, with or without Galilean boost invariance?
- ► Can the split dimensional regularization method be used to compute anomalies in other Lifshitz or Galilean theories?
- Does the coefficient of the A-type anomaly in the boost invariant case have an interesting behaviour along RG flows? Can it lead to an a-theorem for Galilean theories?
- What are the implications of the ambiguity in the coefficients of B-type anomalies for the z=d scalar case?
- Lifshitz scale invariance vs. full Schrödinger invariance in Galilean theories.

Pirsa: 16110081