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Abstract: <p>We study the effective twisted superpotential of 3d N=2 gauge theories compactified on a circle. Thisisarich object which encodes
much of the protected information in these theories. We review its properties, and survey some applications, including the algebra of Wilson loops,
computation of supersymmetric partition functions on S*1 bundles, and the reduction of 3d dualities to two dimensions.</p>
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Background

@ 3d N = 2 gauge theories provide a rich class of SQFTs with many
interesting physical and mathematical applications.

@ They are asymptotically free, but typically flow to strongly coupled IR
SCFTS, which exhibit many non-trivial dualities.

Mirror symmetry

3d — 3d correspondence

o
e Seiberg-like dualities
o
e AdS/CFT duality

@ To study them, we need probes of the theory which are RG invariant.

e Animportant example is the computation of supersymmetric partition
functions by localization.
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Background

@ [Nekrasov,Shatashvili] showed that we can learn about higher
dimensional theories by compactifying them to effective 2d
N = (2,2) theories and studying their twisted chiral ring data.

@ This turns out to lead to an interesting connection of supersymmetric
gauge theories to integrable systems, known as the Bethe/gauge
correspondence.

@ The central object of study is the effective twisted superpotential
on the Coulomb branch of the gauge theory.

@ In this talk, we will see how this protected object teaches us about
many interesting aspects of 3d gauge theories.
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e Effective twisted superpotential
o Algebra of Wilson loops

e Partition function on U(1) bundles

e Applications to 3d dualities
@ Reductions of 3d dualities to 2d.

@ Conclusion and Outlook

Page 5/53



Pirsa: 16110050

(Twisted) chiral operators in two dimensions

@ A2d N = (2,2) may have chiral and twisted chiral operators:
0. ¢=0 d=0 — chiral

Q,b=9 d&=0 — twisted chiral

@ The action may include a (twisted) superpotential, which may only
depend on (twisted) chiral superfields.

@ These define the (twisted) chiral ring:

djb; = Off by + Q...)

whose relations are generated by derivatives of the (twisted)
superpotential

@ We can define a topological A-model by twisting by the U(1)y

R-symmetry, which computes correlators of twisted chiral operators
(and similarly for B-model).
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Twisted chiral operators in a GLSM

Many interesting N’ = (2, 2) theories have a UV description as a
gauged linear sigma model (GLSM).

Here a natural basis of the twisted chiral ring comes from the twisted
chiral field strength multiplet:

S =D, D_V=6—iNO" —iN_0" +6070 (D — ifip) + ...

Here ¥ runs over a basis of the dynamical and background vector
multiplets. We will denote these:

Ya— Uy, a=1,..r1q,

The effective twisted superpotential is computed by integrating out
charged matter on the Coulomb branch.

E.g., for a charge one chiral multiplet in two dimensions, one finds:

W(E) = 5 (10g(% /) ~ 1)

It may also depend on twisted chiral moduli, such as Fayet-lliopolous
(FI) parameters.
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Vacuum equations and twisted chiral ring

@ Because of quantization of the flux, W has branch cut ambiguities

where W — W + nXL.
@ Because of this ambiguity, the vacuum equations become:

oW

OW
—— =0 modZ <& Pa=exp 2m(, =1
()Ua )

dUg
@ E.g., for a U(1) gauge theory with charge Q; chirals:

W(u, m;) = 217”. Z(O,-u + m;)(log(Qu + m;) — 1) + tu

/

= exp (27#{%) =e' T[(Qu+ m)®

@ Similarly, the twisted chiral ring relations in C[X ] are generated by:
exp (2m'(.l)W) —1
()Ua

which are given by rational functions in the uz; and m;.
@ The twisted chiral ring is a quotient of C[X] by this polynomial.
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Non-abelian theories

@ In the case of a non-abelian gauge theory, the twisted superpotential
is a Weyl-invariant function on the Cartan.

@ In addition, solutions with enhanced gauge symmetry (e.g., U, = U

for some a # b) have an unbroken nonabelian gauge symmetry.

@ Pure SU(2) theory is equivalent to the theory of a free twisted chiral
[Aharony,Razamat,Seiberg,BW]:

b = Try?

Generically there is a term in W linear in ®, which breaks SUSY.
Then:

Svac = {U; ‘ Pa = 1, W'U; # U;}/W
e E.g., for U(N;) with N flavors, the vacuum equations are:

Ny

e' [[(ua+ mi) =[] (ua+ i)

=1

this has Nt solutions for each a, and imposing the Weyl symmetry,
this leads to (/) vacua.

f
c
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Bethe/gauge correspondence

@ Consider a mass-deformed 2d N = (2, 2) gauge theory, or more
generally, a higher dimensional gauge theory compactified to an
effective 2d N = (2, 2) theory, eg:

o Eg.,3d NV =20onR? xS’
o Eg,4d N =10nR?x T?
o E.g., 4d N = 2 with Q-deformation

@ Then an important insight of [Nekrasov,Shatashvili] was that, for
many d > 2 gauge theories of physical interest, these equations
coincide with the Bethe equations for certain integrable systems.

@ In addition, these equations generate the relations which define the
twisted chiral ring of the gauge theory.

@ In the case of higher dimensional gauge theories compactified on a
circle, the twisted chiral operators are line and surface operators.
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3d N = 2 theories

@ 3d N = 2 gauge theories are specified by a gauge group G, with
matter content:,

V = (A..0.D,A) € Ad(G), &= (4,0, F)eR=EPRE R
where H is the flavor symmetry group.
@ The action takes the form:

S = Sym + Schiral + Scs + Sw

where;:

Scs = % / Tres (A A dA + gA ANANA+/gd>x(2Do — 7\/\))

@ A natural observable is a supersymmetric Wilson loop:

W = TrpP exp (%(:’A + 0d|X\))
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3d N = 2 theories

@ 3d N = 2 gauge theories are specified by a gauge group G, with
matter content:,
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where H is the flavor symmetry group.
@ The action takes the form:
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where:
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@ A natural observable is a supersymmetric Wilson loop:

W = TrpP exp (%(:’A + 0d|X\))
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3d theories on R? x S]

@ We cantreat a 3d N = 2 theory on S! as we treated 2d N = (2, 2)
theories earlier.

@ Now % is periodic:

Z(r ~ z(r + L
r

@ Then the effective twisted superpotential of a 3d gauge theory is
given by:

2 r

~ ~ , r " - 1 v
W = E W\ (O}‘Z”) + kup’(Z”Z,.,» + 0ap p Z”‘) + Kg
(’.‘

where k“” are the Chern-Simons levels, kg IS the gravitational
Chern-Simons level, and:

1
4r2r

Lip(e 27Ty _ g»:(z + 17

(log(x + ) 1) = )

~

= 21l Oy Wepi(X) = —log(2isin7ry)

Page 15/53



Pirsa: 16110050

Vacuum equations and algebra of line operators

@ The equations for the supersymmetric vacua are given by:

OW
exp | 2 =1, a=1.,....r
p( me)ua> G

@ Provided the theory is free of anomalies, the LHS will be a rational
function of the gauge-invariant variables:

Xy = e2fmruaq [ = eerrrm;

@ We can also define twisted chiral operators. These are line
operators, which lie at a point on R? and wrap the S'. They are
generated by Weyl-invariant polynomials in x,, subject to the

relations: )
OW
exp (erté)ua) — 1
@ Thus we can define an algebra of Wilson lines by a certain quotient
of the representation ring of G by polynomial relations

[Kapustin,BW],[Closset,Kim] of dimension |S,ac|.
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Example 1: U(1) with one flavor

@ The twisted superpotential for U(1) with one flavors is (setting r = 1):

W = Weni(u + m) + Wopi(—u + m) + Cu

where u is the gauge parameter, and m and ¢ are flavor parameters.
@ Then the vacuum equation is:

| _ exp( .(')W) ~ sinm(—u+ m) o2ric

27| =

ou sinm(u + m)

e Defining x = 2™ ;, = e2™M 7z — g2™/¢ this can be rearranged to:

[w— X « 1 +pz
X — 1 vac = { w2z }

giving a single vacuum.

@ A charge g Wilson loop is represented by x9 € C[x], but the relation
X(pe+ 2) = pz + 1 relates these to c-numbers, so the algebra is
trivial.
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Example 2: U(N;)x with Nt flavors

@ The twisted superpoential for U(N_)x with N; flavors is:

Ne Ny

A / A " K

W = Z (Z (Wchi(Ua + m;) + Wepni(—uUa + m,)) + 2Ua(Ua +1) + ¢y
a=1 =1

where u, are the gauge parameters for the Cartan of U(N;), and
(m;, m;, ¢) are the parameters for the SU(Ny) x SU(Ny) x U(1),
flavor symmetry.

@ The vacuum equations are:

Ny

DUg . sin m(Ua + M)

@ This has Ny + k solutions for each a, and taking Weyl symmetry into
account, this leaves:

Svac = {ChOiCG of N; roots of p(x)} |Svac| - (k + Nf)

Ne
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Example 2: U(N;)x with Nt flavors (cont'd)

@ The algebra of Wilson lines is given by a quotient of the
representation ring:
A= C[Xa]W/I

where:
1= <p(Xa)>

@ In the case Nf = 0 this reproduces the Verlinde algebra.

@ More generally, the space of Wilson loop irreps is truncated by
quantum relations. E.g., for No = k = Ny = 2, we have:

Wiy ==+ o7 Wi+ (2= OW + 20+ 07 )1

where j = €™M z — g°™/¢
@ The Young diagram can always be truncated to fit inside a
(k + Nt — N¢) x N box, leading to:

. k+ N
dm A = ( N f) — |Svac|
Nc
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Partition functions on

U(1) bundles




A 3d uplift of the A-twist

@ [Nekrasov-Shatashvili],[Closset, Kim], [Benini,Zaffaroni], argued that
the partially topologically twisted partition function on £, x S' can
be considered as a 3d uplift of the A-twisted partition function.

In particular, the partition function is independent of the metric on
> 4, and is computed by a 2d TQFT. This implies it takes the general
form:

(04...05)5 51 = Try(HI 7 04...05)

Here O; are local operators on ¥4, corresponding to loop operators
which wrap the S factor.

We will argue that this statement can be generalized to spaces
which are U(1) bundles over a Riemann surface:
S' =5 Mgp 5 %

They are labeled by two integers, the genus g and Chern-degree p
of the bundle.
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U(1) bundles over Riemann surfaces

e E.g.

Mo =S°,
Mop =S°/Zp (lens space)
SS

@ We take local coordinates, (z,Z,4), on Mg p, such that the metric
takes the form:

ds® = (dv + a)® + ¢(z,2)dzdz

@ Here a=a(z,z)dz + a(z,z)dz is a U(1) connection on ¥4 with flux

p: o
2m _/}:g Ha=p
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A 3d uplift of the A-twist (cont'd)

@ For non-zero p, the independence of the partition function on the
metric of X4 continues to hold.

@ Moreover, the graviphoton background a(z, Z) enters only through its
total flux p.

@ By concentrating the flux at a single point, we can think of it as a
local insertion in ¥4, implying:

(04...0s) My, = (FPO1...08)5 w51 = Trp(HI FPO;...05)

where F, which we denote the “fibering operator” inserts one unit of
graviphoton flux.
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Comparisons to other work

@eg=0p=1-83
e Taking the round metric on S?, this gives the round S® background.
[Kapustin, BW, Yaakov],[Jafferis]
e The “squashed sphere” backgrounds [Hama,Hosomichi,Lee]
correspond to taking K to include a components along an S? isometry.
These cannot be extended to higher genus.

e g=0p>1-5°/7Z,
e Here we compute the lens space L(p.—1). This differs from the lens

space partition function computed [Benini,Nishioka,Yamazaki,
corresponding to L(p. 1).

@ General g.p

e Localization of Chern-Simons theory on My , was considered by
[Blau,Thompson] and [Kallén], and we reproduce their results.

e Localization of 3d N = 2 theories on Mg , was previously considered
by [Ohta,Yoshida]. Our backgrounds and supersymmetry
transformations are similar to theirs, however our final answers differ.
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Bethe/gauge correspondence on curved space

@ [Nekrasov,Shatashvili] argued the ¥4 x S' partition function can now
be interpreted as an A-twisted partition function for this low energy
theory.

@ The low energy action on this curved space is given by:

)W . 92 W
S = /d2 (:) + if12) + : Nols +UR? )+Q( y

2o D2 a0Lp

where U is the “effective dilaton interaction.” It depends on the
choice of R-charge, and couples to the curvature of 3.

@ The partition function on £, x S then recieves contributions from
the SUSY vacua:

Zy st (M) =Y HI(upm)

Ua*ESBE

where H is the “handle-gluing operator.”
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Handle-gluing operator

@ Thisis given by:

0 1
W
H(Ua my) = Hvam) got 7"
ab dUa0Up

@ The effective dilaton interaction is;:

U X(T re)log2sin(mQpL,,) 4 X log(1 — e2™iw(U)) 4 kRay | kAR

{ weAd(G)

where r; € Z is the R-charge of the chiral, and k", k" are contact
terms.
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Flux operator

@ We can generalize this formula by allowing flux through % for flavor
symmetry gauge fields.

@ For a background gauge multiplet m;, if we define:

2
exp( om /\/gd XI f12) = ;"

where s; = .- fzg dal) € 7 is the flux, and

oW
T = exp (2ﬂlr)m,')

@ Then the formula in the presence of generic flavor symmetry fluxes
Is [Closset,Kim],[Benini,Zaffaroni]:

Zrpes(mos) = 3 H(Us Mo m(ug m)?
Uz €SB

@ By concentrating the flux near a point, such a configuration defines a
supersymmetric vortex loop operator.
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Fibering operator

@ A 3dtheory on R? x S' has a priveleged global symmety, which we
denote U(1)kx, which acts by translations along S'. The charged
fields are KK modes.

@ Then placing the theory on a non-trivial U(1) bundle, M ., is
the same as turning on a flux p for this symmetry.

@ On acircle of radius r, the KK modes have twisted mass 7, and so

we can define mgk = 1r Then the flux operator is given by:

ex 2i0W = eX -
P Wi)mKK = &Xp

@ The dependence on r is fixed by dimensional analysis, and one
computes the fibering operator for a general theory as:

p ~ — I)W - ()W
F = exp (2:{(W > U, o > m; o ))
a “Ha ‘ i

/
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Fibering operator (cont'd)
Independent of branch cut ambiguities in W.
It satisfies the difference equation:
Floom+1,.)=F(..m,. . )r

This reflects the fact that, on Mg p, large gauge transformations
identify:

(m,s) ~(Mm+1,8+p) = F(m+1)Pr(m)*P = F(m)Pr(m)®
so the fluxes m; takes values in:
Zp C H* (Mg p)
For a chiral multiplet, one has:

S 1 i u il
Feni(U) exp<2m(4:2|_|2(e R 2m.|og(eg“” 1))) Sp_1(U)

For a Chern-Simons and gravitational Chern-Simons term, one finds:

_ 2 i
Fcs ek,.fu . ]:grav e2m._q
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Fibering operator

@ A 3dtheory on R? x S' has a priveleged global symmety, which we
denote U(1)kk, which acts by translations along S'. The charged
fields are KK modes.

@ Then placing the theory on a non-trivial U(1) bundle, M ., is
the same as turning on a flux p for this symmetry.

@ On acircle of radius r, the KK modes have twisted mass 7, and so

we can define mgk = 1r Then the flux operator is given by:

ex 2:’“W = ex -
P Wi)mKK - P

@ The dependence on r is fixed by dimensional analysis, and one
computes the fibering operator for a general theory as:

' ~ — I)W - ()W
F = exp (2:{(W > U, o > m; o ))
a “Ha ‘ i

/
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Final formula

@ Putting the ingredients together, the partition function on Mg, is
given by:
ZMQP m, S,' — Z HU 1F!S‘fp

U3 €Svac

@ One can also include Wilson loop operators, which recall are defined
by gauge-invariant polynomials W(xz):

W(Xa)) Mg p(Min ) = > HI 'm% FPW(Xa)

uz E€Svac

@ Note that the Wilson loop algebra relations are automatically
satisfied in this formula since we sum over the solutions to the
vacuum equations.
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UV localization on Mg,

@ The partition function can also be computed by localization, and one
finds:

Jv > ¢ duy FPPy"ameld M (det H,p )9
| | ma€Z " Cuk

ZMg‘p =

where Ck is an appropriate Jeffrey-Kirwan contour.

@ This can be shown to agree with the TQFT expression derived
earlier.

@ Moreover, it reduces to the Coulomb-branch-integral formulation of
the S° partition function.
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Final formula
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Applications to Dualities

@ Given two dual theories, their partition functions on all manifolds
should agree, as should expectation values of dual Wilson loop
operators:

< W >(/C[)g‘p = Y HITN(Ua") 7 (ua")FP(Ua")W(Us")
Ua* €ESvac
WS E =Y A )R (0 P AES)
UaEbvac

@ For this to hold for all g, p. s;, and arbitrary insertions W(u,) is equivalent to
the existence of a duality map between vacua:

D: Syac — SAvac
such that:
H(ua") = H(D(ua")), mi(ua*) = Ai(D(ua")).
@ These equalities in turn follow provided:
W(ua") = W(D(ua")), U(ua")

where these hold modulo branch ambiguities.
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U(1),_1 < free chiral

@ The simplest 3d duality relates a free chiral multiplet to a U(1)x-1 2
ttleory with one charged chiral. The first theory has (writing

W = 4r2 W) )
Wa(n) = —Lia(p)
@ For the second, we have:
Wg(x, ;1) = Lia(x) + log x log 1
which leads to a vacuum equation:

OWpg (4
= = X=1-p
(‘)u) 1 —X f

1_exp<

— Wa(u) = Lia(1 — 1) + log(1 — 1) log e

@ By a basic dilogarithm identity, one checks:

Walu) = We(n) - -5
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@ Another simple duality relates U(1) with one flavor to the XYZ
model. The XYZ model has:

lﬁ/,q(/!., z) = Lio(pz) + Lia(puz™") + Lip(4?)

@ The U(1) theory has:

A

Wa(x, 1, 2) = Liag(p ' x) + Lia(~'x~") 4+ log x log z

1 —uz

B.E.= x, =
H—2

= Wiy, 2) = Lia(u~ '~ 2y Lig(u~ ' -2 %) {log (1 g “Z) log

pH—2z -2z -2

@ Then the five-term dilogarithm relations directly implies:

- ~ 7r2

Wa(, 2) = We(u, 2) + 5
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Aharony and Giveon-Kutasov dualities

@ Next consider the duality of Giveon-Kutasov relating:
e U(N;)x with N; flavors.
o U(k + Ny — N¢)_k with Ny flavors and N? mesons, with W = qMapaP.
@ The vacuum equations of the two theories are the same, and can be
written:

p(x;) = Xz HU - i) — | J(x — i) = 0

i

@ Let x,, a =1,.., kK + N¢ be the roots of p. Then the duality map is:
D({X,-* = X,,(x € A}) = {)??* = X,,a € A%}

@ The matching of the twisted superpotential follows from a dilogarithm
identity of [Ray,1991].
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Reduction of

3d N = 2 dualities
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Reduction of 3d dualities

@ Jo understand the reduction of 3d theories on S}, we can study the
corresponding limit of the twisted superpotential:

Wog = lim Way(r)
r—0

@ When taking this limit, we must also choose how to scale parameters
in the action:

e Take m << 1/r -the mis not important for the compactification, but
appears as a relevant parameter (twisted mass) in the 2d UV
description.

e Take v = mr ~ O(1) - Then ~ appears as a (classically) marginal
parameter (Kahler moduli) in 2d. Quantum effects may renormalize ~.

@ We have such a choice for each relevant parameter in the theory,
and different choices lead to different 2d reductions.

@ Starting with a single 3d dual pair, we can then find many new 2d
dual pairs.
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@ Example: U(1)k-1,2 With charge one chiral:

dWay

2l
au
@ Limit 1: Compare to 2d version of this theory:

= log 2isin(rwru) — wiru — 2wir¢

One finds Wy — Why as r — 0 provided we set

( = 5o (t — log(nr)).
@ Claim: In this limit, we obtain the U(1) gauge theory with one chiral.
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Example: U(1)k-1,2 With charge one chiral:

dWay

2l
au
Limit 1. Compare to 2d version of this theory:

= log 2isin(wru) — wiru — 2wir¢

One finds Wy — Way as r — 0 provided we set

¢ = 5 (t —log(nr)).

Claim: In this limit, we obtain the U(1) gauge theory with one chiral.
Limit 2: Now we take ¢ finite. Then one computes < u >~ —°9U¢),

2mir
This suggests we should define a renormalized field
X = 2riru + log r, and the twisted superpotential is regular in terms

of Xasr — 0;

Wag — €€ + X+ O(r)
This time we find the A/ = 2 Liouville theory.
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@ Example: U(1)x—¢ with charge (1, —1) chirals:

27rfdg‘5’d = log 2i sin(wr(u+m))—log 2 sinh(mwr(—u+m))+2miru+2mir¢

@ Compare to the 2d version of this theory:

= log(u+ m) —log(—u+m) +t

t
2nr'

e Now Wsy — Woy as r — 0 provided we hold m. ¥ finite and ¢ =

@ Note we treated the mass m ~ O(1) and F| parameter ¢ ~ O(r~")
asymetrically in the r — 0 limit, although they appear on the same
footing in 3d, and are exchanged under mirror symmetry.
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Example 2 - dual description

@ 3d mirror dual description: U(1)x-—_4 with charge (1, 1) chirals:

dWsy

2ri— < =log2isin(rr(u+())+log 2isin(zr(u—()) —2miru+2rirm

Taking the same limit of parameters, m, t = 2xir¢ fixed, one defineds
a rescaled twisted chiral field Y = 2riru — log(r), which has finite
VEV, and we find:

21W(ey”+ey“') + O(r)

WSd —r0= YM+

This is precisely the 2d Hori-Vafa dual of the previous 2d gauge
theory, as shown first by [Aganagic, Hori, Karch, Tong].

This can be repeated for an arbitrary 3d abelian mirror symmetry
pair, and one recovers the general case of Hori-Vafa duality. Thus 3d
mirror symmetry implies 2d mirror symmetry.
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@ Example: U(1)x—¢ with charge (1, —1) chirals:

27rfdg‘f’d = log 2/ sin(wr(u+m))—log 2 sinh(wr(—u+m))+2miru+2mir¢

@ Compare to the 2d version of this theory:

log(tu + m) —log(—u+m)+t

t
anr'

@ Now Wsy — Woy as r — 0 provided we hold m, ¥ finite and ¢ =

@ Note we treated the mass m ~ O(1) and F| parameter ¢ ~ O(r~")
asymetrically in the r — 0 limit, although they appear on the same
footing in 3d, and are exchanged under mirror symmetry.
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Example 2 - dual description

@ 3d mirror dual description: U(1)x-—_4 with charge (1, 1) chirals:

dWsy

2ri— < =log2isin(rr(u+())+log 2isin(zr(u—()) —2miru+2rirm

Taking the same limit of parameters, m, t = 2xir¢ fixed, one defineds
a rescaled twisted chiral field Y = 2riru — log(r), which has finite
VEV, and we find:

21W(ey”+ey“') + O(r)

WSd —r0= YM+

This is precisely the 2d Hori-Vafa dual of the previous 2d gauge
theory, as shown first by [Aganagic, Hori, Karch, Tong].

This can be repeated for an arbitrary 3d abelian mirror symmetry
pair, and one recovers the general case of Hori-Vafa duality. Thus 3d
mirror symmetry implies 2d mirror symmetry.
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@ Next consider U(N.), with N; flavors. Then we have:

Ny
Z(Iog 2i sin(wr(ua + m;)) — log 2i sin(wr(—ua + m;))) + 2mwirkus + 2mir
=1

Taking masses finite and 27ir¢ = t, one finds the twisted
superpotential of the 2d U(N;) theory:

=1

@ Suggests we find a 2d U(N;) theory with N; flavors - however, this is
inconsistent with Giveon-Kutasov duality, as it would imply this is
dual to U(N¢ + k — N¢) with Ny flavors for any k, which is clearly false.

@ Another problem: the theory above has only (,Q,’;) vacua - we must be
missing some!
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Example 3 (cont'd)

@ The resolution is that
there are k additional
solutions with u ~ r—1:

@ Thus when we pick vacua, we can let ¢ < k of the eigenvalues to be large,
and the remaining N — ¢ will form a 2d U(N — ¢) gauge theory. These
sectors decouple from each other, and we find a direct sum:

U(N)Ngﬂavors ® U(N — 1)N,ﬂavors D..D U(N - k)N,ﬂavors
@ The 3d Giveon-Kutasov dual reduces similarly as (suppressing mesons):

U(k + Ny — N)Nfﬁavors ® U(k + Ny — N — 1)Nfﬂavors ® ... & U(Ny — N)N,ﬂavors

@ These direct-sum theories are related termwise by the 2d Seiberg-like
duality of [Benini,Park,Zhao] relating U(N)n;,siavors t© U(Nf — N)n, iavors-
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Some other examples

3d duality: “Duality appetizer” SU(2),_1+ adjoint dual to free chiral.
[Jafferis, Yin].

= 2d duality: W = XY?/Z, dual to free chiral [Hori]. Here one must
scale ¥ ~ r—1/2,

3d duality: SU(N¢)k (Nf, Na) (anti-)fundamental chirals dual to
SU(Nf — N¢)_ with (Ng, Ng) for Ny > Na+ 1, k < N’ENB.

[Aharony,Fleischer]

= 2d duality: SU(N;¢) (Nf, Na) dual to SU(Ny — Ng) (N, Nj) for
Nt > Nz + 1 — generalization of [Hori,Tong].

S? partition functions match in all these examples, as follows by
reducing the 3d index identites.

One can also check the elliptic genera (T2 partition functions) also
match — independent checks of the dualities.
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The twisted superpotential is a probe which explores many aspects
of a3d N = 2 theory.

It determines the supersymmetric vacua and the algebra of Wilson
loops.

We computed the partition function on wide class of manifolds, and
showed it can be expressed in terms of data associated to the
supersymmetric vacua.

We described subtleties that arise in compactifying 3d dualites, and
how the twisted superpotential gives control over these.
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@ Study the reduction of more examples of 3d dualities, and of higher
dimensional systems.

e E.g., 4d theories on a Riemann surface.
@ Many applications for Mg, partition function to 3d A = 2 theories;

e Supersymmetric dualities
e Large N calculations and AdS/CFT comparisons
e 3d — 3d correspondence

@ Connections to integrable systems through the gauge-Bethe
correspondence

e What is the meaning of the fibering operator in this context?

@ Extend to more general Seifert manifolds and to 4d theories

e Involves understanding the algebra of half-BPS surface operators.
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