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Abstract: <p>I will discuss the coupling of non-relativistic field theories to curved spacetime, and develop a framework for analyzing the possible
structure of non-relativistic (Lifshitz) scale anomalies using a conomological formulation of the Wess-Zumino consistency condition. | will compare
between cases with or without Galilean boost symmetry, and between cases with or without an equal time foliation of spacetime. In 2+1 dimensions
with adynamical critical exponent of z=2, the absence of afoliation structure allows for an A-type anomaly in the Galilean case, but also introduces
the possibility of an infinite set of B-type anomalies.</p>

<p>| will also derive Ward identities for flat space correlation functions in Lifshitz field theories, and develop a method for calculating Lifshitz
anomaly coefficients from these correlation functions using split dimensional regularization.</p>
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Lifshitz Scaling Symmetry

| will consider non-relativistic field theories in d + 1 spacetime
dimensions, which are invariant under:

» Lifshitz scaling D:
t — \°t, x' — Ax'. i=1..... d,

where z - the dynamical critical exponent,
» Time translations H = /o,
» Space translations P; = —i0;,
» Space rotations L = —i[x;0; — x;j],

With the usual commutation relations, as well as:

[D.H]=izH.  [D.P]=iP. [D.Lj]=0.
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Lifshitz Scaling Symmetry

Occurs in quantum critical points of condensed matter systems:

» Critical points of zero temperature phase transitions induced
by tuning an external parameter,

» Described by an effective quantum field theory with Lifshitz
scaling symmetry,

» Believed to be the cause of ‘strange metal’ phases in certain
high T, superconductors and heavy fermion compounds.
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Galilean Field Theories

| will also consider Lifshitz field theories which are symmetric under
the full Galilean group, that contains in addition:

» Galilean boosts Kj:
x" = x'+ V't t — t.

» Global U(1) symmetry M corresponding to conserved particle
number.

Along with the commutation relations:

[Ki, Kj] = 0. [Ki, H] = iP;. [Ki. Pj] = iMoj;.
[D. K] = i(1 - 2)K;. [D.M] =i(2 - z)M.

Note that:
» M is a central extension of the Galilean algebra,

» M has no Lifshitz dimension only for z = 2.
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Examples of Lifshitz Field Theories

» Free real scalar for general d and even z (no Galilean
invariance):

' 1 2\ Z 12
S = /dtddx [5((.)1»())2 — E((V")B(ﬁ))‘

» ~ is some parameter (with Lifshitz dimension 0).
» Invariant under Lifshitz scaling:

' 1 z—d
t _:’ /\Zt. X{ _} /\X'r. ) _f\‘ /\ 2 .
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Conformal / Weyl Anomalies - Review

» |n relativistic conformal theories, the Ward identity
corresponding to scale (or Weyl) symmetry is for the
stress-energy tensor to be traceless:

T =0

» In even spacetime dimension D, this identity is violated by the
quantum theory when defined on a curved manifold. This is
known as the conformal / Weyl / trace anomaly.

» In general:
< Tﬁ >=A = _(_1)0';2850 + Z Ci,i.
’,

» Ep is the Euler density of the manifold (A-type anomaly),
» [; are Weyl invariant densities (B-type anomalies),
» a,c; are coefficients that depend on the content of the theory.
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Conformal / Weyl Anomalies - Review

» These terms appear when the stress-tensor is required to be
conserved and symmetric:

vﬂ T;”/ — O T[f,r,u] —_ 0

» The curved space effective action W|g,,,| is not
Weyl-invariant:

SV W = / vV—goA

» The anomalous terms also appear as contact terms in flat
space correlation functions involving T}/

» The possible structure of terms in the anomaly can be
determined from the Wess-Zumino consistency condition.

This can be formulated as a cohomological problem.
[Bonora et al 1983]
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Non-Relativistic Scale Anomalies

» For a non-relativistic theory, the Ward identity corresponding
to Lifshitz scale symmetry is:

zT+ T! =0,

» As in the relativistic case, this identity can be violated due to
an anomaly.

» Goal: Find the general form for such scale anomalies in
non-relativistic theories, and calculate their coefficients.
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Coupling to Curved Spacetime
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Background Structure

» Given a d + 1 dimensional manifold, the following background
structures are required:

1. A vector v/ = O; that contains information about the direction
and units of time at each point,

2. A 1l-form t, such that vt, = 0 < u" is in a spatial direction.
Obviously we must require t, v/ # 0 everywhere.

» Alternatively normalized n, such that n,v" = 1.

3. A spatial metric P,,, defined such that P, v/ = 0.

/ o
» These 3 structures are equivalent to requiring the 1-form t,,
and a metric defined as: g, = P, — n,n,.

» |n this notation, n = g“n, = —v".

> Alternatively, we can use e?,, and t? in vielbein formalism.
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Foliation Structure

» Globally on the manifold, the integral curves of n* define a
global notion of time.

» However, the 1-form t, doesn’t necessarily define global
equal-time slices over the manifold.

> The Frobenius theorem: t, induces a foliation on the
manifold (= hypersurface orthogonal) if and only if:

t Adt =0 (t[a9sty) = 0)

» When the condition is satisfied: t, = fd, h, where h = const
defines equal-time slices.

» Note that using ADM decomposition for the background
metric implies the Frobenius condition!

» Should the Frobenius condition be assumed?
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The Frobenius Condition and Causality

» On the one hand, it has been noted in the literature that
without the Frobenius condition, causality is broken in the
curved spacetime non-relativistic field theory (Caratheodory's
Theorem) [Geracie,Son,Wu, Wu 2014]

On the other hand, the background structure here is only
urces for the field theory currents.

the energy current. Imposing the Frobenius
es to all components of the

providing so

t couples to
condition = not coupling sourc

energy current.
In the cohomologica
and comparé them.

| analysis, We will consider both options
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Some Geometric Implications

» For solving the cohomological problem, it is convenient to
decompose any tensor to components which are either
tangent or normal to the spatial directions.

» We can decompose V,, nj; as:
vnn.f = (KS)H.)' + (KA)n.f — dgly.

where (Ks),, (Ka),., and a, are space tangent:

» (Ks)uw = L, P,. is symmetric,

, ’ . . .
» (Ka)uw = P{f P!V, n, is anti-symmetric,
» a, = L, n, is the acceleration vector.

» When the Frobenius condition is satisfied:

» (Ks),. is the extrinsic curvature of the induced foliation,
> (KA);:V = 0.
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Some Geometric Implications

» |If we define the space tangent derivative by:
~ ~ ! ! / —
vr’! T-H 3... = P;: Pr‘: P)’f sEE V,‘l’ 7:\’ , I

» The commutation of two space tangent derivatives:

e VP 4 2K Lo V.

L

{6;,. ﬁf}} \21 —

» |In the Frobenius case, R,,,,f”_, Is the intrinsic curvature of the
foliation.

» Generally it does not have all of the regular symmetries of
the Riemann tensor.

» We can define another tensor R,,,ﬂ,j that has all of them
except for the second Bianchi identity.
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Adding Galilean Symmetry

» In the case of a field theory invariant under the full Galilean
group, there is an added U(1) symmetry and a corresponding
conserved particle number current.

» T herefore when coupling to curved spacetime we add a
background gauge field A, that couples to the conserved
particle number current.

» The gauge invariant data is encoded in the field-strength
tensor F,,, or alternatively in the electric and magnetic fields
(which are space tangent):

_ v _ /! pr!
E s ‘,”;n 4 Bl”j —_ Pf, P‘,_j Ff"!“f'

o
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Adding Galilean Symmetry

» The full Galilean symmetry means that we have to consider
two additional symmetries in curved spacetime:

» Flat space global U(1) — U(1) gauge symmetry in curved
spacetime,

» Flat space Galilean boosts — Milne boost symmetry in
curved spacetime.

» \We have to restrict the various terms to ones which are gauge
and Milne boost invariant.

» Note: For our purposes, this structure is equivalent to the
Newton-Cartan geometry.
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Symmetries

The flat space symmetries translate to local symmetries in curved
spacetime.

1. TPD Invariance

Rotation invariance — time-direction-preserving
diffeomorphisms (TPD) invariance:

» Diffeomorphisms with parameter £/ such that L t, o t,.

» \When the Frobenius condition is satisfied, amounts to
foliation-preserving diffeomorphisms of the form:

t — f(t). x — g(x,t)

» Can be extended to any & by having t, transform
appropriately:
(Sf)g;u.f — V;!E!_J + V{.JE;J- (sfjtn — L"{ ta = ¢§ fv‘)'tu + Vn‘s.ﬁti-
(5?’4(\ = L¢ Ar\ - £ ])V ﬁ'Ar\ + vn£ ):A 3.

[
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Symmetries

2. Anisotropic Weyl Invariance

Lifshitz scaling invariance — anisotropic Weyl invariance:

r_SXVt” = 0.

SNV (g™ tots) = —202(g" tats).
SWP.s=20P,s.

(5{,1:1/!7“ — zon,, d}:vn” = —zon",

VA, = (2—2)0A,.

(The weight of the gauge field is determined from the Galilean
algebra.)
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Symmetries

2. Anisotropic Weyl Invariance

Lifshitz scaling invariance — anisotropic Weyl invariance:

(ngt” = {J,
W (gl tats) = —202(g" tats).
(S(ZVP” 2 = ZUP”‘;.

- W W o O
Oy Ny = ZO Ny, 0, N = —zon .

()—XVA,, = (2—-2z)dA,.

(The weight of the gauge field is determined from the Galilean
algebra.)
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Symmetries (The Galilean Case)

3. Milne Boost Invariance
Galilean boost invariance in flat space:

O — 0. e — Op — V'O,

translates to local Milne boost invariance in curved spacetime:

B o /e B

o, n" = W- 0, M =0,

B B

()WAI’ - _VVN' (\’Wg;u/ — VV;;”;/ + W,,ry,_

where W/ is a space tangent (W' n, = 0) parameter of the
transformation.

4. Gauge Invariance

Global U(1) Invariance (particle number) — local gauge invariance:

-G . -G -G
()A A;, — ();,/\. (5/\ g,‘”’ — (5/\ tJ” = ),
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Currents and Ward l|dentities

Given the action S(g.., t., Aa, {®}), define the currents:

» Stress-energy tensor: T(’;) = ﬁ,;—s T(“e’; = lew 2o
— 8 O5pr ¢ M
[ pu— 1 fSS
> JO = NETEZI

Y — 1 lSS
m=— /—g SA,

Ny JLv . p Jur [Ty,
Note that T(g) and T(e) are related by: T(e) — T(g) + JHt".

» Mass current: J

These currents satisfy the following Ward identities:

» From TPD invariance:

VTl = I'Voty = Vu(J't,) + Sy Fop.

ViuTiev =5Vt + I Fu. T

m

e)[pr] — J[;ftu]'
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Currents and Ward ldentities

» From anisotropic Weyl invariance:

w w 2—-2 ,,
D = T(’g)P,,,, — ZT(’g)n,,n,_, + —é——anA,, =0

» From Milne boost invariance:

j% o ]
Pilu Te)np — 01 J’J

( m:

(= momentum density = particle number current).

» From gauge invariance:
"o
Vv, J5 =0.

» QOur goal is to find the possible anomalous corrections to D,
assuming the other Ward identities are not anomalous.
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Currents and Ward |dentities

» From anisotropic Weyl invariance:

L L1 2—2Z (
D= T(’g)P,,,, — ZT(’g)n,,n,_, + TJfﬂA“ =0

» From Milne boost invariance:

[ L ]
Pi/(l Te)np — 0\ .‘)’J

( m:

(= momentum density = particle number current).

» From gauge invariance:
"o
Vv, J5 =0.

» Our goal is to find the possible anomalous corrections to D,
assuming the other Ward identities are not anomalous.

Pirsa: 16110081 Page 26/59



Pirsa: 16110081

Structure of Non-Relativistic Scale Anomalies

Based On: arXiv: 1410.5831, 1601.06795
with Shira Chapman, Yaron Oz

Goal:

» Find the general form for scale anomalies in non-relativistic
theories with and without Galilean boost invariance as
allowed by the Wess-Zumino consistency condition.

» Compare the cases with and without a foliation structure.
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The Cohomological Problem

» Given the quantum effective action in curved spacetime
W(g,... t..A.), the anomalous Ward identity corresponding
to the anisotropic Weyl symmetry is:

SVW = A,

where A, is a local functional of the background fields and o.

» The Wess-Zumino consistency condition takes the form:
W N4
(5”1 As, — (5”2 A, = 0.

» A trivial solution of the form A, = (S(ZVG where G is a local
functional of the background fields can be cancelled by
appropriate counterterms.

» We are looking for non-trivial solutions to the consistency
condition.
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The Cohomological Problem

. An equivalent cohomological BRST-like description:
» Replace the parameter o by a Grassmannian ghost.
» Define 6"V such that it's nilpotent: (5"V)? = 0.
» The Wess-Zumino condition takes the form: 6V A, = 0.
» Solutions are cocycles of 6V (6" -closed).
» Trivial solutions are coboundaries of 0" (§V-exact).

» Possible anomalies are local terms which are cocycles but not
coboundaries:

WA, = 0. A, £ 0V G

where A,. G are local and invariant under the other
symmetries.

= We are looking for the relative cohomology of 6" with
respect to TPD, Milne boost and gauge transformations.
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Basic Tangent Tensors

Basic Tangent Tensor (nT.ns.n.)
Acceleration a, = Lyn, =n"V,n, (0,1,0)
“Extrinsic curvature” KNS,, (1.0.,0)
K (=1.2.0)
“Intrinsic curvature” Ryuv po (0,2,0)
Spatial Levi-Civita tensor €""F = n, e P (0,0,1)
Temporal derivative L (1,0,0)
Space tangent derivative @,, (0.1.,0)
The electric field E, (2.-1.0)
The magnetic field B, (1,0.0)

» TPD invariant terms in the cohomology can be built from a
set of basic space tangent tensors.

» Each has a Lifshitz dimension —(znt + ns) and parity (—1)™.

» In the Frobenius case: nt.ns = Total number of time / space
derivatives.

» Generally np = nt + ns = Total number of derivatives.
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Classification by Sectors

» T[he cohomological problem can be solved for each
(nT.ns. n.) sector separately (the sectors don't “mix").

» The possible sectors are given by the conditions:

znt + ns = d + z,

ns + dn, is even.

» When the Frobenius condition is not satisfied (Kf:, # 0) and
z > 2, there's an infinite number of sectors! — Possible to
have an infinite set of independent anomalies.
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Scale Anomalies for 2 + 1 Dimensions z = 2

We consider 4 cases:
1.
2.
3.
4.

The conditions for the possible sectors here are:

With Frobenius and Galilean boost invariance,
With Frobenius and no Galilean boost invariance,
Without Frobenius and with Galilean boost invariance,

Without Frobenius and no Galilean boost invariance.

2nT + ns = 4,

ns 1s even.

Some Definitions
For calculations in 2 + 1 dimensions we define:

. D~ A ~ ~S
B;,,; — Bf;uz- K - KAf;H/' Kn.f

[0

il

™2
:A_)

>
%
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1. With Frobenius and Galilean boost invariance

» [ his case contains 6 sectors:
(2.0.0), (2.0.1), (1.2.0), (1.2.1), (0.4.0), (0.4.1).

» |n the sectors with nT > 0 there are no boost and gauge
Invariant expressions.

» In the purely spatial sectors (n7 = 0) all TPD invariants are
also boost invariant. = ldentical to the same sectors in the
non-Galilean case.

» This leaves only 1 possible anomaly, which is B-type:

4(0.4.0) _ (F? n @”3“)2 .
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2. With Frobenius and no Galilean boost invariance

» [ his case also contains the 6 sectors:
(2,0,0), (2.0,1), (1.2.0), (1,2.1), (0,4,0), (0.4.1).

» There are 2 possible anomalies, in the (2.0.0) and (0.4.0)
sectors:

A(12.O.O) _ TT(K2) B

AEOA.O) _( : “8 )

i\)l;—-
M U‘n\.)

(where Ks = (Ks)h, Tr(KZ) = (Ks)"(Ks)uw. )

» Both anomalies are B-type.
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3. Without Frobenius and with Galilean boost invariance

» Since Ky # 0, there's an infinite number of sectors.

» Full analysis was performed for those with np < 4 and the
parity even sector with np = 4:

(2.0.0), (2.0.1), (1.2.0), (1,2.1), (0.4,0).

» This case can also be derived from null reduction of a 3 + 1
Lorentzian manifold with a null isometry. [Jensen 2014]
We didn't use it for the analysis here.
» There are no boost invariant expressions in sectors with
np <4 (nt >0).
» Expected from the null reduction as there are no scalars of
dimension 4 with np < 4.
» The cohomology in (0.4,0) mirrors the relativistic Weyl
cohomology in 3 + 1 dimensions.

» Expected from the null reduction, as this sector corresponds to
scalars in 3 + 1 which involve only the curvature.
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3. Without Frobenius and with Galilean boost invariance

» [ here are 2 anomalies in this sector:

Ag ) =(V,i + ) (4KaBa' + BE"KE + BKaRL a, + 4KaKsE" a,

+2(a,_,{7"’a“ — a”@,_,a”) — 8¢"Ka Loy a,,)

+ (L, + Ks) (16KA£,” Ka + 8K5K/_2\) .
AAO) (R 4V, o — 8KaB)? + 12V"Ka(V,, + a,)B
+ 128V, Ka(V,, + a,)Ks + 128V, KoLy 3,
+ 24V, KoV 3 KS" — T2KAE'V , Ka — 36(L, Ka)?.

> Agd‘o) is A-type and corresponds to the 3 + 1 dimensional
Euler density.

> ,4%‘?'0) is B-type and corresponds to the 3 + 1 dimensional

Weyl tensor squared.
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3. Without Frobenius and with Galilean boost invariance

» When Kyq = 0:
> A(l,?,‘jo) reduced to the B-type anomaly of the Frobenius case.

0.4.0 : . .
> .,4554 ) reduced to an expression that becomes trivial and can
be cancelled by the counterterm:

) 1 - . 3
W., = / v—g (é-a"v,.,(az) - gaq) .

» For the sectors with np > 4 we find an infinite set of
iIndependent anomalies:

» Kj is invariant under Weyl, gauge and Milne boost

transformations.
= For any n, A" = (KA)”,fil(,ti)/'j'O) is a possible B-type
anomaly with np =4 + n.

» There may be other anomalies in these sectors.
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4. Without Frobenius and no Galilean boost ihvariance

» Again, there's an infinite number of sectors, full
performed for those with np < 4 and the parity
with np = 4.

» We find 6 anomalies in these sectors:

3 Sl »
Ag"o'm:Tr(Kg)—gKg. s KA[T’(KS]" KSJ

b ]

» 2 1
A£0.4.0) :Kﬁ l:TI’(Kg) - EKg} .

040 _ £, 2Ky + KaKsLa K

o = = o qu Tu I
A(Bo.a.o) :K;*(a“vm,lﬂ,kVHV,;KA)» “44 (R . )

» All of them aré B-type.

with np >
lies. For example:
2] for any "

> 4, we can again find an infinite set

» For the sectors

of B- -type anoma
A0 = (Ka)" [TKS) = 25
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Summary

» When coupling non-relativistic theories to curved spacetime,
the existence of a foliation structure (Frobenius condition)
has important consequences, even for calculation of flat space
quantities.

» For 2 + 1 dimensions with z = 2, it changes the possible forms
of Lifshitz scale anomalies considerably, both in the Galilean
and the non-Galilean cases.

» An A-type anomaly is possible in this case only if we both
impose Galilean boost invariance and give up the foliation
structure of spacetime.

» However, when giving up the foliation structure we introduce
the possibility of having an infinite set of independent B-type
anomalies.
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Lifshitz Anomalies, Ward Identities and Split
Dimensional Regularization

Based on work with Yaron Oz, Avia Raviv-Moshe (to appear soon)

Goal:
» Understand the structure of Ward identities for flat space
correlation functions in Lifshitz field theories,
» Develop a method for calculating Lifshitz anomaly coefficients
from correlation functions using split dimensional

regularization.
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Lifshitz Anomaly From Correlation Functions

» Lifshitz anomaly coefficients have been calculated in the past
using heat kernel and zeta function regularization.
[e.g. Baggio, de Boer, Holsheimer 2012]
» However, they can also be computed directly from flat space
field theory correlation functions:
oW

oedt , (x1)...0e, (xn)

(T o (xa) . T, (xa)) = (=)
» From the curved spacetime anomalous Ward identity:
(D> = D/lfl('l'f”',> = A.

where D' = P — z n'n”, we derive identities for flat space

correlation functions.
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Lifshitz Anomaly from Correlation Functions

» For the 2-point function:

. 0A(x)
D2 (TH,(x)TPp(y)) = —i —mnl
AT T = 5,0
» For the 3-point function:
Dy (T"a(x)T"s(y) T c(2))
- i(df’ng — 0D (x — y) (THa(x) T c(2))
52,4()()

—i(69D2 — 62 D)3 (x — 2) (T2 (x) T s(y)) = —

(5ebp(y)(5ec,,(z) flat

» By calculating the renormalized correlation functions and
using these identities we can extract the anomaly coefficients.

» Unlike the relativistic case, we may need to calculate all
n-point functions to find all the anomaly coefficients.
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Split Dimensional Regularization

» Like in the relativistic case, the correlation functions of the
stress-energy tensor need to be renormalized.

» We use a split dimensional regularization scheme:
[Leibbrandt, Williams 1995]

» Define the theory in d; time dimensions and d; space
dimensions (invariant under "time rotations’ and space
rotations).

» Calculate a correlation function /(d;, ds) and analytically
continueto: di =1 —¢4, de = d — =..

» To one-loop order / has the form:

I(ceee) = —Fe0ee)

where =it = zz: + =5, and f(=¢,25) is a regular function.
» |n order to renormalize, we have to choose a parameter

~

Z(¢,25) to keep fixed as we take the limit (s¢.25) — O.
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Split Dimensional Regularization

» Then:
~ 1 ~ 1 (res)/ =~ (ren)
f(f“f. 5) = —‘—f(f“f.f) = —‘-—/ (:‘) + IV + O(f“f)
=|if =lif
where:
» J(ren) — 9F | s the renormalized correlation function,

degf | =
» /() — £(0.%) is the pole residue, and represents a local
counterterm (polynomial In external momenta).

[Anselmi, Halat 2007]

» The renormalization depends on the choice of =
Changing & — & will change the renormalized expression by a
local term:

I(ren) =5 (l(ren))Jr A ﬁ

Oy =/
where o = — 9=
e i
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Anomaly from the Pole

» Feynman diagrams are more difficult to evaluate in the
Lifshitz case since the propagator denominators are
polynomials of degree 2z.

» Luckily, in some cases, the anomalous Ward identities can be
computed from the =jis pole (the divergent part) alone!

» Suppose the Lifshitz Ward identity is:
T(:‘“f. f)[lk] = 0,

where {/} is a set of correlation functions and T is some
linear operator.

» As long as the split dimensional regularization scheme doesn't
explicitly break Lifshitz symmetry, the unrenormalized
functions satisfy this exactly.
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linear operator.

» As long as the split dimensional regularization scheme doesn't
explicitly break Lifshitz symmetry, the unrenormalized
functions satisfy this exactly.
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Anomaly from the Pole

» The anomaly then comes purely from the counterterm:

A=T(0.0) /] =~ lim (i T (1. %) {/i’es)(f)])

(51ir.5) =0 \ €lif

» |f we change the choice of £, A changes by a trivial term
proportional to «a:
‘hf:|

= As expected, only coefficients of trivial terms can depend

A=A —aT(0,0) {—

=

on cv.
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Expansion in External Momenta

» The )is pole residue (= divergent part of the Feynman
diagram) can be computed by expanding the integrand in the
external momenta.

» The result is a polynomial in the external momenta.

» The coefficients are solvable integrals of a well-known form
that depend only on the loop momentum.

» Extract the ¢jf pole, plug it back to the Ward identity and
take the limit (=5, £) — O to get the anomalous contribution
(both anomalies and trivial terms!).

Pirsa: 16110081 Page 48/59



Example: Free z = 2 Scalar in 2 + 1 Dimensions

» Consider a free Lifshitz scalar in 2 + 1 dimensions, with
z = 2.with the action:

| 1 ;
S = / dtd®x {‘2“(”“))2 = fz-(v%--))z

» |n order to perform split dimensional regularization, we have
to couple the theory to curved spacetime with d; time
dimensions and ds space dimensions.

» The coupling has to be anisotropic Weyl invariant and
non-singular as d; — 1 and d; — 2!

» There is more than one way to do this.
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Free Scalar: Coupling to Curved Spacetime
» We use the following action:

; N 12
S - / ddr \/—{ { () b + E]_ Kél)(-)]

1
2

- - = 2
2 {V% +£3d"'V,u0+ & a’) + §aVy, aﬂ(')] }

2
1 /1 de — 1
— — _di — 2 . £y = . di — d d

S (2 lif ) & a (diif = zd; + ds)

1 1 1 1 1
3= — | =djifr — 2 d— =d. |, & =— dis — 2
Q3 4dt2 (2 lif ) ( t > s) Q4 2dt (2 lif )

> n,(f). I =1....,. d: are orthonormal 1-forms corresponding to

the time directions,

» The background expressions are defined similarly to the 1 time
dimension case.

» This action is invariant under TPD, anisotropic Weyl
transformations and time rotations: n{!) = U¥nU).
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Free Scalar: Correlation Function g Poles

» From the curved spacetime action, the flat space stress-energy
tensor in ds + d; dimensions is derived.

» The following diagrams contribute to the two-point function
and three-point function of the stress-energy tensor:

W,

p \ { 1 Y
MWV J\.‘“\f. .J\-’V"J\f VAN b ‘ Il R
) ! “a . \ /

<
<

» By computing the divergent parts of these diagrams and
plugging them into the Ward identities, we obtain the
anomalous contributions to these identities.

» Finally, comparing with the variations of the possible anomaly
(and trivial terms) densities we can extract the anomaly
coefficients.
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Free Scalar: Main Results

» Computation was performed for the two-point and three-point
functions.
= Only the coefficients of terms of order < 2 in the
background fields can be extracted.

» Since the computation involves thousands of terms, we used a
Mathematica script to perform it.

» The results are consistent with previous calculations using the
heat kernel method.

» As expected, only coefficients of trivial terms depend on «.

» For the (2.0.0) (np = 2) sector:

» There is one anomaly Tr(KZ) — K2 with a coefficient: ——

32\/.’-'77
» There is one trivial term: L, Ks + Kg
with a coefficient: —=—22

06 /nr
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Free Scalar: Main Results

For the (0.4.0) (np = 4) sector:

» There are 3 independent anomalies up to second order, all of
them with vanishing coefficients.

» There are 9 independent trivial terms up to second order. All
of them have coefficients proportional to a.

» Some trivial terms with non-vanishing coefficients are ones
that vanish in the Frobenius case.

» For example, the term: (€7;, + a4 ) (KA‘} aks‘f)

has a coefficient: —%é—;l

» = For a« # 0, one needs to violate the Frobenius condition to
cancel these terms!
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Free Scalar: Main Results

For the (0.4.0) (np = 4) sector:

» There are 3 independent anomalies up to second order, all of
them with vanishing coefficients.

» There are 9 independent trivial terms up to second order. All
of them have coefficients proportional to a.

» Some trivial terms with non-vanishing coefficients are ones
that vanish in the Frobenius case.

» For example, the term: (€7” + a,) (KA‘? J%s‘{)

has a coefficient: — ‘1/;__‘

» = For a # 0, one needs to violate the Frobenius condition to

cancel these terms!
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Anomaly Ambiguity?

» For theories that include a Lifshitz scalar with z = d, an
Interesting ambiguity seems to occur.

» |n these cases, the scalar ¢ is dimensionless.

» If A is a B-type anomaly density of the theory which is
second order in the background fields, we can add to the
curved spacetime action a term:

50 = [ / dd+lx\/fg Ao"
(an example was suggested by [Griffin, HoFava,

Melby-Thompson 2012])

» Neither the flat space action nor the flat space currents
change as a result of this addition.

» However, the anomaly coefficient of A will change by ¢,
where ¢ is defined by the anomalous Ward identity:

(D(x)0"(y)) = ico(x —y)
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Anomaly Ambiguity?

» Unlike the relativistic conformal case, specifying the flat space
action and currents is not enough to determine the
consistent anomaly coefficients - one has to specify the curved
spacetime coupling.

» This type of ambiguity doesn't occur in the relativistic case
since in the d = 2 dimensionless scalar case there are no
B-type anomalies.

» Note: (¢"(x)o"(y)) diverges logarithmically in the infinite
volume limit = No ambiguity in theories with no built-in IR
cutoff.

» Our results in this work are for the minimal coupling case.
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Anomaly Ambiguity?

» For theories that include a Lifshitz scalar with z = d, an
Interesting ambiguity seems to occur.

» |n these cases, the scalar ¢ is dimensionless.

» If A is a B-type anomaly density of the theory which is
second order in the background fields, we can add to the
curved spacetime action a term:

SO s 3 / dd+lX\/ —g A(_')n

(an example was suggested by [Griffin, HoFava,

Melby-Thompson 2012])

» Neither the flat space action nor the flat space currents
change as a result of this addition.

» However, the anomaly coefficient of A will change by 3¢,
where ¢ is defined by the anomalous Ward identity:

(D(x)d"(y)) = icd(x — y)
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Summary

» A split dimensional regularization method was used to
compute Lifshitz anomaly coefficients in the free scalar case.

» Some of the trivial terms found in this case require a curved
spacetime description that violates the Frobenius condition.

» |n the z = d scalar case, the relation between flat space
correlation functions of the stress-energy tensor and the
consistent anomaly coefficients seems to be ambiguous.
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Outlook and Open Questions

» The Frobenius condition:
» Can the non-relativistic quantum theory be consistently
defined on a curved background without a foliation structure?
» What are the implications on the calculation of flat space
quantities?
» Are there theories with non-vanishing coefficients for anomalies
that violate it?

» |s there a general structure for Lifshitz scale anomalies for
general d and z, with or without Galilean boost invariance?

» Can the split dimensional regularization method be used to
compute anomalies in other Lifshitz or Galilean theories?

» Does the coefficient of the A-type anomaly in the boost
invariant case have an interesting behaviour along RG flows?
Can it lead to an a-theorem for Galilean theories?

» What are the implications of the ambiguity in the coefficients
of B-type anomalies for the z = d scalar case?

» Lifshitz scale invariance vs. full Schrodinger invariance in
Galilean theories.
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