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Abstract: <p>How does thermalization in quantum systems work? Naively, the unitary time evolution prevents thermalization, but one can easily
show that in general quantum systems thermalize when brought into contact with a thermal bath. In noninteracting systems, the approach to the
thermal value can be either ballistic or diffusive depending on particle statistics and bath temperature.</p>

<p> </p>

<p>However, many systems cannot be thermalized when placed in a bath: glasses.</p>

<p> </p>

<p>l will discuss a disorderfree model of an organic electronic glass that is formed through rapid supercooling. Geometric frustration and
long-range interactions cause the Arrhenius-type freezing.</p>

<p> </p>

<p>Quenched disorder can also lead to glassiness, a phenomenon known as many-body localization. In this case, thermalization is prevented by the
existence of extensively many local integrals of motion. | will show how to compute these integrals of motion and their properties.</p>
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Thermalization in Quantum Systems
and its breakdown
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Overview

Thermalization
in Quantum Systems

=
Self-generated glasses Many-Body Localization
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Foundations of Stat-Mech

Thermalization = Loss of Memory initial state information

In Quantum Mechanics there is No Loss due to Unitary Time Evolution!

How can Quantum Systems Thermalize?
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Foundations of Stat-Mech

Thermalization = Loss of Memory initial state information

In Quantum Mechanics there is No Loss due to Unitary Time Evolution!

How can Quantum Systems Thermalize?

Deutsch 91

<$ Eigenstate Thermalization Hypothesis (10| A|)0) = Z ' Tr Ae P sreanicki‘aa

Rigol ‘08
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Foundations of Stat-Mech

Thermalization = Loss of Memory initial state information

In Quantum Mechanics there is No Loss due to Unitary Time Evolution!

How can Quantum Systems Thermalize?
1 31 Deutsch ‘91
<> Eigenstate Thermalization Hypothesis (Vo|A|1g) = Z~ Tr Ae™ " Srednickd ‘94
igo
<> Quantum Chaos Kitaev ‘15, Maldacena, Shenker, Stanford ‘15

Out-of-time-ordered correlations (OTOC) Cyy (t) = ([W(t), V(0)]?)
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Foundations of Stat-Mech

Thermalization = Loss of Memory initial state information

In Quantum Mechanics there is No Loss due to Unitary Time Evolution!

How can Quantum Systems Thermalize?

Deutsch 91

Eigenstate Thermalization Hypothesis (¢'o|A|¢) = Z ' Tr Ae™ 71 srednicki 94

Rigol ‘08
Quantum Chaos Kitaev ‘15, Maldacena, Shenker, Stanford ‘15
Out-of-time-ordered correlations (OTOC) Cyy (t) = ([W(t), V(0)]?)

Level statistics Berry, Tabor '77
Polkovnikov ‘13

Poissonian vs. Wigner-Dyson

Integrability / Conformal Field Theory

Cardy, Calabrese ‘06
Essler, Fagotti ‘16

Existence of ‘local density’ integrals of motion Doyon '15
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19th Century Thermodynamics

Simpler question:
Two systems brought into contact.
Will they equilibrate?
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19th Century Thermodynamics

Simpler question:
Two systems brought into contact.
Will they equilibrate?

Example:
* Cup of tea/coffee in surrounding

* Superconducting samplein a
fridge
In general:

* ‘Hot’ system A in ‘cold’ bath B
brought into contact at t=0
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Quantum Thermalization

Consider Quantum system with A at temperature T, and B at temperature Tg.
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Quantum Thermalization

Consider Quantum system with A at temperature T, and B at temperature Tg.

s . . / b ; 4
Initial state has density matrix: p = (Z42p) lo=Bata=BpHnp
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Quantum Thermalization

Consider Quantum system with A at temperature T, and B at temperature Tg.

s . . / b ; 4
Initial state has density matrix: p = (Z42p) lo=Bata=BpHnp

Better described with Modular Hamiltonian M = —logp
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Quantum Thermalization

Consider Quantum system with A at temperature T, and B at temperature Tg.

s . . / b ; 4
Initial state has density matrix: p = (Z42p) lo=Bata=BpHnp

Better described with Modular Hamiltonian M = —logp

(a) B | My=paHa+BpHp+logZ

Time evolution is given by Hamiltonian H, hence M(t) = ¢~ " MM
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Quantum Thermalization

Consider Quantum system with A at temperature T, and B at temperature Tg.
Initial state has density matrix: p = (Z42p) lo=Bata=BpHnp

Better described with Modular Hamiltonian M = —logp

(a) B | My=paHa+BpHp+logZ
Time evolution is given by Hamiltonian H, hence M(t) = ¢~ " MM
For a noninteracting model: just phase evolution!

M, = Z 7')'{.;‘7;:!('_‘.17{";‘;’ +log Z

Kk
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Quantum Thermalization

Consider Quantum system with A at temperature T, and B at temperature Tg.
Initial state has density matrix: p = (Z42p) lo=Bata=BpHnp

Better described with Modular Hamiltonian M = —logp

(a) B | My=paHa+BpHp+logZ

Time evolution is given by Hamiltonian H, hence M(t) = ¢~ " MM

For a noninteracting model: just phase evolution!

Lk’ > T i
L» (_-I (t) =¢ ’Ht(?}.:(:’IHf =e °F

A.

M(1) = 3~ i (1) chew +log Z
kk’
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Fourier's Law Relativistic Fermions Nonrelativistic Fermions Low Temperature Bosons

Classical expansion is diffusive, 0,7 = DV?T ,s0 AT ~ t /2
Relativistic fermions: instantaneous thermalization
Nonrelativistic noninteracting fermions thermalize ballistically AF ~ ¢t ¢

Bosons...
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3
u
=
W

Approach to thermalization

Fermions, d=1 Bosons, d=1 Bosons, d=2
- -
N

1-EA(t)/Ea(e)
1=E A1)/ E z(=)

g=0.3
=2
=01, 117 ballistic fit

10 ) 1
Time (11) Time (1) Time (1/J)

There is a crossover from ballistic to diffusive for bosons!

At low temperatures, when bosons overlap, diffusive wave-like behavior

dominates ;1) ~ 9%
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Experimental realization

Can test this experimentally with cold atoms:

1. . . 2 " B A 3

\‘\.!_Ot‘.'o ) ..'c'.'n'o_g!// M\\.w_{o 0%:% | _3_{ ._ .o'oiog!/‘

. o\ 4. t=0/
B /

r.o",‘i‘.'-'// ’ \\\'__._ L':O‘ L --: ®eq et /

7.
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\ 1. I\ 2.

Experimental realization

Can test this experimentally with cold atoms:

13 A 3

\‘\'3_ 0% % 0 0d’s o000~ / M\\'w_g 0% % | g ._ eve0s00 4 ’

\ 4. t=0/

\ ° s °® /
‘\\._ ° .'..... se 00, .._!/x'/

6. |.| T.

N estnefin)|encess

1. Trap an atom cloud

2. 'Build a wall’ between A
and B

3. Heat up system A

4. At t=0, remove wall
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Experimental realization

Can test this experimentally with cold atoms:

1. Trap an atom cloud

B Al B /| 2. Build a wall’ between A

\‘\.!_Ot‘.'o eesd c'.'n'o_g!/ / ‘“\\.W!. %% _3_{ ._ .o'oiog!/ ‘ an d B

\ 1. I\ 2.

\ 4. t=0/ | 3.Heatup systemA

* / 4. At t=0, remove wall

N L] L y
L 00%e%% *%®00 ot

o 5. At later time, build wall

/6. | | T.
. N 4 | 6. Remove all atomsin B
N Leoteet/[e00e st '

7. Measure kinetic energy
in A using Time-Of-Flight
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\ 1. I\ 2.

Experimental realization

Can test this experimentally with cold atoms:

13 A 3

\‘\.!_Ot‘.'o ) ..'c'.'n'o_g!// M\\.w_{o 0%:% | _3_{ ._ .o'oiog!/‘

\ 4. t=0/

\ ™ s °® /
NP 00% 0% 20,04, -‘_g/"/

| 0. | Al 7.
Ntee ';!f; () :' 90.:'_'// : XY

Repeat with different ‘end-times’ to get AF(t)

1. Trap an atom cloud

2. 'Build a wall’ between A
and B

3. Heat up system A

4. At t=0, remove wall

5. At later time, build wall
6. Remove all atomsin B

7. Measure kinetic energy
in A using Time-Of-Flight
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Thermalization - Outlook

What about interacting nonintegrable systems?

M(t) Zm (0)01b; + > " mi plbtbeb + Ym0l bl bbby, +

ikl ijkimn

())‘U) = £ ?—(A-’ T }Z“A’ | Z p p r! h‘i Z<PP|“><H|A(1> Bt l

qpp’ n
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Thermalization - Outlook

What about interacting nonintegrable systems?

M(t) Z m ?‘)/Jj/), - Z m,. “ f)[ﬂ[) bib; + Z

ijkl

())‘U) = £ ?—(A-’ T }Z“A’ | Z p p r! h‘i Z<PP|“><H|A(1> Bt l

qpp’ n

Because of thermalization higher order terms vanish at late times!
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Thermalization - Outlook

What about interacting nonintegrable systems?

M(t) Z m ?‘)/Jj/), - Z m,. “ f)[ﬂ[) bib; + Z

ijkl

())‘U) = £ ?—(A-’ T }Z“A’ | Z p p r! h‘i Z<PP|“><H|A(1> Bt l

aqpp’ n

Because of thermalization higher order terms vanish at late times!

When will thermalization break down?

- Long Range interactions: no separation of degrees of freedom into A and B

- Disorder leads to localization
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Quantum Thermalization

Consider Quantum system with A at temperature T, and B at temperature Tg.
Initial state has density matrix: p = (Z42p) lo=Bata=BpHnp

Better described with Modular Hamiltonian M = —logp

(a) B | My=paHa+BpHp+logZ

Time evolution is given by Hamiltonian H, hence M(t) = ¢~ " MM

For a noninteracting model: just phase evolution!

M, = Z 7')'{.;‘7;:!('_‘.17{";‘;’ +log Z
Kk’ ty He o1 ot
LD ¢! (t) =e¢ iHe .

F
k %€
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Thermalization - Outlook

What about interacting nonintegrable systems?

M(t) Z m ?‘)/Jj/), - Z m,. “ f)[ﬂ[) bib; + Z

ijkl

())‘U) = £ ?—(A-’ T }Z“A’ | Z p p r! h‘i Z<PP|“><H|A(1> Bt l

aqpp’ n

Because of thermalization higher order terms vanish at late times!

When will thermalization break down?

[ - Long Range interactions: no separation of degrees of freedom into A and B ]

- Disorder leads to localization
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-

T TS T S
Self-generated Glasses
N OV e

Supercooled liquid

Latent heat

Residual
Entropy

TK T9 Tm
Temperature
Liquid slows down to become glass
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Organic crystal 6-(BEDT-TTF),RbZn(SCN),
Low temperature electronic stripe order

Fast cooling: Glass with Arrhenius dynamics

RIS g

Spin frustration Charge frustration

BEDT-TTF

4015 BEDT-TTF|

S _ DY

+( i J4

YL N[,
O o o

|

. C - -
Ly |

iu 5 Kmin ! : |ﬂr\Q o D P
e e—— | 20 %,

; IH I 150 " o000 250 I 300 |* m 4
o

L 200 p.
Termperature (K) o)
0

Kagawa ‘14, Sato ‘15
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Organic crystal 6-(BEDT-TTF),RbZn(SCN),
Low temperature electronic stripe order

Fast cooling: Glass with Arrhenius dynamics

a

b o
Rich k P
" - U.

- 10] 10_5 10‘3

t—\ : (.,—:. Time (sec)
tm l’ O C \L O# sample 1

Spin frustration Charge frustration A a SElmprQ
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Kagawa ‘14, Sato ‘15
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Organic crystal 6-(BEDT-TTF),RbZn(SCN),
Low temperature electronic stripe order

Fast cooling: Glass with Arrhenius dynamics

Rich

Time (sec)

O# sample 1
Spin frustration Charge frustration A a sampla 2
a BEDT-TTH A sample 3
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‘ - = Noise o~
D, P p) & meas. [ £
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107

Relaxation time (s)
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Kagawa '14, Sato ‘15
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Simplest interaction: Nearest Neighbor repulsion gives Ising model (1 > )

H = Z V (n,.,;
(ij)

Ground state is exponentially degenerate
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Simplest interaction: Nearest Neighbor repulsion gives Ising model (V' > t)
o= Z V (n,.,;
(i5)

Ground state is exponentially degenerate
A EEEEEEEERK)
%0%0%0%0%¢%0%0%0%:% %%
©0%0%0%:%0%:%0%%% %%
%0%0%0%0%¢%¢%¢%¢%e%e %%
%0%6%0%0%¢%0%¢%¢% %% %
©0%0%0%¢%0%¢%¢%¢%¢%e%%
%0%0%0%0%0%:%¢%¢%:%: %%
A EEEEEEEERE
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Simplest interaction: Nearest Neighbor repulsion gives Ising model (1 > )

| N/ 1
H = Z vV (”'rf : i = ¢
(ij)

Ground state is exponentially degenerate
A EEEEEEEERK)
%0%0%0%0%¢%0%0%0%: % %%
©0%0%0%:%0%:%0%%% %%
%0%0%0%0%0%¢%¢%¢%¢%e %%
%0%0%0%0%¢%0%¢%0% %% %
©0%0%0%¢%0%¢%¢%¢%¢%e%%
%0%0%0%0%0%¢%¢%¢%¢%e %%
A EEEEEEEEREK

o0000O0COCOOOOOO
o000 0OOGOOOROS
o0000OOCOOQOOOS
o0000OOGOOOOOS
0000000000000
o0000O0OOCOOOOOO
o0o000OOOGOOOROS
o000OOOCOOOOOO
o000 0OOOOOOOS
00000 OOCOOOOOO
0000000000000
o000 0OOOGOOOOOS

Upon inclusion of hopping leads to Liquid-like state

This cannot explain slowing down!
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Long-range Interactions

1
Break thermalization with Igng-range interactions: Coulomb V. j~ ﬁ
=
Leads to increased frustrati 2

1. Ground state degeneragy is lifted

2. Stripe order is ground state

: (@) ‘ e
20%0%e% o°o°§°o .9 808'E
pede0e0e lgetet 50 o
20%%%)| },0%° " 300C
009090 o°o°°°° D' 00 9
T U T Q ale o ol i a
b) ~0.17100V  ¢) —0.17253V

d) 016230V
Stripe order comes about via first order transition

System can get stuck in one of exponentially many metastable states
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Long-range Interactions

Break thermalization with long-range interactions: Coulomb V; ~ ﬁ
oy
Leads to increased frustration and: d

1. Ground state degeneracy is lifted

2. Stripe order is ground state
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- O070T0T0 0 * o4 RO 6.6
b) —0.17100V  ¢) —0.17253V  d) —0.16230V
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- DOO00O00OQ

|
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=
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o] |
-
—

2 PO000000d
> POO0000O(

Stripe order comes about via first order transition

System can get stuck in one of exponentially many metastable states
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Monte Carlo: Arrhenius-Law

Using classic Monte Carlo 0251 »)‘ ,
t ('
020/

with Ewald summation

.
0.15}

(t)

v

1 VWi ot 4 T
(1 =)V, —r, =1 “IR, R

Loe C

0.10}

0051

Measure autocorrelation function

000k saii
) 40 80 100 00 02

)
(‘([ + luw ['u‘_) - N ZG»I”’.U + nf”‘_)f)'”-,{i”._}) t(S\VCCpS)

O 12
)

L 48

Find Arrhenius Law

T (sweeps)

10

Gap A ~ 2300K corresponds to experiment
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EDMFT: Conductivity

Semi-classical limit of Extended Dynamical Mean Field Theory yields
qualitative results for resistivity:

PDC
106

Supercooled state

With stripe order

* 0 }‘2( )
W
TpDer ™~ / e f
J —00

- 9,
4T cosh™ 555
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Electron glass - Outlook

How does the single-particle density
of states look like?

== Powerlaw fit

10 == Exponential fit

What is the structure of the manifold of metastable states?

What is the relation to ETH and quantum chaos?

Is there a ‘true’ glass transition at finite temperature?
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Many-Body Localization

Quenched disorder leads to

exponentially localized WF | W ()| ~ ¢ /€
~< >~ Anderson localization Hamiltonian
H = —TZ(rjr-J + h.c.) + Z/.!-,:"H.-,'_
(i7) i

can be diagonalized 1 = ¢;n;

Anderson ‘58

Basko, Aleiner, Altshuler '06

Huse, Nandkishore, Oganesyan ‘14
Bardarson, Pollmann, Moore 12
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Many-Body Localization

Quenched disorder leads to
exponentially localized WF | W ()| ~ ¢ /€
\ Anderson localization Hamiltonian
H = *fZ(('j—h("j + h.e) + Z;.f.,;n,;
(if) i
can be diagonalized H = ¢;n;

Local Integrals of Motion (LIOMs)

Anderson ‘58

Basko, Aleiner, Altshuler '06

Huse, Nandkishore, Oganesyan ‘14
Bardarson, Pollmann, Moore 12
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Many-Body Localization

Quenched disorder leads to
exponentially localized WF |¥(7)| ~ e~ "/¢
“"\ Anderson localization Hamiltonian

H — ¢ Z((’{(’ + h.c.) + Z/.L,;"H_.i_

(i) ,_

can be diagonalized I = ¢;n;

Local Integrals of Motion (LIOMs)

1 +
H= Z Salta + 5 1’(1,"‘1",.(‘5( aCaC~yCs

o af3yd
Interactions ‘dress’ Anderson integrals of motion

In Many-Body Localized phase LIOMs still exist that prevent thermalization

- Logarithmically slow growth of entanglement/entropy

Anderson ‘58

- Va n |Sh | ng conducﬁvity Basko, Aleiner, Altshuler 06

Huse, Nandkishore, Oganesyan ‘14
Bardarson, Pollmann, Moore "12
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Many-Body Localization

Quenched disorder leads to
exponentially localized WF | W ()| ~ ¢ r/§
2~ Anderson localization Hamiltonian

H_—er c; + h.c.) +Z;f n;

(i7)

can be diagonalized I = ¢;n;

Local Integrals of Motion (LIOMs)

H = Z.\,,H,, + = Z ln,g,(\,(”({,(q((», ey [ — Z“”T {ZI’I ,T, + ..

o naf“}() i
Interactions ‘dress’ Anderson integrals of motion

In Many-Body Localized phase LIOMs still exist that prevent thermalization

- Logarithmically slow growth of entanglement/entropy P

- Va n |Sh | ng conducﬁvity Basko, Aleiner, Altshuler 06

Huse, Nandkishore, Oganesyan ‘14
Bardarson, Pollmann, Moore 12
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Unitary Transformation

For every Hamiltonian, there exists a unitary transformation that brings it
into the classical form 2 - 2z
H=) &ri+ )Y Jyriti4

1

1'.-: vy

Perturbation theory often fails due to resonances ¢, — ¢, + Py
Sy (5 Sy
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Unitary Transformation

For every Hamiltonian, there exists a unitary transformation that brings it
G Z Jij T 7] A

Perturbation theory often fails due to resonances ¢, — ¢ + - e £ ¢ CHC~Cs
Sy (5] Sy S

Our solution: Consecutive application of exact ‘small’ unitaries

X = (T;r,.(flil;(7‘,.-(ff$ tan 2\ = — Vagns - D) (X) =exp ()\(X,]L ax ,X))

f Sa + ip’ - ‘:-‘y — &6

1

1'.-: vy

Approximation: Cut off after a certain order in normal ordered operators
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Unitary Transformation

For every Hamiltonian, there exists a unitary transformation that brings it
G Z Jij T 7] A

Perturbation theory often fails due to resonances ¢, — ¢, + ,

Qv I '::f Sy
Our solution: Consecutive application of exact ‘small’ unitaries

X = (T;r,.(flil;(7‘,.-(ff$ tan 2\ = — Vagns - D) (X) =exp ()\(X,]L ax ,X))

f Sa + ip’ - ‘:-‘y — &6

1

1'.-: vy

Approximation: Cut off after a certain order in normal ordered operators
H = E &ty + E JiyTi TS
i 7

RN § N & AP atat 4,4
7P =UnUT =n; + ik CiCh + Qi CCpCiCo

= Compute J;; and . jrim !
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Typical Integrals of motion

N—1

N N—1
Our model: H = Zr‘-,ﬁ“; i Z(“wal * "'LH’-{) FV Z NNt €; € [—1“'1"’/21 I"I""/QJ

i=] =1 i=1

Take the median of all Integrals of Motion for many disorder realizations

As a function of distance and disorder strength

Median of |J/,]
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Typical Localization Length

Exponential decay can give us localization length:
10

One electron
IOM
Hamiltonian
Talg
Ci+Cj

<
-
[=)]
c
v
c
o]
e}
0
N
I
y
o
=

No sign of transition!

Disorder

Pirsa: 16110076 Page 48/52



Pirsa: 16110076

Picture much less clear when looking at Average values instead of Typical
Delocalization can occur through only few nonlocal terms

Full distribution of .J;; is consistently P(|.J|) ~ 1/.J for weak disorder

r=10 r=20

2.0 . . . . . . 2.0
J\I/Jmnd J\I/Jmud
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Many-Body Localization - Outlook

Shown that we can compute Local Integrals of Motion

How does delocalization transition act on integrals of motion?
Role of rare fluctuations most likely the key factor

Can we compute IOMs for other systems?

Heisenberg model, Hubbard model, Kondo lattice model

Systematic extension of Hartree-Fock methods?

. . kLY L
New class of trial wavefunctions of the form " cicicichel o 3

i
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Summary

Thermalization in Quantum Systems

In general: hot subsystem A in cold bath B thermalizes
Bosons have crossover from ballistic to diffusive

Reference: LR & Zaanen, soon on arXiv

Iy
Self-generated glasses

Frustration and long-range
interactions prevent thermalization

Model & experiments show
Arrhenius law slowing down

References: LR, Nussinov, Balents, Dobrosavljevic,
arXiv:1605.01822; LR, Ralko, Fratini,
Dobrosavljevic, arXiv:1508.03065; Mahmoudian,
LR, Ralko, Fratini, Dobrosavljeci, PRL 115 (2015)

Many-Body Localization

Quenched disorder creates local
integrals of motion

Computed typical properties of
LIOMs, displays locality

MBL-to-ergodic transition requires
study of rare fluctuations

References: LR, Ortuno, Somoza, arXiv:
1610.06238; LR, Ortuno, PRL 116 (2015)
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